SlideShare a Scribd company logo
NS Talal Khaliq
Project Supervisor:
Dr. Shoiab A Khan
Outline
Motivation
‘A picture is worth a thousands words.’
If this holds true, how a moving picture (video) which
contains so much information is transmitted so efficiently?
Problem background
Example an single video frame with 720x576 pixels with color depth of 24
bits per pixel with 29.97 frames per second uses approximately 200Mbs,
thus for a two hour program at this rate takes over 200 GB which is
practically impossible to store.
What is Video Compression?
It refers to reducing the quantity of data, and is
a combination of spatial image compression and
temporal motion compensation.
Temporal
Correlation
Spatial Correlation
Temporal Model
 It reduces redundancy between transmitted frames by
forming a predicted frame and subtracting this from the
current frame.
 The resulting residual (difference) frame contains less
energy.
 The residual frame is then encoded.
Block-based Motion Estimation
This method is used to ‘compensate’ for motion of
rectangular frames or ‘blocks’ in current frame.
 It involves finding a 4x4 sample region in a reference frame
that closely matches the current macroblock.
 Macroblock with minimum energy is chosen as ‘best match.’
Cost Function
Mean Absolute Difference(MAD),
Mean Squared Error(MSE),
where N is the side of macroblock, Cij and Rij are the pixels being compared.






1
0
1
0
2
||
1 N
i
N
j
ijij RC
N
MAD






1
0
1
0
2
2
)(
1 N
i
N
j
ijij RC
N
MSE
Motion Compensation
 The selected best matching region in the reference frame is
subtracted from the current macroblock to produce a residual
macroblock.
 This residual macroblock is encoded and transmitted together with a
motion vector describing the position of the best matching
macroblock.
 Motion vector is the offset between the current block and the position
of the candidate region.
Past Frame Current Frame
Frame Segmentation Blocks
Search Threshold
Block Matching
Motion Vectors
Motion vector Correction
Blocks
Prediction Error
Transmission
Example Video
Frame 10 Frame 11
Adaptive Rood Pattern Search Algorithm
 General motion in the frame is usually coherent.
 It uses the motion vector of macro block to its immediate left to
predict its own motion vector.
 It directly puts the search in an area where there is a high probability
of finding a good matching block.
Predicted motion vector
is (3,-2) and step size S,
S=max(3,-2)=> 3.
Frames
Macro block area defined
Frame Scan
S=max(|X|,|Y|)
SDSP
Calculate min cost
LDSP
Start
loop
again
Motion vectors
Advantages
 We do not have to compute whole frame like in Exhaustive Search.
 It does not waste time doing LDSP. It starts with SDSP unlike in
Diamond Search.
 It does not always start from centre or extreme left and thus saves
computation time.
Video 2
Frame 110 Frame 113
Video 3
Frame 220 Frame 222
Motion Estimation in h.264 encoder

More Related Content

What's hot

Rethinking Attention with Performers
Rethinking Attention with PerformersRethinking Attention with Performers
Rethinking Attention with Performers
Joonhyung Lee
 
A Novel Background Subtraction Algorithm for Dynamic Texture Scenes
A Novel Background Subtraction Algorithm for Dynamic Texture ScenesA Novel Background Subtraction Algorithm for Dynamic Texture Scenes
A Novel Background Subtraction Algorithm for Dynamic Texture Scenes
IJMER
 
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
changedaeoh
 
[Paper] Multiscale Vision Transformers(MVit)
[Paper] Multiscale Vision Transformers(MVit)[Paper] Multiscale Vision Transformers(MVit)
[Paper] Multiscale Vision Transformers(MVit)
Susang Kim
 
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View SynthesisPR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Hyeongmin Lee
 
PR-317: MLP-Mixer: An all-MLP Architecture for Vision
PR-317: MLP-Mixer: An all-MLP Architecture for VisionPR-317: MLP-Mixer: An all-MLP Architecture for Vision
PR-317: MLP-Mixer: An all-MLP Architecture for Vision
Jinwon Lee
 
Review-image-segmentation-by-deep-learning
Review-image-segmentation-by-deep-learningReview-image-segmentation-by-deep-learning
Review-image-segmentation-by-deep-learning
Trong-An Bui
 
