LISTA BÁSICA DE INTEGRAIS, SÉRIES DE POTÊNCIAS 
E FÓRMULAS TRIGONOMÉTRICAS.1 
SERIES DE POTÊNCIAS BÁSICAS 
1. 1 
1x = 
P 
1n 
=0 xn, 8x 2 (1; 1). 
2. ln (1 + x) = 
P 
1n 
=0 
(1)nxn+1 
n+1 , x 2 (1; 1]. 
3. arctan x = 
P 
n0 (1)n x2n+1 
2n+1 , x 2 [1; 1]. 
4. ex = 
P 
1k 
=0 
xk 
k! , x 2 R 
5. sin x = 
P 
=0 (1)k x2k+1 
1k 
(2k+1)! , x 2 R 
6. cos x = 
P 
=0 (1)k x2k 
1k 
(2k)! , x 2 R 
TABELA DE INTEGRAIS 
1. 
R 
xndx = xn+1 
n+1 + C, se n6= 1 
2. 
R 
ln x = x ln x  x + C 
3. 
R 1 
xdx = ln jxj + C 
4. 
R 
sin axdx = 1 
a cos ax + C, a6= 0 
5. 
R 
cos ax = 1 
a sin ax + C 
6. 
R 
tan xdx = ln (cos x) + C 
7. 
R 
sinh xdx = cosh x + C 
8. 
R 
cosh xdx = sinh x + C 
9. 
R 
eaxdx = 1 
a eax + C, a6= 0 
10. 
R 
sec xdx = ln jsec x + tan xj + C 
11. 
R 1 
1x2 dx = 1 
2 ln

Lista de integrais Calculo IV

  • 1.
    LISTA BÁSICA DEINTEGRAIS, SÉRIES DE POTÊNCIAS E FÓRMULAS TRIGONOMÉTRICAS.1 SERIES DE POTÊNCIAS BÁSICAS 1. 1 1x = P 1n =0 xn, 8x 2 (1; 1). 2. ln (1 + x) = P 1n =0 (1)nxn+1 n+1 , x 2 (1; 1]. 3. arctan x = P n0 (1)n x2n+1 2n+1 , x 2 [1; 1]. 4. ex = P 1k =0 xk k! , x 2 R 5. sin x = P =0 (1)k x2k+1 1k (2k+1)! , x 2 R 6. cos x = P =0 (1)k x2k 1k (2k)! , x 2 R TABELA DE INTEGRAIS 1. R xndx = xn+1 n+1 + C, se n6= 1 2. R ln x = x ln x x + C 3. R 1 xdx = ln jxj + C 4. R sin axdx = 1 a cos ax + C, a6= 0 5. R cos ax = 1 a sin ax + C 6. R tan xdx = ln (cos x) + C 7. R sinh xdx = cosh x + C 8. R cosh xdx = sinh x + C 9. R eaxdx = 1 a eax + C, a6= 0 10. R sec xdx = ln jsec x + tan xj + C 11. R 1 1x2 dx = 1 2 ln