SlideShare a Scribd company logo
Mathematical
Induction
Digital Lesson
Copyright © by Houghton Mifflin Company, Inc. All rights 2
Mathematical induction is a legitimate method of
proof for all positive integers n.
Principle:
Let Pn be a statement involving n, a positive integer.
If
1. P1 is true, and
2. the truth of Pk implies the truth of Pk + 1 for
every positive k,
then Pn must be true for all positive integers n.
Copyright © by Houghton Mifflin Company, Inc. All rights 3
Example:
Find Pk + 1 for
3(2 1)
: .
1k k
k
P S
k
+
=
−
1 1
3[2( 1)
11
1]
:k kP S
k
k+ +
+ +
+
=
−
Replace k by k + 1.
Simplify.
3(2 2 1)k
k
+ +
=
3(2 3)k
k
+
= Simplify.
Copyright © by Houghton Mifflin Company, Inc. All rights 4
Example:
Use mathematical induction to prove
Sn = 2 + 4 + 6 + 8 + . . .
+ 2n = n(n + 1)
for every positive integer n.
1. Show that the formula is true when n = 1.
S1 = n(n + 1) = 1(1 + 1) = 2 True
2. Assume the formula is valid for some integer k.
Use this assumption to prove the formula is valid
for the next integer, k + 1 and show that the
formula Sk + 1 = (k + 1)(k + 2) is true.
Sk = 2 + 4 + 6 + 8 + . . .
+ 2k = k(k + 1) Assumption
Example continues.
Copyright © by Houghton Mifflin Company, Inc. All rights 5
Example continued:
Sk + 1 = 2 + 4 + 6 + 8 + . . .
+ 2k + [2(k + 1)]
= 2 + 4 + 6 + 8 + . . .
+ 2k + (2k + 2)
= Sk + (2k + 2) Group terms to form Sk.
= k(k + 1) + (2k + 2) Replace Sk by k(k + 1).
= k2
+ k + 2k + 2 Simplify.
= k2
+ 3k + 2
= (k + 1)(k + 2)
The formula Sn = n(n + 1) is valid for all positive integer
values of n.
= (k + 1)((k + 1)+1)
Copyright © by Houghton Mifflin Company, Inc. All rights 6
Sums of Powers of Integers :
1
( 1)
1 2 3 41
2
.
n
i
n n
i n
=
+
= + + + + + =∑ L
2 2 2 2 2 2
1
( 1)(2 1)
1 2 3 42.
6
n
i
n n n
i n
=
+ +
= + + + + + =∑ L
2 2
3 3 3 3 3 3
1
( 1)
1 2 3 43.
4
n
i
n n
i n
=
+
= + + + + + =∑ L
2
4 4 4 4 4 4
1
( 1)(2 1)(3 3 1)
1 2 3 44.
30
n
i
n n n n n
i n
=
+ + + −
= + + + + + =∑ L
2 2 2
5 5 5 5 5 5
1
( 1) (2 2 1)
1 2 3 4
1
5
2
.
n
i
n n n n
i n
=
+ + −
= + + + + + =∑ L
Copyright © by Houghton Mifflin Company, Inc. All rights 7
2 2 2 2 2 2
1
( 1)(2 1)
1 2 3 4 .
6
n
i
n n n
i n
=
+ +
= + + + + + =∑ L
Example:
Use mathematical induction to prove for all positive integers n,
Assumption2 2 2 2 2 ( 1)(2 1)
1 2 3 4
6k kS
k k k+ +
= + + + + + =L
2 2 2
1
2 2 2
1 2 3 4 ( 1)k k kS + = + + + + ++ + L
2
( 1)kS k= + +
2
2 1kS k k= + + +
2( 1)(2 1)
2 1
6
k k k
k k
+ +
= + + +
Group terms to form Sk.
Replace Sk by k(k + 1).
Example continues.
1
( 1)(2( ) 1) 1(2)(2 1) 6 1
6
11
6 6
1
S
+ + +
= = = = True
Copyright © by Houghton Mifflin Company, Inc. All rights 8
3 2 2
2 3 6 12 6
6 6
k k k k k+ + + += + Simplify.
Example continued:
3 2
2 9 13 6
6
k k k+ + +=
2
( 3 2)(2 3)
6
k k k+ + +
=
( 1)( 2)(2 3)
6
k k k+ + +
=
( )[( ) 1][2(1 ) ]
6
1 11k k k+ + ++ +
=
The formula is valid for all positive
integer values of n.
( 1)(2 1)
6n
n n n
S
+ +
=
Copyright © by Houghton Mifflin Company, Inc. All rights 9
Finite Differences
The first differences of the sequence 1, 4, 9, 16, 25, 36 are
found by subtracting consecutive terms.
n: 1 2 3 4 5 6
an: 1 4 9 16 25 36
First differences: 3 5 7 9 11
Second differences: 2 2 2 2
The second differences are found by subtracting consecutive
first differences.
quadratic model
Copyright © by Houghton Mifflin Company, Inc. All rights 10
When the second differences are all the same nonzero number,
the sequence has a perfect quadratic model.
Find the quadratic model for the sequence
1, 4, 9, 16, 25, 36, . . .
an = an2
+ bn + c
a1 = a(1)2
+ b(1) + c = 1
a2 = a(2)2
+ b(2) + c = 4
a3 = a(3)2
+ b(3) + c = 9
Solving the system yields a = 1, b = 0, and c = 0.
an = n2
a + b + c = 1
4a + 2b + c = 4
9a + 3b + c = 9
Copyright © by Houghton Mifflin Company, Inc. All rights 11
an = an2
+ bn + c
a0 = a(0)2
+ b(0) + c = 3
a1 = a(1)2
+ b(1) + c = 3
a4 = a(4)2
+ b(4) + c = 15
an = n2
– n + 3
c = 3
a + b + c = 3
16a + 4b + c = 15
Solving the system yields
a = 1, b = –1, and c = 3.
Example:
Find the quadratic model for the sequence with
a0 = 3, a1 = 3, a4 = 15.

