MAGNITUDE COMPARATOR
Syed Hasan Saeed, Integral University,
Lucknow
2
MAGNITUDE COMPARATOR: DIGITAL COMPARATOR
• It is a combinational logic circuit.
• Digital Comparator is used to compare the value of two binary
digits.
• There are two types of digital comparator (i) Identity Comparator
(ii) Magnitude Comparator.
• IDENTITY COMPARATOR: This comparator has only one output
terminal for when A=B, either A=B=1 (High) or A=B=0 (Low)
• MAGNITUDE COMPARATOR: This Comparator has three output
terminals namely A>B, A=B, A<B. Depending on the result of
comparison, one of these output will be high (1)
• Block Diagram of Magnitude Comparator is shown in Fig. 1
Syed Hasan Saeed, Integral University,
Lucknow
3
BLOCK DIAGRAM OF MAGNITUDE COMPARATOR
Syed Hasan Saeed, Integral University,
Lucknow
4
n- Bit Digital Comparator
A
n-Bit
B
n-Bit
A<B A=B A>B
Fig. 1
1- Bit Magnitude Comparator:
• This magnitude comparator has two inputs A and B and three
outputs A<B, A=B and A>B.
• This magnitude comparator compares the two numbers of single
bits.
• Truth Table of 1-Bit Comparator
Syed Hasan Saeed, Integral University,
Lucknow
5
INPUTS OUTPUTS
A B Y1 (A<B) Y2 (A=B) Y3 (A>B)
0 0 0 1 0
0 1 1 0 0
1 0 0 0 1
1 1 0 1 0
K-Maps For All Three Outputs :
Syed Hasan Saeed, Integral University,
Lucknow
6
A
B
0 1
0
1
0
0 0
1
B B
A
A
B
A
Y1 
K-Map for Y1 : A<B
K-Maps For All Three Outputs :
Syed Hasan Saeed, Integral University,
Lucknow
7
A
B
0 1
0
1
0
0 0
1
B B
A
A
B
A
Y1 
K-Map for Y1 : A<B
A
B
0 1
0
1
1
0 1
0
B B
A
A
AB
B
A
Y2 

K-Map for Y2 : A=B
K-Maps For All Three Outputs :
Syed Hasan Saeed, Integral University,
Lucknow
8
A
B
0 1
0
1
0
0 0
1
B B
A
A
B
A
Y1 
K-Map for Y1 : A<B
A
B
0 1
0
1
1
0 1
0
B B
A
A
AB
B
A
Y2 

K-Map for Y2 : A=B
A 0 1
0
1
0
1
0
B
B
A
A
B
0
B
A
Y3 
K-Map for Y2 : A>B
Realization of One Bit Comparator
Syed Hasan Saeed, Integral University,
Lucknow
9
B
A
B
A
Y1 

A
B
AB
B
A
AB
B
A
Y2 

B
A
Y3 
B
A 
B
A 
B
A
Y1 
AB
B
A
Y2 

B
A
Y3 
Realization of by Using AND , EX-NOR gates
Syed Hasan Saeed, Integral University,
Lucknow
10
B
A
B
A
Y1 

B
A
B
A
Y2



B
A
Y3 
B
A 
A
B
2-Bit Comparator:
• A comparator which is used to compare two binary numbers each of two
bits is called a 2-bit magnitude comparator.
• Fig. 2 shows the block diagram of 2-Bit magnitude comparator.
• It has four inputs and three outputs.
• Inputs are A0 ,A1,B0 and B1 and Outputs are Y1, Y2 and Y3
Syed Hasan Saeed, Integral University,
Lucknow
11
A0
A1
B1
B0
Y1
Y2
Y3
2-Bit Comparator
Fig. 2
A
B
Input Output
GREATER THAN (A>B)
LESS THAN (A<B)
Similarly,
1. If A1= B1=1 and A0= 0, B0=1, then A<B
2. If A1= B1= 0 and A0= 0, B0=1 then A<B
Syed Hasan Saeed, Integral University,
Lucknow
12
A1 A0 B1 B0
1 0 0 1
1 1 1 0
0 1 0 0
1. If A1= 1 and B1= 0 then A>B
2. If A1 and B1 are same, i.e A1=B1=1 or A1=B1=0 and A0=1, B0=0
then A>B
INPUT OUTPUT
A1 A0 B1 B0 Y1=A<B Y2=(A=B) Y3=A>B
0 0 0 0 0 1 0
0 0 0 1 1 0 0
0 0 1 0 1 0 0
0 0 1 1 1 0 0
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 1 0 0
0 1 1 1 1 0 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 0 1 0
1 0 1 1 1 0 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 0 1 0
Syed Hasan Saeed, Integral University,
Lucknow
13
TRUTH TABLE
K-Map for A<B: K-Map for A=B:
Syed Hasan Saeed, Integral University,
Lucknow
14
0 1 1 1
0 0 1 1
0 0 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
00 01
00
01
11
10
11 10 00 01 11 10
00
01
11
10
A1A0
A1A0
B1B0
B1B0
For A<B
For A=B
0
1
0
1
1
0
0
1
1 B
B
A
B
A
B
A
A
Y 


