Universidad de Valparaiso
 Ingeniería Ambiental
 Matemática I

                                                         Guía 19
                                                  Trigonometría: Parte 1


 Prof. Juan Carlos Morgado.1


1. Demuestre las siguientes identidades trigonométricas

                  1      tan (x)
     (a)              +            = csc (x)
               tan (x) sec (x) + 1

     (b) tan (x) + cot (x) = sec (x) csc (x)

     (c) 1 + tan2 (x) = sec2 (x)

     (d) sin4 (x)         cos4 (x) = 2 sin2 (x)         1

               cos (x) + 1   1 + sec (x)
     (e)                   =
               cos (x) 1     1 sec (x)

               sin (x) cos (x)
     (f)              +        =1
               csc (x) sec (x)

     (g) 4 sin2 (x) cos2 (x) = 1            cos2 (2x)

                    sec (x)
     (h)                         = sin (x)
               tan (x) + cot (x)

                   cos (x)    sin (x)
         (i)                +          = sin (x) + cos (x)
               1     tan (x) 1 cot (x)

     (j) cos (x) + 2 tan (x) = cos2 (x) + 2 sin (x) sec (x)

               sin (x) + cos (x)   sec (x) + csc (x)
     (k)                         =
               sin (x) cos (x)     sec (x) csc (x)

                                      s
                                          1 sin (x)
         (l) sec (x)     tan (x) =
                                          1 + sin (x)

                             2
    (m) (1 + tan (x))              2 tan (x) = sec3 (x) cos (x)

                                   cot (x) tan (x)
     (n) 1          2 sin2 (x) =
                                   tan (x) + cot (x)

1 Este   material se puede obtener desde http://www.mateuv.blogspot.com/
1 + cos (x)     sin (x)        2
   (o)                +             =
            sin (x)     1 + cos (x)   sin (x)

   (p) 1       cos6 (x) = sin2 (x) sin4 (x) + 3 cos2 (x)

                    1             tan (x) sin (x)
   (q)                          =
          cos (x) (1 + cos (x))        sin3 (x)

          s
                tan2 (x)
    (r)                    = jsin (x)j
              1 + tan2 (x)

                                  2
    (s) (sin (x) + csc (x)) = sin2 (x) + cot2 (x) + 3

          cos (x + y)   1 tan (x) tan (y)
    (t)               =
          cos (x y)     1 + tan (x) tan (y)

   (u) sin2 (x) + 2 cos2 (x) + cos2 (x) cot2 (x) = csc2 (x)

                     x
           2 tan
   (v)               2         = sin (x)
                         x
          1 + tan2
                         2

   (w) cot (x)       tan (x) = 2 cot (2x)

                             1 + sec (2x)
   (x) 2 cos2 (x) =
                               sec (2x)

          2 cos (3x) sin (2x)   cos (2x)
   (y)              +         =
           sin (2x)   cos (x)    sin (x)

          cos (3x) sin (3x)
   (z)             +         = 2 cot (2x)
           sin (x)   cos (x)

2. Demuestre las siguientes identidades trigonométricas

          cos (3x) sin (3x)
   (a)                       =1             2 sin (2x)
           cos (x) + sin (x)

   (b) sin2 (5x)          sin2 (2x) = sin (7x) sin (3x)

   (c) (cot (x)          cot (2x)) (sin (x) + sin (3x)) = 2 cos (x)

   (d) sin (y) sin (x + y) + cos (y) cos (x + y) = cos (x)

   (e) cos (x + y) cos (x             y) = cos2 (x)      sin2 (y)

                                               1
    (f) sin4 (x) + 2 sin2 (x) 1                          =1     cos4 (x)
                                            csc2   (x)



                                                                    2
sin (x y)       sin (y z)       sin (z x)
(g)                  +               +                =0
      cos (x) cos (y) cos (y) cos (z) cos (x) cos (z)

(h) cos (4x) cos (x)           sin (4x) sin (x) = cos (3x) cos (2x)            sin (3x) sin (2x)