More Related Content

What's hot

Mathematical induction and divisibility rules
Mathematical induction and divisibility rulesMathematical induction and divisibility rules
Mathematical induction and divisibility rules
Dawood Faheem Abbasi
 
mathematical induction
mathematical inductionmathematical induction
mathematical inductionankush_kumar
 
The binomial expansion
The binomial expansionThe binomial expansion
The binomial expansion
JJkedst
 
Proof By Contradictions
Proof By ContradictionsProof By Contradictions
Proof By Contradictions
GC University Fsd
 
Analysis sequences and bounded sequences
Analysis sequences and bounded sequencesAnalysis sequences and bounded sequences
Analysis sequences and bounded sequencesSANDEEP VISHANG DAGAR
 
Predicates and Quantifiers
Predicates and QuantifiersPredicates and Quantifiers
Predicates and Quantifiers
blaircomp2003
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equations
math266
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
JaydevVadachhak
 
5.4 mathematical induction
5.4 mathematical induction5.4 mathematical induction
5.4 mathematical inductionmath260
 
5 4 function notation
5 4 function notation5 4 function notation
5 4 function notationhisema01
 
Mcs lecture19.methods ofproof(1)
Mcs lecture19.methods ofproof(1)Mcs lecture19.methods ofproof(1)
Mcs lecture19.methods ofproof(1)kevinwu1994
 
recurrence relations
 recurrence relations recurrence relations
recurrence relations
Anurag Cheela
 
Function transformations
Function transformationsFunction transformations
Function transformationsTerry Gastauer
 
Combined Functions
Combined FunctionsCombined Functions
Combined Functions
JoviBerbz
 
Group homomorphism
Group homomorphismGroup homomorphism
Group homomorphism
NaliniSPatil
 
CMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and StrategyCMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and Strategy
allyn joy calcaben
 
Quantifier
QuantifierQuantifier
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline Interpolation
VARUN KUMAR
 
GATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and DifferentiabilityGATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and Differentiability
ParthDave57
 
CMSC 56 | Lecture 2: Propositional Equivalences
CMSC 56 | Lecture 2: Propositional EquivalencesCMSC 56 | Lecture 2: Propositional Equivalences
CMSC 56 | Lecture 2: Propositional Equivalences
allyn joy calcaben
 

What's hot (20)

Mathematical induction and divisibility rules
Mathematical induction and divisibility rulesMathematical induction and divisibility rules
Mathematical induction and divisibility rules
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
The binomial expansion
The binomial expansionThe binomial expansion
The binomial expansion
 
