SlideShare a Scribd company logo
Modeling of LASER
Micromachining Process




         Debkalpa Goswami
    Department of Production Engineering
            Jadavpur University
               B. Prod. E. III
           Roll: 001011701033
Light

Amplification by   • Population
                     Inversion
Stimulated
                   • Stimulated
                      Albert Einstein


                     Emission
Emission of
                   • Amplification
Radiation
                                        2


                       T. H. Maiman
Population Inversion




           E2 E1
                   Boltzmann Distribution Law
            kT
N2   N1e             (Thermal Equilibrium)      3
Stimulated Emission




    h    E2   E1

                      4
Amplification
                           2k       L
          I1    r1r2 I0e

                   2 kth   L
           r1r2e                1

                       1     1
         kth             ln
                      2L    r1r2

                                        5
Properties of Laser Radiation
• Monochromaticity

• Collimation

• Beam Coherence

• Temporal Modes

• Frequency
  Multiplication                   6
Types of Industrial Lasers

• Solid-state Lasers
   Nd:YAG (1064 nm)
   Ruby (694 nm)
   Nd:glass (1062 nm)
• Gas Lasers
   HeNe (632.8 nm)
                               Kumar Patel
   CO2 (10,600 nm)
   Argon (488, 514.5 nm)

• Semiconductor Lasers
   InGaAs (980 nm)
• Liquid dye Lasers
   Rhodamine 6G (570-640 nm)
   Coumarin 102 (460-515 nm)                 7
   Stilbene (403-428 nm)
Laser Materials Interactions
Laser Parameters         Material Parameters

• intensity               • absorptivity

• wavelength              • thermal conductivity

• spatial and temporal    • specific heat
  coherence
                          • density
• angle of incidence
                          • latent heat
• polarization
                                                   8
• illumination time
Thermal Effects
                                  2
    T z, t                        T z, t
                                                         ; T z,0                  T0         for        0 z
      t                            z2

     T 0, t                                                            1 0 t tp
   k                              H                                    0 t        tp
       z
          H          12                      z
            4 t           ierfc                     12
                                                                                               0 t      tp   heating
          k                                4 t
 T z, t
                12
          2H                                    z               12                z
                     t1 2ierfc                      12
                                                         t tp        ierfc              12
                                                                                               t   tp        cooling
            k                              4 t                               4   t tp

          1
ierfc x         exp           x2            x 1 erf x
                          x                                                                                            9
                     2                2
where erf x                   e           d .
                          0
10

a
Hzmax    Tm
ierfc                11
      kTb      Tb
12
Important Practical Considerations

• Beam Shapes

                               2r 2
  I r            I 0 exp
                               w2




                           2                2                2
T x, y , z , t             T x, y , z , t   T x, y , z , t   T x, y , z , t
     t                        x2               y2               z2
                                                                              13
• Pulse Shapes




                 14
• Moving Source of Heat
                                  x vt


                                                        2                    2                         2
    T    , y, z , t          T       , y, z , t          T    , y, z , t         T   , y, z , t        T   , y, z , t
v                                                               2
                                       t                                             y2                    z2

    T        , y, z, t                     (quasi-stationary heat flow)
                                 0
               t
                         v
    T T0 e                            , y, z          (trial function)

              2                              2                 2                      2
         v                                        , y, z                , y, z                , y, z
                         , y, z                   2
                                                                                                                   15
        2                                                              y2                    z2
• Temperature dependent properties


  • Thermal conductivity

  • Thermal diffusivity        f(T)
  • Absorptivity
                    Etc.