Background Subtraction Algorithm for Moving Object Detection Using Denoising ...
Background Subtraction Algorithm for Moving Object Detection Using Denoising ...Background Subtraction Algorithm for Moving Object Detection Using Denoising ...
Background Subtraction Algorithm for Moving Object Detection Using Denoising ...
International Journal of Science and Research (IJSR)
 
Tree structured partitioning into transform blocks and units and interpicture...
Tree structured partitioning into transform blocks and units and interpicture...Tree structured partitioning into transform blocks and units and interpicture...
Tree structured partitioning into transform blocks and units and interpicture...
LainAcarolu
 
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation..."Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
Edge AI and Vision Alliance
 
Different Approach of VIDEO Compression Technique: A Study
Different Approach of VIDEO Compression Technique: A StudyDifferent Approach of VIDEO Compression Technique: A Study
Different Approach of VIDEO Compression Technique: A Study
Editor IJCATR
 
DICTA 2017 poster
DICTA 2017 posterDICTA 2017 poster
DICTA 2017 poster
Ashek Ahmmed
 
Deep Learning Fast MRI Using Channel Attention in Magnitude Domain
Deep Learning Fast MRI Using Channel Attention in Magnitude DomainDeep Learning Fast MRI Using Channel Attention in Magnitude Domain
Deep Learning Fast MRI Using Channel Attention in Magnitude Domain
Joonhyung Lee
 
PR-366: A ConvNet for 2020s
PR-366: A ConvNet for 2020sPR-366: A ConvNet for 2020s
PR-366: A ConvNet for 2020s
Jinwon Lee
 
A Low Hardware Complex Bilinear Interpolation Algorithm of Image Scaling for ...
A Low Hardware Complex Bilinear Interpolation Algorithm of Image Scaling for ...A Low Hardware Complex Bilinear Interpolation Algorithm of Image Scaling for ...
A Low Hardware Complex Bilinear Interpolation Algorithm of Image Scaling for ...
arpublication
 
ImageNet classification with deep convolutional neural networks(2012)
ImageNet classification with deep convolutional neural networks(2012)ImageNet classification with deep convolutional neural networks(2012)
ImageNet classification with deep convolutional neural networks(2012)
WoochulShin10
 
Efficient Neural Architecture Search via Parameter Sharing
Efficient Neural Architecture Search via Parameter SharingEfficient Neural Architecture Search via Parameter Sharing
Efficient Neural Architecture Search via Parameter Sharing
Jinwon Lee
 
HRNET : Deep High-Resolution Representation Learning for Human Pose Estimation
HRNET : Deep High-Resolution Representation Learning for Human Pose EstimationHRNET : Deep High-Resolution Representation Learning for Human Pose Estimation
HRNET : Deep High-Resolution Representation Learning for Human Pose Estimation
taeseon ryu
 
PR-330: How To Train Your ViT? Data, Augmentation, and Regularization in Visi...
PR-330: How To Train Your ViT? Data, Augmentation, and Regularization in Visi...PR-330: How To Train Your ViT? Data, Augmentation, and Regularization in Visi...
PR-330: How To Train Your ViT? Data, Augmentation, and Regularization in Visi...
Jinwon Lee
 
2021 05-04-u2-net
2021 05-04-u2-net2021 05-04-u2-net
2021 05-04-u2-net
JAEMINJEONG5
 

What's hot (20)

Rethinking Attention with Performers
Rethinking Attention with PerformersRethinking Attention with Performers
Rethinking Attention with Performers
 
A Novel Background Subtraction Algorithm for Dynamic Texture Scenes
A Novel Background Subtraction Algorithm for Dynamic Texture ScenesA Novel Background Subtraction Algorithm for Dynamic Texture Scenes
A Novel Background Subtraction Algorithm for Dynamic Texture Scenes
 
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
 
[Paper] Multiscale Vision Transformers(MVit)
[Paper] Multiscale Vision Transformers(MVit)[Paper] Multiscale Vision Transformers(MVit)
[Paper] Multiscale Vision Transformers(MVit)
 