Proof By Contradictions
Proof By ContradictionsProof By Contradictions
Proof By Contradictions
 
Analysis sequences and bounded sequences
Analysis sequences and bounded sequencesAnalysis sequences and bounded sequences
Analysis sequences and bounded sequences
 
Predicates and Quantifiers
Predicates and QuantifiersPredicates and Quantifiers
Predicates and Quantifiers
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equations
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
 
5.4 mathematical induction
5.4 mathematical induction5.4 mathematical induction
5.4 mathematical induction
 
5 4 function notation
5 4 function notation5 4 function notation
5 4 function notation
 
Mcs lecture19.methods ofproof(1)
Mcs lecture19.methods ofproof(1)Mcs lecture19.methods ofproof(1)
Mcs lecture19.methods ofproof(1)
 
recurrence relations
 recurrence relations recurrence relations
recurrence relations
 
Function transformations
Function transformationsFunction transformations
Function transformations
 
Combined Functions
Combined FunctionsCombined Functions
Combined Functions
 
Group homomorphism
Group homomorphismGroup homomorphism
Group homomorphism
 
CMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and StrategyCMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and Strategy
 
Quantifier
QuantifierQuantifier
Quantifier
 
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline Interpolation
 
GATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and DifferentiabilityGATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and Differentiability
 
CMSC 56 | Lecture 2: Propositional Equivalences
CMSC 56 | Lecture 2: Propositional EquivalencesCMSC 56 | Lecture 2: Propositional Equivalences
CMSC 56 | Lecture 2: Propositional Equivalences
 

Viewers also liked

Math induction principle (slides)
Math induction principle (slides)Math induction principle (slides)
Math induction principle (slides)
IIUM
 
Mathematical induction
Mathematical inductionMathematical induction
Mathematical induction
sonia -
 
11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)Nigel Simmons
 
Divisibility Rules
Divisibility RulesDivisibility Rules
Divisibility Rules
Tim Bonnar
 
Complex Number I - Presentation
Complex Number I - PresentationComplex Number I - Presentation
Complex Number I - Presentationyhchung
 
X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)Nigel Simmons
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)Nigel Simmons
 
RuleML2015: How to combine event stream reasoning with transactions for the...
RuleML2015:   How to combine event stream reasoning with transactions for the...RuleML2015:   How to combine event stream reasoning with transactions for the...
RuleML2015: How to combine event stream reasoning with transactions for the...
RuleML
 
History of Induction and Recursion B
History of Induction and Recursion B History of Induction and Recursion B
History of Induction and Recursion B Damien MacFarland
 
RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...
RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...
RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...
RuleML
 
Induction and Decision Tree Learning (Part 1)
Induction and Decision Tree Learning (Part 1)Induction and Decision Tree Learning (Part 1)
Induction and Decision Tree Learning (Part 1)butest
 
RuleML 2015: When Processes Rule Events
RuleML 2015: When Processes Rule EventsRuleML 2015: When Processes Rule Events
RuleML 2015: When Processes Rule Events
RuleML
 
RuleML 2015: Ontology Reasoning using Rules in an eHealth Context
RuleML 2015: Ontology Reasoning using Rules in an eHealth ContextRuleML 2015: Ontology Reasoning using Rules in an eHealth Context
RuleML 2015: Ontology Reasoning using Rules in an eHealth Context
RuleML
 
Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...
Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...
Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...
RuleML
 
Challenge@rule ml2015 rule based recommender systems for the Web of Data
Challenge@rule ml2015 rule based recommender systems for the Web of DataChallenge@rule ml2015 rule based recommender systems for the Web of Data
Challenge@rule ml2015 rule based recommender systems for the Web of Data
RuleML
 
Predicates and quantifiers
Predicates and quantifiersPredicates and quantifiers
Predicates and quantifiers
Istiak Ahmed
 
Linear Inequalities
Linear InequalitiesLinear Inequalities
Linear Inequalities
Justine Jose
 
Mathematics - Divisibility Rules From 0 To 12
Mathematics - Divisibility Rules From 0 To 12Mathematics - Divisibility Rules From 0 To 12
Mathematics - Divisibility Rules From 0 To 12
Shivansh Khurana
 