                                      16
Laser Micromachining Mechanisms

• Laser Ablation             • Laser Assisted Chemical
                               Etching
material removal processes
by photo-thermal or photo-     carried out by using
chemical interactions.         suitable etchant
                               (precursors).
multiphoton
                               gaseous precursors: Cl2
mechanism: even
                               and Br2
though the energy
                               (dry etching)
associated with each
photon is less than the
                               liquid precursors: HCl,
dissociation energy of
                               HNO3, H2SO4, NaCl,
bond, the bond breaking
                               and K2SO4 (wet
is achieved by
                               etching)                  17
simultaneous absorption
of two or photons.
Laser Micromachining Applications

• Microvia
  Drilling




• Drilling of
  Inkjet
  Nozzle
  Holes


                                          18
• Fuel
                         Injector
                         Drilling


                                    • Laser
                                      Scribing



Bio-medical applications:




                                                 19
Relevant Research and Recent Trends

     • Experimental
                                                                                      Kuar et. al (2006)
       Models

     • Semi-analytical                                                                Gospavic et. al
       Models                                                                         (2004)

     • Numerical or                                                                   Ding et. al (2012)
       Computer Models
Kuar, A. S., B. Doloi and B. Bhattacharyya (2006). "Modelling and analysis of pulsed Nd:YAG laser machining characteristics
during micro-drilling of zirconia (ZrO2)." International Journal of Machine Tools and Manufacture 46(12-13): 1301-1310.

Gospavic, R., M. Sreckovic and V. Popov (2004). "Modelling of laser-material interaction using semi-analytical approach."
Mathematics and Computers in Simulation 65(3): 211-219.                                                                       20
Ding, H., N. Shen and Y. C. Shin (2012). "Thermal and mechanical modeling analysis of laser-assisted micro-milling of
difficult-to-machine alloys." Journal of Materials Processing Technology 212(3): 601-613.
• Kuar et. al
  (2006)




                21
• Gospavic et.                        Semi-analytical model
  al (2004)
                                      Particular cases with
                                      cylindrical geometry
           Alternative
           method                     Laplace Transform and
                                      Fourier Method of Variable
                                      Separation

Differential                          PDE             ODE
Transform




                                                                                22
 Mukherjee, S., D. Goswami and B. Roy (2012). "Solution of Higher-Order Abel
 Equations by Differential Transform Method." International Journal of Modern
 Physics C 23(09): 1250056.
• Ding et. al
  (2012)




                23
Laser-Assisted Nano-wire Growth and Harvest
                           Laser Thermal Lab, UC Berkeley
Nanoplasians harvesting their nanowires selectively grown on a field by a laser-assisted
method. (SEM image)




                                                                                           24
Thank You


            25

More Related Content

Viewers also liked (9)

Electron beam micromachining
Electron beam micromachiningElectron beam micromachining
Electron beam micromachining
 
1355813121 solar power in india
1355813121 solar power  in india1355813121 solar power  in india
1355813121 solar power in india
 
ruby laser
ruby laser ruby laser
ruby laser
 
Laser, Pumping schemes, types of lasers and applications
Laser, Pumping schemes, types of lasers and applicationsLaser, Pumping schemes, types of lasers and applications
Laser, Pumping schemes, types of lasers and applications
 
Solid, liquid and gas phase synthesis of nanomaterials
Solid, liquid and gas phase synthesis of  nanomaterialsSolid, liquid and gas phase synthesis of  nanomaterials
Solid, liquid and gas phase synthesis of nanomaterials
 
Automatic Breaking System
Automatic Breaking SystemAutomatic Breaking System
Automatic Breaking System
 
Laser micro machining
Laser micro machining Laser micro machining
Laser micro machining
 
Laser micromachining seminar ppt
Laser micromachining  seminar pptLaser micromachining  seminar ppt
Laser micromachining seminar ppt
 
Slideshare Project
Slideshare ProjectSlideshare Project
Slideshare Project
 

Similar to Modeling of laser micromachining

TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
grssieee
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
grssieee
 
Thermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferThermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat Transfer
VJTI Production
 
Ch2 Heat transfer - conduction
Ch2 Heat transfer - conductionCh2 Heat transfer - conduction
Ch2 Heat transfer - conduction
eky047
 
Newtonian limit in cdt
Newtonian limit in cdtNewtonian limit in cdt
Newtonian limit in cdt
Adam Getchell
 
การเคล อนท__แบบหม_น
การเคล  อนท__แบบหม_นการเคล  อนท__แบบหม_น
การเคล อนท__แบบหม_น
rsurachat
 

Similar to Modeling of laser micromachining (20)

TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
 
td
tdtd
td
 
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...
 