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View SynthesisPR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
 
PR-317: MLP-Mixer: An all-MLP Architecture for Vision
PR-317: MLP-Mixer: An all-MLP Architecture for VisionPR-317: MLP-Mixer: An all-MLP Architecture for Vision
PR-317: MLP-Mixer: An all-MLP Architecture for Vision
 
Review-image-segmentation-by-deep-learning
Review-image-segmentation-by-deep-learningReview-image-segmentation-by-deep-learning
Review-image-segmentation-by-deep-learning
 
Background Subtraction Algorithm for Moving Object Detection Using Denoising ...
Background Subtraction Algorithm for Moving Object Detection Using Denoising ...Background Subtraction Algorithm for Moving Object Detection Using Denoising ...
Background Subtraction Algorithm for Moving Object Detection Using Denoising ...
 
Tree structured partitioning into transform blocks and units and interpicture...
Tree structured partitioning into transform blocks and units and interpicture...Tree structured partitioning into transform blocks and units and interpicture...
Tree structured partitioning into transform blocks and units and interpicture...
 
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation..."Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
 
Different Approach of VIDEO Compression Technique: A Study
Different Approach of VIDEO Compression Technique: A StudyDifferent Approach of VIDEO Compression Technique: A Study
Different Approach of VIDEO Compression Technique: A Study
 
DICTA 2017 poster
DICTA 2017 posterDICTA 2017 poster
DICTA 2017 poster
 
Deep Learning Fast MRI Using Channel Attention in Magnitude Domain
Deep Learning Fast MRI Using Channel Attention in Magnitude DomainDeep Learning Fast MRI Using Channel Attention in Magnitude Domain
Deep Learning Fast MRI Using Channel Attention in Magnitude Domain
 
PR-366: A ConvNet for 2020s
PR-366: A ConvNet for 2020sPR-366: A ConvNet for 2020s
PR-366: A ConvNet for 2020s
 
A Low Hardware Complex Bilinear Interpolation Algorithm of Image Scaling for ...
A Low Hardware Complex Bilinear Interpolation Algorithm of Image Scaling for ...A Low Hardware Complex Bilinear Interpolation Algorithm of Image Scaling for ...
A Low Hardware Complex Bilinear Interpolation Algorithm of Image Scaling for ...
 
ImageNet classification with deep convolutional neural networks(2012)
ImageNet classification with deep convolutional neural networks(2012)ImageNet classification with deep convolutional neural networks(2012)
ImageNet classification with deep convolutional neural networks(2012)
 
Efficient Neural Architecture Search via Parameter Sharing
Efficient Neural Architecture Search via Parameter SharingEfficient Neural Architecture Search via Parameter Sharing
Efficient Neural Architecture Search via Parameter Sharing
 
HRNET : Deep High-Resolution Representation Learning for Human Pose Estimation
HRNET : Deep High-Resolution Representation Learning for Human Pose EstimationHRNET : Deep High-Resolution Representation Learning for Human Pose Estimation
HRNET : Deep High-Resolution Representation Learning for Human Pose Estimation
 
PR-330: How To Train Your ViT? Data, Augmentation, and Regularization in Visi...
PR-330: How To Train Your ViT? Data, Augmentation, and Regularization in Visi...PR-330: How To Train Your ViT? Data, Augmentation, and Regularization in Visi...
PR-330: How To Train Your ViT? Data, Augmentation, and Regularization in Visi...
 
2021 05-04-u2-net
2021 05-04-u2-net2021 05-04-u2-net
2021 05-04-u2-net
 

Similar to Motion Estimation in h.264 encoder

Optimization of Macro Block Size for Adaptive Rood Pattern Search Block Match...
Optimization of Macro Block Size for Adaptive Rood Pattern Search Block Match...Optimization of Macro Block Size for Adaptive Rood Pattern Search Block Match...
Optimization of Macro Block Size for Adaptive Rood Pattern Search Block Match...
IJERA Editor
 
