This document summarizes a 2010 tutorial on metric learning given by Brian Kulis at the University of California, Berkeley. The tutorial introduces metric learning problems and algorithms. It discusses how metric learning can learn feature weights or linear/nonlinear transformations from data to improve distance metrics for tasks like clustering and classification. Key topics covered include Mahalanobis distance metrics, linear and nonlinear metric learning methods, and applications. The tutorial aims to explain both theoretical concepts and practical considerations for metric learning.