1 d wave equation
1 d wave equation1 d wave equation
1 d wave equation
 
Interference
InterferenceInterference
Interference
 
Thermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferThermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat Transfer
 
Talk spinoam photon
Talk spinoam photonTalk spinoam photon
Talk spinoam photon
 
Ch2 Heat transfer - conduction
Ch2 Heat transfer - conductionCh2 Heat transfer - conduction
Ch2 Heat transfer - conduction
 
Newtonian limit in cdt
Newtonian limit in cdtNewtonian limit in cdt
Newtonian limit in cdt
 
Ct24621630
Ct24621630Ct24621630
Ct24621630
 
HSC Chemistry Preparation Tips Part - I
HSC Chemistry Preparation Tips Part - IHSC Chemistry Preparation Tips Part - I
HSC Chemistry Preparation Tips Part - I
 
Schrodingermaxwell
SchrodingermaxwellSchrodingermaxwell
Schrodingermaxwell
 
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
 
Brilliant Polymer Scientist-Nantes-2011
Brilliant Polymer Scientist-Nantes-2011Brilliant Polymer Scientist-Nantes-2011
Brilliant Polymer Scientist-Nantes-2011
 
Transverse vibration of slender sandwich beams with viscoelastic inner layer ...
Transverse vibration of slender sandwich beams with viscoelastic inner layer ...Transverse vibration of slender sandwich beams with viscoelastic inner layer ...
Transverse vibration of slender sandwich beams with viscoelastic inner layer ...
 
Nonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodNonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo method
 
การเคล อนท__แบบหม_น
การเคล  อนท__แบบหม_นการเคล  อนท__แบบหม_น
การเคล อนท__แบบหม_น
 
Strongly interacting fermions in optical lattices
Strongly interacting fermions in optical latticesStrongly interacting fermions in optical lattices
Strongly interacting fermions in optical lattices
 
Expert Design & Empirical Test Strategies for Practical Transformer Development
Expert Design & Empirical Test Strategies for Practical Transformer DevelopmentExpert Design & Empirical Test Strategies for Practical Transformer Development
Expert Design & Empirical Test Strategies for Practical Transformer Development
 

Recently uploaded

Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
Bhaskar Mitra
 

Recently uploaded (20)

Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutes
 
10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová
 
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
 
UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
Demystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John StaveleyDemystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John Staveley
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
Introduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG EvaluationIntroduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG Evaluation
 
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomSalesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
 
Optimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityOptimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through Observability
 