Divisibility Rules
Divisibility RulesDivisibility Rules
Divisibility Rules
HeatherNeal
 

Viewers also liked (20)

Math induction principle (slides)
Math induction principle (slides)Math induction principle (slides)
Math induction principle (slides)
 
Mathematical induction
Mathematical inductionMathematical induction
Mathematical induction
 
11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)
 
Divisibility Rules
Divisibility RulesDivisibility Rules
Divisibility Rules
 
Complex Number I - Presentation
Complex Number I - PresentationComplex Number I - Presentation
Complex Number I - Presentation
 
5.1 Induction
5.1 Induction5.1 Induction
5.1 Induction
 
X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
 
RuleML2015: How to combine event stream reasoning with transactions for the...
RuleML2015:   How to combine event stream reasoning with transactions for the...RuleML2015:   How to combine event stream reasoning with transactions for the...
RuleML2015: How to combine event stream reasoning with transactions for the...
 
History of Induction and Recursion B
History of Induction and Recursion B History of Induction and Recursion B
History of Induction and Recursion B
 
RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...
RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...
RuleML 2015: Semantics of Notation3 Logic: A Solution for Implicit Quantifica...
 
Induction and Decision Tree Learning (Part 1)
Induction and Decision Tree Learning (Part 1)Induction and Decision Tree Learning (Part 1)
Induction and Decision Tree Learning (Part 1)
 
RuleML 2015: When Processes Rule Events
RuleML 2015: When Processes Rule EventsRuleML 2015: When Processes Rule Events
RuleML 2015: When Processes Rule Events
 
RuleML 2015: Ontology Reasoning using Rules in an eHealth Context
RuleML 2015: Ontology Reasoning using Rules in an eHealth ContextRuleML 2015: Ontology Reasoning using Rules in an eHealth Context
RuleML 2015: Ontology Reasoning using Rules in an eHealth Context
 
Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...
Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...
Challenge@RuleML2015 Transformation and aggregation preprocessing for top-k r...
 
Challenge@rule ml2015 rule based recommender systems for the Web of Data
Challenge@rule ml2015 rule based recommender systems for the Web of DataChallenge@rule ml2015 rule based recommender systems for the Web of Data
Challenge@rule ml2015 rule based recommender systems for the Web of Data
 
Predicates and quantifiers
Predicates and quantifiersPredicates and quantifiers
Predicates and quantifiers
 
Linear Inequalities
Linear InequalitiesLinear Inequalities
Linear Inequalities
 
Mathematics - Divisibility Rules From 0 To 12
Mathematics - Divisibility Rules From 0 To 12Mathematics - Divisibility Rules From 0 To 12
Mathematics - Divisibility Rules From 0 To 12
 
Divisibility Rules
Divisibility RulesDivisibility Rules
Divisibility Rules
 

Similar to Mathematical induction

11-Induction CIIT.pptx
11-Induction CIIT.pptx11-Induction CIIT.pptx
11-Induction CIIT.pptx
jaffarbikat
 
Further mathematics notes zimsec cambridge zimbabwe
Further mathematics notes zimsec cambridge zimbabweFurther mathematics notes zimsec cambridge zimbabwe
Further mathematics notes zimsec cambridge zimbabwe
Alpro
 
Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms IiSri Prasanna
 
Para mayra
Para mayraPara mayra
Para mayra
shulacerrato
 
51545 0131469657 ism-4
51545 0131469657 ism-451545 0131469657 ism-4
51545 0131469657 ism-4Carlos Fuentes
 
4. la integral definida
4. la integral definida4. la integral definida
4. la integral definida
Esteban Alzate Pérez
 
Algebra s
Algebra sAlgebra s
Algebra s
Didik Sadianto
 
Activ.aprendiz. 3a y 3b
Activ.aprendiz. 3a y 3bActiv.aprendiz. 3a y 3b
Activ.aprendiz. 3a y 3b
Cristian Vaca
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
anasKhalaf4
 