Dsc
DscDsc
Dsc
DscDsc
Fast Motion Estimation for Quad-Tree Based Video Coder Using Normalized Cross...
Fast Motion Estimation for Quad-Tree Based Video Coder Using Normalized Cross...Fast Motion Estimation for Quad-Tree Based Video Coder Using Normalized Cross...
Fast Motion Estimation for Quad-Tree Based Video Coder Using Normalized Cross...
CSCJournals
 
IRJET- Comparison and Simulation based Analysis of an Optimized Block Mat...
IRJET-  	  Comparison and Simulation based Analysis of an Optimized Block Mat...IRJET-  	  Comparison and Simulation based Analysis of an Optimized Block Mat...
IRJET- Comparison and Simulation based Analysis of an Optimized Block Mat...
IRJET Journal
 
I0341042048
I0341042048I0341042048
I0341042048
inventionjournals
 
557 480-486
557 480-486557 480-486
557 480-486
idescitation
 
An Effective Implementation of Configurable Motion Estimation Architecture fo...
An Effective Implementation of Configurable Motion Estimation Architecture fo...An Effective Implementation of Configurable Motion Estimation Architecture fo...
An Effective Implementation of Configurable Motion Estimation Architecture fo...
ijsrd.com
 
Fast Full Search for Block Matching Algorithms
Fast Full Search for Block Matching AlgorithmsFast Full Search for Block Matching Algorithms
Fast Full Search for Block Matching Algorithms
ijsrd.com
 
Multimedia basic video compression techniques
Multimedia basic video compression techniquesMultimedia basic video compression techniques
Multimedia basic video compression techniques
Mazin Alwaaly
 
538 207-219
538 207-219538 207-219
538 207-219
idescitation
 
Be36338341
Be36338341Be36338341
Be36338341
IJERA Editor
 
Motion detection in compressed video using macroblock classification
Motion detection in compressed video using macroblock classificationMotion detection in compressed video using macroblock classification
Motion detection in compressed video using macroblock classification
acijjournal
 
Motion Estimation - umit 5 (II).pdf
Motion Estimation  - umit 5 (II).pdfMotion Estimation  - umit 5 (II).pdf
Motion Estimation - umit 5 (II).pdf
HeenaSyed6
 
L0936775
L0936775L0936775
L0936775
IOSR Journals
 
Background Estimation Using Principal Component Analysis Based on Limited Mem...
Background Estimation Using Principal Component Analysis Based on Limited Mem...Background Estimation Using Principal Component Analysis Based on Limited Mem...
Background Estimation Using Principal Component Analysis Based on Limited Mem...
IJECEIAES
 

Similar to Motion Estimation in h.264 encoder (20)

Optimization of Macro Block Size for Adaptive Rood Pattern Search Block Match...
Optimization of Macro Block Size for Adaptive Rood Pattern Search Block Match...Optimization of Macro Block Size for Adaptive Rood Pattern Search Block Match...
Optimization of Macro Block Size for Adaptive Rood Pattern Search Block Match...
 
Dsc
DscDsc
Dsc
 
Dsc
DscDsc
Dsc
 
Dsc
DscDsc
Dsc
 
Dsc
DscDsc
Dsc
 
Fast Motion Estimation for Quad-Tree Based Video Coder Using Normalized Cross...
Fast Motion Estimation for Quad-Tree Based Video Coder Using Normalized Cross...Fast Motion Estimation for Quad-Tree Based Video Coder Using Normalized Cross...
Fast Motion Estimation for Quad-Tree Based Video Coder Using Normalized Cross...
 
IRJET- Comparison and Simulation based Analysis of an Optimized Block Mat...
IRJET-  	  Comparison and Simulation based Analysis of an Optimized Block Mat...IRJET-  	  Comparison and Simulation based Analysis of an Optimized Block Mat...
IRJET- Comparison and Simulation based Analysis of an Optimized Block Mat...
 
I0341042048
I0341042048I0341042048
I0341042048
 
40120140503006
4012014050300640120140503006
40120140503006
 
557 480-486
557 480-486557 480-486
557 480-486
 
An Effective Implementation of Configurable Motion Estimation Architecture fo...
An Effective Implementation of Configurable Motion Estimation Architecture fo...An Effective Implementation of Configurable Motion Estimation Architecture fo...
An Effective Implementation of Configurable Motion Estimation Architecture fo...
 