 (i) cos (x) (tan (x) + 2) (2 tan (x) + 1) = 2 sec (x) + 5 sin (x)

                                                      sin2 (2x)
 (j) cos6 (x)        sin6 (x) = cos (2x) 1
                                                          4

                           2                         2
(k) (tan (x) csc (x))              (sin (x) sec (x)) = 1

 (l) cot2 (x)        cos2 (x) = cot2 (x) cos2 (x)

           1           1
(m)              +            = 2 sec2 (x)
      1   sin (x) 1 + sin (x)

      sin (x) cos (x)    cot2 (x)                     tan (x)
(n)                   +                                         =0
           sin (x)      csc (x) + 1                 sec (x) + 1

           x              3x               3x                x             4 tan (x)
(o) cot      cot                    tan             3 tan             =
           2               2                2                2            sec (x) + 2

(p) sin4 (x) 3           2 sin2 (x) + cos4 (x) 3            2 cos2 (x) = 1


                               2                             2       2 sin4 (x) + cos4 (x)
(q) (tan (x) + cot (x)) + (tan (x)                  cot (x)) =
                                                                        sin2 (x) cos2 (x)

(r) cos (4x) = 8 cos4 (x)             8 cos2 (x) + 1

         sin (3x) + sin (x)
(s)                            = 2 cot (x) (1                cos (x))
      1 + 2 cos (x) + cos (2x)

                                                2                                            2
(t) (sin (x) cos (y) + cos (x) sin (y)) + (cos (x) cos (y)                    sin (x) sin (y)) = 1

                     x                      x
(u) tan2         +             tan2           = 4 tan (x) sec (x)
            4        2                 4    2

(v) cot (x)      8 cot (8x) = tan (x) + 2 tan (2x) + 4 tan (4x)

(w) sec2 (x) csc2 (y) + tan2 (x) cot2 (y)                sec2 (x) cot2 (y)       tan2 (x) csc2 (y) = 1

      sin (6x)       cos (6x)
(x)                           =2
      sin (2x)       cos (2x)

(y) 4 sin (5x) cos (3x) cos (2x) = sin (4x) + sin (6x) + sin (10x)

(z) sec2 (x) tan2 (y)           tan2 (x) sec2 (y) = tan2 (y)              tan2 (x)



