MATERIAL SCIENCE
ENG. KAREEM. H. MOKHTAR
STRESS AND STRAIN
• Stress =
• Strain =
•
𝑆𝑡𝑟𝑒𝑠𝑠
𝑠𝑡𝑟𝑎𝑖𝑛
= Y (young’s modulus)
F
A
eL = DL
L o
Big
Small Weak material
Strong material
STRESS
STRESS
• 1- Compressive stress = F
A o
2
m
N
STRESS
original area
before loading
Area, A
Ft
Ft
s =
Ft
A o
2
f
2
m
N
or
in
lb
=
2- Tensile stress (s)
STRESS
• 3- Shear stress (t)
Area, A
Ft
Ft
Fs
F
F
Fs
t =
Fs
Ao
STRAIN
e = d
Lo
d/2
dL/2
Lo
wo
• Lateral strain:
eL = L
wo
d
• Tensile strain:
STRAIN
• Shear strain
g = Dx/H
H
YOUNG’S MODULUS
𝑆𝑡𝑟𝑒𝑠𝑠
𝑠𝑡𝑟𝑎𝑖𝑛
=
𝐹
𝐴
𝐿
𝐿𝑜
D
EXAMPLE 1
Givens
Weight = 1000N
Area of the beam is 2cm x 2cm
Lo = 1.75 m
Find delta L
Material Fe  youngs modulus
𝑆𝑡𝑟𝑒𝑠𝑠
𝑠𝑡𝑟𝑎𝑖𝑛
=
𝐹
𝐴
𝐿
𝐿𝑜
=
1000
2 𝑥 2 𝑥 10−4
?
1.75
D
EXAMPLE 2
F
Givens
Weight= 50 Kg
Radius of the heel= 0.5 cm
30% of the woman's weight acts on the
heel
Solution
• stress = F
A o
=
50 ∗ 0.3 ∗ 9.8
𝑝𝑖
4
∗ 0.012
= 1871662 𝑁/𝑚2
EXAMPLE 4
Givens
D= 1mm
Lo= 4m
m= 500 kg
Find the elongation
young’s modulus (AL) = 7 * 10^10 N/m2
Solution
young’s modulus=
𝑆𝑡𝑟𝑒𝑠𝑠
𝑠𝑡𝑟𝑎𝑖𝑛
=
𝐹
𝐴
𝐿
𝐿𝑜
=
500∗9.8
𝑝𝑖
4
∗ 10−6
?
4
= 6.9* 1010
MAX STRESS (BREAKING STRESS)
• It is the max stress a material can handle before it breaks
EXAMPLE 3
• Would the wire breaks or not?
• F/ A = 500 * 9.8 / pi*0.0005^2
• What is the maximum weight this wire could handle
• StressMAX = mmax* g / A
Mmax= 17.6 kg
SHEAR MODULUS (S)
•
𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠
𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛
=
𝐹
𝐴
𝑑𝑒𝑙𝑡𝑎 (𝑥)
𝐻
H
SHEAR STRESS
• It is used in cutting materials
• The area used is the area that is going to be cut
EXAMPLE 6
• H = 5 cm
• W= 20 cm
• L= 2cm
• F= 1000N
• Fe shear modulus= 7.7 * 10^10
W
H
𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠
𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛
=
𝐹
𝐴
𝑑𝑒𝑙𝑡𝑎 (𝑥)
𝐻
𝑑𝑒𝑙𝑡𝑎 (𝑥) = 1.67 * 10-7 m
EXAMPLE 8
Givens
The diameter of the drilling bit= 4.2 cm
Thickness of the sheet = 5mm
Length of the sheet = 5 m
Width of the sheet = 3 m
Shear stress of steel = 4 x 10^8
Solution
Shear stress= F/A
F= 4 *10^8 * pi * 0.042*0.005 = 263893.8 N
BULK MODULUS
𝐵𝑢𝑙𝑘 𝑠𝑡𝑟𝑒𝑠𝑠
𝐵𝑢𝑙𝑘 𝑠𝑡𝑟𝑎𝑖𝑛
=
𝐹
𝐴
− 𝑑𝑒𝑙𝑡𝑎 (𝑣)
𝑉𝑜
Compressibility =
1
𝐵𝑢𝑙𝑘 𝑚𝑜𝑑𝑢𝑙𝑢𝑠
The higher the bulk modulus
the more force you need to
Change the volume of the material
EXAMPLE 6
• A Bowling ball made of steel sunk in an ocean, find the change in it’s volume if
you know that the ocean is 10000 m in depth and the original volume of the ball
is 1m^3
𝐵𝑢𝑙𝑘 𝑠𝑡𝑟𝑒𝑠𝑠
𝐵𝑢𝑙𝑘 𝑠𝑡𝑟𝑎𝑖𝑛
=
𝐹
𝐴
𝑑𝑒𝑙𝑡𝑎 (𝑣)
𝑉𝑜
= Bulk modulus
Material science 2
Material science 2

Material science 2

  • 1.
