1) Mathematical induction is a method of proof that can be used to prove statements for all positive integers. It involves showing that a statement is true for n=1, and assuming it is true for an integer k to prove it is true for k+1.
2) The document provides an example using mathematical induction to prove the formula Sn = n(n+1) for the sum of the first n even integers.
3) Finite differences are used to determine if a sequence has a quadratic model by seeing if the second differences are constant. The example finds the quadratic model n^2 for the sequence 1, 4, 9, 16, 25, 36.