                                                                 3

Identidades trigonometricas

  • 1.
    Universidad de Valparaiso Ingeniería Ambiental Matemática I Guía 19 Trigonometría: Parte 1 Prof. Juan Carlos Morgado.1 1. Demuestre las siguientes identidades trigonométricas 1 tan (x) (a) + = csc (x) tan (x) sec (x) + 1 (b) tan (x) + cot (x) = sec (x) csc (x) (c) 1 + tan2 (x) = sec2 (x) (d) sin4 (x) cos4 (x) = 2 sin2 (x) 1 cos (x) + 1 1 + sec (x) (e) = cos (x) 1 1 sec (x) sin (x) cos (x) (f) + =1 csc (x) sec (x) (g) 4 sin2 (x) cos2 (x) = 1 cos2 (2x) sec (x) (h) = sin (x) tan (x) + cot (x) cos (x) sin (x) (i) + = sin (x) + cos (x) 1 tan (x) 1 cot (x) (j) cos (x) + 2 tan (x) = cos2 (x) + 2 sin (x) sec (x) sin (x) + cos (x) sec (x) + csc (x) (k) = sin (x) cos (x) sec (x) csc (x) s 1 sin (x) (l) sec (x) tan (x) = 1 + sin (x) 2 (m) (1 + tan (x)) 2 tan (x) = sec3 (x) cos (x) cot (x) tan (x) (n) 1 2 sin2 (x) = tan (x) + cot (x) 1 Este material se puede obtener desde http://www.mateuv.blogspot.com/
  • 2.
    1 + cos(x) sin (x) 2 (o) + = sin (x) 1 + cos (x) sin (x) (p) 1 cos6 (x) = sin2 (x) sin4 (x) + 3 cos2 (x) 1 tan (x) sin (x) (q) = cos (x) (1 + cos (x)) sin3 (x) s tan2 (x) (r) = jsin (x)j 1 + tan2 (x) 2 (s) (sin (x) + csc (x)) = sin2 (x) + cot2 (x) + 3 cos (x + y) 1 tan (x) tan (y) (t) = cos (x y) 1 + tan (x) tan (y) (u) sin2 (x) + 2 cos2 (x) + cos2 (x) cot2 (x) = csc2 (x) x 2 tan (v) 2 = sin (x) x 1 + tan2 2 (w) cot (x) tan (x) = 2 cot (2x) 1 + sec (2x) (x) 2 cos2 (x) = sec (2x) 2 cos (3x) sin (2x) cos (2x) (y) + = sin (2x) cos (x) sin (x) cos (3x) sin (3x) (z) + = 2 cot (2x) sin (x) cos (x) 2. Demuestre las siguientes identidades trigonométricas cos (3x) sin (3x) (a) =1 2 sin (2x) cos (x) + sin (x) (b) sin2 (5x) sin2 (2x) = sin (7x) sin (3x) (c) (cot (x) cot (2x)) (sin (x) + sin (3x)) = 2 cos (x) (d) sin (y) sin (x + y) + cos (y) cos (x + y) = cos (x) (e) cos (x + y) cos (x y) = cos2 (x) sin2 (y) 1 (f) sin4 (x) + 2 sin2 (x) 1 =1 cos4 (x) csc2 (x) 2
  • 3.
    sin (x y) sin (y z) sin (z x) (g) + + =0 cos (x) cos (y) cos (y) cos (z) cos (x) cos (z) (h) cos (4x) cos (x) sin (4x) sin (x) = cos (3x) cos (2x) sin (3x) sin (2x) (i) cos (x) (tan (x) + 2) (2 tan (x) + 1) = 2 sec (x) + 5 sin (x) sin2 (2x) (j) cos6 (x) sin6 (x) = cos (2x) 1 4 2 2 (k) (tan (x) csc (x)) (sin (x) sec (x)) = 1 (l) cot2 (x) cos2 (x) = cot2 (x) cos2 (x) 1 1 (m) + = 2 sec2 (x) 1 sin (x) 1 + sin (x) sin (x) cos (x) cot2 (x) tan (x) (n) + =0 sin (x) csc (x) + 1 sec (x) + 1 x 3x 3x x 4 tan (x) (o) cot cot tan 3 tan = 2 2 2 2 sec (x) + 2 (p) sin4 (x) 3 2 sin2 (x) + cos4 (x) 3 2 cos2 (x) = 1 2 2 2 sin4 (x) + cos4 (x) (q) (tan (x) + cot (x)) + (tan (x) cot (x)) = sin2 (x) cos2 (x) (r) cos (4x) = 8 cos4 (x) 8 cos2 (x) + 1 sin (3x) + sin (x) (s) = 2 cot (x) (1 cos (x)) 1 + 2 cos (x) + cos (2x) 2 2 (t) (sin (x) cos (y) + cos (x) sin (y)) + (cos (x) cos (y) sin (x) sin (y)) = 1 x x (u) tan2 + tan2 = 4 tan (x) sec (x) 4 2 4 2 (v) cot (x) 8 cot (8x) = tan (x) + 2 tan (2x) + 4 tan (4x) (w) sec2 (x) csc2 (y) + tan2 (x) cot2 (y) sec2 (x) cot2 (y) tan2 (x) csc2 (y) = 1 sin (6x) cos (6x) (x) =2 sin (2x) cos (2x) (y) 4 sin (5x) cos (3x) cos (2x) = sin (4x) + sin (6x) + sin (10x) (z) sec2 (x) tan2 (y) tan2 (x) sec2 (y) = tan2 (y) tan2 (x) 3