Modeling of laser micromachining

  • 1. Modeling of LASER Micromachining Process Debkalpa Goswami Department of Production Engineering Jadavpur University B. Prod. E. III Roll: 001011701033
  • 2. Light Amplification by • Population Inversion Stimulated • Stimulated Albert Einstein Emission Emission of • Amplification Radiation 2 T. H. Maiman
  • 3. Population Inversion E2 E1 Boltzmann Distribution Law kT N2 N1e (Thermal Equilibrium) 3
  • 5. Amplification 2k L I1 r1r2 I0e 2 kth L r1r2e 1 1 1 kth ln 2L r1r2 5
  • 6. Properties of Laser Radiation • Monochromaticity • Collimation • Beam Coherence • Temporal Modes • Frequency Multiplication 6
  • 7. Types of Industrial Lasers • Solid-state Lasers Nd:YAG (1064 nm) Ruby (694 nm) Nd:glass (1062 nm) • Gas Lasers HeNe (632.8 nm) Kumar Patel CO2 (10,600 nm) Argon (488, 514.5 nm) • Semiconductor Lasers InGaAs (980 nm) • Liquid dye Lasers Rhodamine 6G (570-640 nm) Coumarin 102 (460-515 nm) 7 Stilbene (403-428 nm)
  • 8. Laser Materials Interactions Laser Parameters Material Parameters • intensity • absorptivity • wavelength • thermal conductivity • spatial and temporal • specific heat coherence • density • angle of incidence • latent heat • polarization 8 • illumination time
  • 9. Thermal Effects 2 T z, t T z, t ; T z,0 T0 for 0 z t z2 T 0, t 1 0 t tp k H 0 t tp z H 12 z 4 t ierfc 12 0 t tp heating k 4 t T z, t 12 2H z 12 z t1 2ierfc 12 t tp ierfc 12 t tp cooling k 4 t 4 t tp 1 ierfc x exp x2 x 1 erf x x 9 2 2 where erf x e d . 0
  • 10. 10 a
  • 11. Hzmax Tm ierfc 11 kTb Tb
  • 12. 12
  • 13. Important Practical Considerations • Beam Shapes 2r 2 I r I 0 exp w2 2 2 2 T x, y , z , t T x, y , z , t T x, y , z , t T x, y , z , t t x2 y2 z2 13
  • 15. • Moving Source of Heat x vt 2 2 2 T , y, z , t T , y, z , t T , y, z , t T , y, z , t T , y, z , t v 2 t y2 z2 T , y, z, t (quasi-stationary heat flow) 0 t v T T0 e , y, z (trial function) 2 2 2 2 v , y, z , y, z , y, z , y, z 2 15 2 y2 z2
  • 16. • Temperature dependent properties • Thermal conductivity • Thermal diffusivity f(T) • Absorptivity Etc. 16
  • 17. Laser Micromachining Mechanisms • Laser Ablation • Laser Assisted Chemical Etching material removal processes by photo-thermal or photo- carried out by using chemical interactions. suitable etchant (precursors). multiphoton gaseous precursors: Cl2 mechanism: even and Br2 though the energy (dry etching) associated with each photon is less than the liquid precursors: HCl, dissociation energy of HNO3, H2SO4, NaCl, bond, the bond breaking and K2SO4 (wet is achieved by etching) 17 simultaneous absorption of two or photons.
  • 18. Laser Micromachining Applications • Microvia Drilling • Drilling of Inkjet Nozzle Holes 18
  • 19. • Fuel Injector Drilling • Laser Scribing Bio-medical applications: 19
  • 20. Relevant Research and Recent Trends • Experimental Kuar et. al (2006) Models • Semi-analytical Gospavic et. al Models (2004) • Numerical or Ding et. al (2012) Computer Models Kuar, A. S., B. Doloi and B. Bhattacharyya (2006). "Modelling and analysis of pulsed Nd:YAG laser machining characteristics during micro-drilling of zirconia (ZrO2)." International Journal of Machine Tools and Manufacture 46(12-13): 1301-1310. Gospavic, R., M. Sreckovic and V. Popov (2004). "Modelling of laser-material interaction using semi-analytical approach." Mathematics and Computers in Simulation 65(3): 211-219. 20 Ding, H., N. Shen and Y. C. Shin (2012). "Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys." Journal of Materials Processing Technology 212(3): 601-613.
  • 21. • Kuar et. al (2006) 21
  • 22. • Gospavic et. Semi-analytical model al (2004) Particular cases with cylindrical geometry Alternative method Laplace Transform and Fourier Method of Variable Separation Differential PDE ODE Transform 22 Mukherjee, S., D. Goswami and B. Roy (2012). "Solution of Higher-Order Abel Equations by Differential Transform Method." International Journal of Modern Physics C 23(09): 1250056.
  • 23. • Ding et. al (2012) 23
  • 24. Laser-Assisted Nano-wire Growth and Harvest Laser Thermal Lab, UC Berkeley Nanoplasians harvesting their nanowires selectively grown on a field by a laser-assisted method. (SEM image) 24
  • 25. Thank You 25