0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2 B
B
A
A
B
B
A
A
B
B
A
A
B
B
A
A
Y 



K-Map For A>B
Syed Hasan Saeed, Integral University,
Lucknow
15
0 0 0 0
1 0 0 0
1 1 0 1
1 1 0 0
00 01 11 10
00
01
11
10
A1A0
B1B0
0
0
1
1
1
0
1
0
3 B
A
A
B
A
B
B
A
Y 


For A=B From K-Map
Syed Hasan Saeed, Integral University,
Lucknow
16
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2 B
B
A
A
B
B
A
A
B
B
A
A
B
B
A
A
Y 



)
B
(A
)
B
A
(
Y
)
B
A
B
A
(
)
B
A
B
A
(
Y
)
B
A
B
A
(
B
A
)
B
A
B
A
(
B
A
Y
0
0
1
1
2
0
0
0
0
1
1
1
1
2
1
1
1
1
0
0
1
1
1
1
0
0
2










LOGIC DIAGRAM OF 2-BIT COMPARATOR:
Syed Hasan Saeed, Integral University,
Lucknow
17
A1 A0 B1 B0
A< B
A=B
A > B
0
0
1 B
A
A
1
1 B
A
0
1
0 B
B
A
1
1 B
A
0
0
1 B
A
A
0
1
0 B
B
A
1
1 B
A 
0
0 B
A 
THANK YOU
Syed Hasan Saeed, Integral University,
Lucknow
18
Quick Quiz (Poll 1)
• If two numbers are not equal then binary
variable will be ____________
a) 0
b) 1
c) A
d) B
Quick Quiz (Poll 2)
• Comparators are used in ____________
a) Memory
b) CPU
c) Motherboard
d) Hard drive