  • 2.
    STRESS AND STRAIN •Stress = • Strain = • 𝑆𝑡𝑟𝑒𝑠𝑠 𝑠𝑡𝑟𝑎𝑖𝑛 = Y (young’s modulus) F A eL = DL L o Big Small Weak material Strong material
  • 3.
  • 4.
    STRESS • 1- Compressivestress = F A o 2 m N
  • 5.
    STRESS original area before loading Area,A Ft Ft s = Ft A o 2 f 2 m N or in lb = 2- Tensile stress (s)
  • 6.
    STRESS • 3- Shearstress (t) Area, A Ft Ft Fs F F Fs t = Fs Ao
  • 7.
    STRAIN e = d Lo d/2 dL/2 Lo wo •Lateral strain: eL = L wo d • Tensile strain:
  • 8.
  • 9.
  • 10.
    EXAMPLE 1 Givens Weight =1000N Area of the beam is 2cm x 2cm Lo = 1.75 m Find delta L Material Fe  youngs modulus 𝑆𝑡𝑟𝑒𝑠𝑠 𝑠𝑡𝑟𝑎𝑖𝑛 = 𝐹 𝐴 𝐿 𝐿𝑜 = 1000 2 𝑥 2 𝑥 10−4 ? 1.75 D
  • 11.
    EXAMPLE 2 F Givens Weight= 50Kg Radius of the heel= 0.5 cm 30% of the woman's weight acts on the heel Solution • stress = F A o = 50 ∗ 0.3 ∗ 9.8 𝑝𝑖 4 ∗ 0.012 = 1871662 𝑁/𝑚2
  • 12.
    EXAMPLE 4 Givens D= 1mm Lo=4m m= 500 kg Find the elongation young’s modulus (AL) = 7 * 10^10 N/m2 Solution young’s modulus= 𝑆𝑡𝑟𝑒𝑠𝑠 𝑠𝑡𝑟𝑎𝑖𝑛 = 𝐹 𝐴 𝐿 𝐿𝑜 = 500∗9.8 𝑝𝑖 4 ∗ 10−6 ? 4 = 6.9* 1010
  • 13.
    MAX STRESS (BREAKINGSTRESS) • It is the max stress a material can handle before it breaks
  • 14.
    EXAMPLE 3 • Wouldthe wire breaks or not? • F/ A = 500 * 9.8 / pi*0.0005^2 • What is the maximum weight this wire could handle • StressMAX = mmax* g / A Mmax= 17.6 kg
  • 15.
    SHEAR MODULUS (S) • 𝑠ℎ𝑒𝑎𝑟𝑠𝑡𝑟𝑒𝑠𝑠 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 = 𝐹 𝐴 𝑑𝑒𝑙𝑡𝑎 (𝑥) 𝐻 H
  • 16.
    SHEAR STRESS • Itis used in cutting materials • The area used is the area that is going to be cut
  • 17.
    EXAMPLE 6 • H= 5 cm • W= 20 cm • L= 2cm • F= 1000N • Fe shear modulus= 7.7 * 10^10 W H 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 = 𝐹 𝐴 𝑑𝑒𝑙𝑡𝑎 (𝑥) 𝐻 𝑑𝑒𝑙𝑡𝑎 (𝑥) = 1.67 * 10-7 m
  • 18.
    EXAMPLE 8 Givens The diameterof the drilling bit= 4.2 cm Thickness of the sheet = 5mm Length of the sheet = 5 m Width of the sheet = 3 m Shear stress of steel = 4 x 10^8 Solution Shear stress= F/A F= 4 *10^8 * pi * 0.042*0.005 = 263893.8 N
  • 19.
    BULK MODULUS 𝐵𝑢𝑙𝑘 𝑠𝑡𝑟𝑒𝑠𝑠 𝐵𝑢𝑙𝑘𝑠𝑡𝑟𝑎𝑖𝑛 = 𝐹 𝐴 − 𝑑𝑒𝑙𝑡𝑎 (𝑣) 𝑉𝑜 Compressibility = 1 𝐵𝑢𝑙𝑘 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 The higher the bulk modulus the more force you need to Change the volume of the material
  • 20.
    EXAMPLE 6 • ABowling ball made of steel sunk in an ocean, find the change in it’s volume if you know that the ocean is 10000 m in depth and the original volume of the ball is 1m^3 𝐵𝑢𝑙𝑘 𝑠𝑡𝑟𝑒𝑠𝑠 𝐵𝑢𝑙𝑘 𝑠𝑡𝑟𝑎𝑖𝑛 = 𝐹 𝐴 𝑑𝑒𝑙𝑡𝑎 (𝑣) 𝑉𝑜 = Bulk modulus