B0441418
B0441418B0441418
B0441418
 
Fast Full Search for Block Matching Algorithms
Fast Full Search for Block Matching AlgorithmsFast Full Search for Block Matching Algorithms
Fast Full Search for Block Matching Algorithms
 
Multimedia basic video compression techniques
Multimedia basic video compression techniquesMultimedia basic video compression techniques
Multimedia basic video compression techniques
 
538 207-219
538 207-219538 207-219
538 207-219
 
Be36338341
Be36338341Be36338341
Be36338341
 
Motion detection in compressed video using macroblock classification
Motion detection in compressed video using macroblock classificationMotion detection in compressed video using macroblock classification
Motion detection in compressed video using macroblock classification
 
Motion Estimation - umit 5 (II).pdf
Motion Estimation  - umit 5 (II).pdfMotion Estimation  - umit 5 (II).pdf
Motion Estimation - umit 5 (II).pdf
 
L0936775
L0936775L0936775
L0936775
 
Background Estimation Using Principal Component Analysis Based on Limited Mem...
Background Estimation Using Principal Component Analysis Based on Limited Mem...Background Estimation Using Principal Component Analysis Based on Limited Mem...
Background Estimation Using Principal Component Analysis Based on Limited Mem...
 

Recently uploaded

Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
abh.arya
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
ShahidSultan24
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 

Recently uploaded (20)

Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 

Motion Estimation in h.264 encoder

  • 1. NS Talal Khaliq Project Supervisor: Dr. Shoiab A Khan
  • 3. Motivation ‘A picture is worth a thousands words.’ If this holds true, how a moving picture (video) which contains so much information is transmitted so efficiently?
  • 4. Problem background Example an single video frame with 720x576 pixels with color depth of 24 bits per pixel with 29.97 frames per second uses approximately 200Mbs, thus for a two hour program at this rate takes over 200 GB which is practically impossible to store.
  • 5. What is Video Compression? It refers to reducing the quantity of data, and is a combination of spatial image compression and temporal motion compensation.
  • 7. Temporal Model  It reduces redundancy between transmitted frames by forming a predicted frame and subtracting this from the current frame.  The resulting residual (difference) frame contains less energy.  The residual frame is then encoded.
  • 8. Block-based Motion Estimation This method is used to ‘compensate’ for motion of rectangular frames or ‘blocks’ in current frame.  It involves finding a 4x4 sample region in a reference frame that closely matches the current macroblock.  Macroblock with minimum energy is chosen as ‘best match.’
  • 9. Cost Function Mean Absolute Difference(MAD), Mean Squared Error(MSE), where N is the side of macroblock, Cij and Rij are the pixels being compared.       1 0 1 0 2 || 1 N i N j ijij RC N MAD       1 0 1 0 2 2 )( 1 N i N j ijij RC N MSE
  • 10. Motion Compensation  The selected best matching region in the reference frame is subtracted from the current macroblock to produce a residual macroblock.  This residual macroblock is encoded and transmitted together with a motion vector describing the position of the best matching macroblock.  Motion vector is the offset between the current block and the position of the candidate region.
  • 11. Past Frame Current Frame Frame Segmentation Blocks Search Threshold Block Matching Motion Vectors Motion vector Correction Blocks Prediction Error Transmission
  • 13.
  • 14. Adaptive Rood Pattern Search Algorithm  General motion in the frame is usually coherent.  It uses the motion vector of macro block to its immediate left to predict its own motion vector.  It directly puts the search in an area where there is a high probability of finding a good matching block.
  • 15. Predicted motion vector is (3,-2) and step size S, S=max(3,-2)=> 3.
  • 16. Frames Macro block area defined Frame Scan S=max(|X|,|Y|) SDSP Calculate min cost LDSP Start loop again Motion vectors
  • 17. Advantages  We do not have to compute whole frame like in Exhaustive Search.  It does not waste time doing LDSP. It starts with SDSP unlike in Diamond Search.  It does not always start from centre or extreme left and thus saves computation time.
  • 18. Video 2 Frame 110 Frame 113
  • 19.
  • 20. Video 3 Frame 220 Frame 222