1.Prove 3 n^3 + 5n , n = 1For n = 1, 1^3 + 51 = 1 + 5 = 6, a.pdf
1.Prove 3  n^3 + 5n , n = 1For n = 1, 1^3 + 51 = 1 + 5 = 6, a.pdf1.Prove 3  n^3 + 5n , n = 1For n = 1, 1^3 + 51 = 1 + 5 = 6, a.pdf
1.Prove 3 n^3 + 5n , n = 1For n = 1, 1^3 + 51 = 1 + 5 = 6, a.pdf
dilipanushkagallery
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
anasKhalaf4
 
Special topics about stocks and bonds using algebra
Special topics about stocks and bonds using algebraSpecial topics about stocks and bonds using algebra
Special topics about stocks and bonds using algebra
RomualdoDayrit1
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15Carlos Fuentes
 

Similar to Mathematical induction (20)

11-Induction CIIT.pptx
11-Induction CIIT.pptx11-Induction CIIT.pptx
11-Induction CIIT.pptx
 
Further mathematics notes zimsec cambridge zimbabwe
Further mathematics notes zimsec cambridge zimbabweFurther mathematics notes zimsec cambridge zimbabwe
Further mathematics notes zimsec cambridge zimbabwe
 
Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms Ii
 
M112rev
M112revM112rev
M112rev
 
Para mayra
Para mayraPara mayra
Para mayra
 
1112 ch 11 day 12
1112 ch 11 day 121112 ch 11 day 12
1112 ch 11 day 12
 
51545 0131469657 ism-4
51545 0131469657 ism-451545 0131469657 ism-4
51545 0131469657 ism-4
 
Capitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na EdicionCapitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na Edicion
 
4. la integral definida
4. la integral definida4. la integral definida
4. la integral definida
 
Algebra s
Algebra sAlgebra s
Algebra s
 
Text s1 21
Text s1 21Text s1 21
Text s1 21
 
Activ.aprendiz. 3a y 3b
Activ.aprendiz. 3a y 3bActiv.aprendiz. 3a y 3b
Activ.aprendiz. 3a y 3b
 
Induction q
Induction qInduction q
Induction q
 
Induction q
Induction qInduction q
Induction q
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
 
1.Prove 3 n^3 + 5n , n = 1For n = 1, 1^3 + 51 = 1 + 5 = 6, a.pdf
1.Prove 3  n^3 + 5n , n = 1For n = 1, 1^3 + 51 = 1 + 5 = 6, a.pdf1.Prove 3  n^3 + 5n , n = 1For n = 1, 1^3 + 51 = 1 + 5 = 6, a.pdf
1.Prove 3 n^3 + 5n , n = 1For n = 1, 1^3 + 51 = 1 + 5 = 6, a.pdf
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
Special topics about stocks and bonds using algebra
Special topics about stocks and bonds using algebraSpecial topics about stocks and bonds using algebra
Special topics about stocks and bonds using algebra
 
Maths04
Maths04Maths04
Maths04
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
 