magnitude comparator.pdf

  • 1.
    MAGNITUDE COMPARATOR Syed HasanSaeed, Integral University, Lucknow 2
  • 2.
    MAGNITUDE COMPARATOR: DIGITALCOMPARATOR • It is a combinational logic circuit. • Digital Comparator is used to compare the value of two binary digits. • There are two types of digital comparator (i) Identity Comparator (ii) Magnitude Comparator. • IDENTITY COMPARATOR: This comparator has only one output terminal for when A=B, either A=B=1 (High) or A=B=0 (Low) • MAGNITUDE COMPARATOR: This Comparator has three output terminals namely A>B, A=B, A<B. Depending on the result of comparison, one of these output will be high (1) • Block Diagram of Magnitude Comparator is shown in Fig. 1 Syed Hasan Saeed, Integral University, Lucknow 3
  • 3.
    BLOCK DIAGRAM OFMAGNITUDE COMPARATOR Syed Hasan Saeed, Integral University, Lucknow 4 n- Bit Digital Comparator A n-Bit B n-Bit A<B A=B A>B Fig. 1
  • 4.
    1- Bit MagnitudeComparator: • This magnitude comparator has two inputs A and B and three outputs A<B, A=B and A>B. • This magnitude comparator compares the two numbers of single bits. • Truth Table of 1-Bit Comparator Syed Hasan Saeed, Integral University, Lucknow 5 INPUTS OUTPUTS A B Y1 (A<B) Y2 (A=B) Y3 (A>B) 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0
  • 5.
    K-Maps For AllThree Outputs : Syed Hasan Saeed, Integral University, Lucknow 6 A B 0 1 0 1 0 0 0 1 B B A A B A Y1  K-Map for Y1 : A<B
  • 6.
    K-Maps For AllThree Outputs : Syed Hasan Saeed, Integral University, Lucknow 7 A B 0 1 0 1 0 0 0 1 B B A A B A Y1  K-Map for Y1 : A<B A B 0 1 0 1 1 0 1 0 B B A A AB B A Y2   K-Map for Y2 : A=B
  • 7.
    K-Maps For AllThree Outputs : Syed Hasan Saeed, Integral University, Lucknow 8 A B 0 1 0 1 0 0 0 1 B B A A B A Y1  K-Map for Y1 : A<B A B 0 1 0 1 1 0 1 0 B B A A AB B A Y2   K-Map for Y2 : A=B A 0 1 0 1 0 1 0 B B A A B 0 B A Y3  K-Map for Y2 : A>B
  • 8.
    Realization of OneBit Comparator Syed Hasan Saeed, Integral University, Lucknow 9 B A B A Y1   A B AB B A AB B A Y2   B A Y3  B A  B A  B A Y1  AB B A Y2   B A Y3 
  • 9.
    Realization of byUsing AND , EX-NOR gates Syed Hasan Saeed, Integral University, Lucknow 10 B A B A Y1   B A B A Y2    B A Y3  B A  A B
  • 10.
    2-Bit Comparator: • Acomparator which is used to compare two binary numbers each of two bits is called a 2-bit magnitude comparator. • Fig. 2 shows the block diagram of 2-Bit magnitude comparator. • It has four inputs and three outputs. • Inputs are A0 ,A1,B0 and B1 and Outputs are Y1, Y2 and Y3 Syed Hasan Saeed, Integral University, Lucknow 11 A0 A1 B1 B0 Y1 Y2 Y3 2-Bit Comparator Fig. 2 A B Input Output
  • 11.
    GREATER THAN (A>B) LESSTHAN (A<B) Similarly, 1. If A1= B1=1 and A0= 0, B0=1, then A<B 2. If A1= B1= 0 and A0= 0, B0=1 then A<B Syed Hasan Saeed, Integral University, Lucknow 12 A1 A0 B1 B0 1 0 0 1 1 1 1 0 0 1 0 0 1. If A1= 1 and B1= 0 then A>B 2. If A1 and B1 are same, i.e A1=B1=1 or A1=B1=0 and A0=1, B0=0 then A>B
  • 12.
    INPUT OUTPUT A1 A0B1 B0 Y1=A<B Y2=(A=B) Y3=A>B 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 Syed Hasan Saeed, Integral University, Lucknow 13 TRUTH TABLE
  • 13.
    K-Map for A<B:K-Map for A=B: Syed Hasan Saeed, Integral University, Lucknow 14 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 00 01 00 01 11 10 11 10 00 01 11 10 00 01 11 10 A1A0 A1A0 B1B0 B1B0 For A<B For A=B 0 1 0 1 1 0 0 1 1 B B A B A B A A Y    0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 B B A A B B A A B B A A B B A A Y    
  • 14.
    K-Map For A>B SyedHasan Saeed, Integral University, Lucknow 15 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 00 01 11 10 00 01 11 10 A1A0 B1B0 0 0 1 1 1 0 1 0 3 B A A B A B B A Y   
  • 15.
    For A=B FromK-Map Syed Hasan Saeed, Integral University, Lucknow 16 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 B B A A B B A A B B A A B B A A Y     ) B (A ) B A ( Y ) B A B A ( ) B A B A ( Y ) B A B A ( B A ) B A B A ( B A Y 0 0 1 1 2 0 0 0 0 1 1 1 1 2 1 1 1 1 0 0 1 1 1 1 0 0 2          
  • 16.
    LOGIC DIAGRAM OF2-BIT COMPARATOR: Syed Hasan Saeed, Integral University, Lucknow 17 A1 A0 B1 B0 A< B A=B A > B 0 0 1 B A A 1 1 B A 0 1 0 B B A 1 1 B A 0 0 1 B A A 0 1 0 B B A 1 1 B A  0 0 B A 
  • 17.
    THANK YOU Syed HasanSaeed, Integral University, Lucknow 18
  • 18.
    Quick Quiz (Poll1) • If two numbers are not equal then binary variable will be ____________ a) 0 b) 1 c) A d) B
  • 19.
    Quick Quiz (Poll2) • Comparators are used in ____________ a) Memory b) CPU c) Motherboard d) Hard drive