Mathematical induction

  • 2. Copyright © by Houghton Mifflin Company, Inc. All rights 2 Mathematical induction is a legitimate method of proof for all positive integers n. Principle: Let Pn be a statement involving n, a positive integer. If 1. P1 is true, and 2. the truth of Pk implies the truth of Pk + 1 for every positive k, then Pn must be true for all positive integers n.
  • 3. Copyright © by Houghton Mifflin Company, Inc. All rights 3 Example: Find Pk + 1 for 3(2 1) : . 1k k k P S k + = − 1 1 3[2( 1) 11 1] :k kP S k k+ + + + + = − Replace k by k + 1. Simplify. 3(2 2 1)k k + + = 3(2 3)k k + = Simplify.
  • 4. Copyright © by Houghton Mifflin Company, Inc. All rights 4 Example: Use mathematical induction to prove Sn = 2 + 4 + 6 + 8 + . . . + 2n = n(n + 1) for every positive integer n. 1. Show that the formula is true when n = 1. S1 = n(n + 1) = 1(1 + 1) = 2 True 2. Assume the formula is valid for some integer k. Use this assumption to prove the formula is valid for the next integer, k + 1 and show that the formula Sk + 1 = (k + 1)(k + 2) is true. Sk = 2 + 4 + 6 + 8 + . . . + 2k = k(k + 1) Assumption Example continues.
  • 5. Copyright © by Houghton Mifflin Company, Inc. All rights 5 Example continued: Sk + 1 = 2 + 4 + 6 + 8 + . . . + 2k + [2(k + 1)] = 2 + 4 + 6 + 8 + . . . + 2k + (2k + 2) = Sk + (2k + 2) Group terms to form Sk. = k(k + 1) + (2k + 2) Replace Sk by k(k + 1). = k2 + k + 2k + 2 Simplify. = k2 + 3k + 2 = (k + 1)(k + 2) The formula Sn = n(n + 1) is valid for all positive integer values of n. = (k + 1)((k + 1)+1)
  • 6. Copyright © by Houghton Mifflin Company, Inc. All rights 6 Sums of Powers of Integers : 1 ( 1) 1 2 3 41 2 . n i n n i n = + = + + + + + =∑ L 2 2 2 2 2 2 1 ( 1)(2 1) 1 2 3 42. 6 n i n n n i n = + + = + + + + + =∑ L 2 2 3 3 3 3 3 3 1 ( 1) 1 2 3 43. 4 n i n n i n = + = + + + + + =∑ L 2 4 4 4 4 4 4 1 ( 1)(2 1)(3 3 1) 1 2 3 44. 30 n i n n n n n i n = + + + − = + + + + + =∑ L 2 2 2 5 5 5 5 5 5 1 ( 1) (2 2 1) 1 2 3 4 1 5 2 . n i n n n n i n = + + − = + + + + + =∑ L
  • 7. Copyright © by Houghton Mifflin Company, Inc. All rights 7 2 2 2 2 2 2 1 ( 1)(2 1) 1 2 3 4 . 6 n i n n n i n = + + = + + + + + =∑ L Example: Use mathematical induction to prove for all positive integers n, Assumption2 2 2 2 2 ( 1)(2 1) 1 2 3 4 6k kS k k k+ + = + + + + + =L 2 2 2 1 2 2 2 1 2 3 4 ( 1)k k kS + = + + + + ++ + L 2 ( 1)kS k= + + 2 2 1kS k k= + + + 2( 1)(2 1) 2 1 6 k k k k k + + = + + + Group terms to form Sk. Replace Sk by k(k + 1). Example continues. 1 ( 1)(2( ) 1) 1(2)(2 1) 6 1 6 11 6 6 1 S + + + = = = = True
  • 8. Copyright © by Houghton Mifflin Company, Inc. All rights 8 3 2 2 2 3 6 12 6 6 6 k k k k k+ + + += + Simplify. Example continued: 3 2 2 9 13 6 6 k k k+ + += 2 ( 3 2)(2 3) 6 k k k+ + + = ( 1)( 2)(2 3) 6 k k k+ + + = ( )[( ) 1][2(1 ) ] 6 1 11k k k+ + ++ + = The formula is valid for all positive integer values of n. ( 1)(2 1) 6n n n n S + + =
  • 9. Copyright © by Houghton Mifflin Company, Inc. All rights 9 Finite Differences The first differences of the sequence 1, 4, 9, 16, 25, 36 are found by subtracting consecutive terms. n: 1 2 3 4 5 6 an: 1 4 9 16 25 36 First differences: 3 5 7 9 11 Second differences: 2 2 2 2 The second differences are found by subtracting consecutive first differences. quadratic model
  • 10. Copyright © by Houghton Mifflin Company, Inc. All rights 10 When the second differences are all the same nonzero number, the sequence has a perfect quadratic model. Find the quadratic model for the sequence 1, 4, 9, 16, 25, 36, . . . an = an2 + bn + c a1 = a(1)2 + b(1) + c = 1 a2 = a(2)2 + b(2) + c = 4 a3 = a(3)2 + b(3) + c = 9 Solving the system yields a = 1, b = 0, and c = 0. an = n2 a + b + c = 1 4a + 2b + c = 4 9a + 3b + c = 9
  • 11. Copyright © by Houghton Mifflin Company, Inc. All rights 11 an = an2 + bn + c a0 = a(0)2 + b(0) + c = 3 a1 = a(1)2 + b(1) + c = 3 a4 = a(4)2 + b(4) + c = 15 an = n2 – n + 3 c = 3 a + b + c = 3 16a + 4b + c = 15 Solving the system yields a = 1, b = –1, and c = 3. Example: Find the quadratic model for the sequence with a0 = 3, a1 = 3, a4 = 15.