SlideShare a Scribd company logo
LESSON 14: TRANSFER FUNCTIONS
OF DC MOTORS
ET 438a Automatic Control Systems Technology1
lesson14et438a.pptx
LEARNING OBJECTIVES
2
lesson14et438a.pptx
After this presentation you will be able to:
 Write the transfer function for an armature controlled
dc motor.
 Write a transfer function for a dc motor that relates
input voltage to shaft position.
 Represent a mechanical load using a mathematical
model.
 Explain how negative feedback affects dc motor
performance.
STEADY-STATE OPERATION OF SEPARATELY
EXCITED DC MOTORS
3
lesson14et438a.pptx
Consider steady-state model
wm
ia = armature current
eb= back emf
ea= armature terminal voltage
wm = motor speed (rad/sec)
T = motor torque
Tf = static friction torque
Ra = armature resistance
La = armature inductance
Jm = rotational inertia
Bm = viscous friction
Review the steady-state relationships
Of machine
STEADY-STATE OPERATION OF SEPARATELY
EXCITED DC MOTORS
4
lesson14et438a.pptx
Relationships of Separately Excited Dc Motor
ia
T
-Tf
DT
Dia
KT=DT/Dia
Torque-Current Curve Back EMF Curve
wm
eb
DT
Dia
KT=DT/Dia
Speed-Torque Curve
T
wm
DT
Dwm
wm=wnl – (Dwm/DT)T
wnl
STEADY-STATE MOTOR EQUATIONS
5
lesson14et438a.pptx
Developed Torque
m-NTiKT faT =
T = motor torque
KT = torque constant
Tf = motor friction torque
ia = armature current
KVL in Armature Circuit
VeRie baaa =
wm= shaft speed (rad/s)
eb = back emf
Ke = back emf constant
Back EMF
VKe meb w=
Developed Power
WTP m w=
ea= armature voltage
eb = back emf
Ra = armature resistance
P = shaft power
6
lesson14et438a.pptx
STEADY-STATE MOTOR EQUATIONS
Combining the previous equations gives:
eT
afaT
m
KK
R)TT(eK


=w
e
aaa
m
K
Rie 
=w
If the load torque is zero (T=0) then the above equation (1) gives the
no-load speed
(1) (2)
eT
afaT
nl
KK
R)T(eK


=w
STEADY-STATE MOTOR OPERATION
7
lesson14et438a.pptx
Example 14-1: An armature-controlled dc motor has the following
ratings: Tf=0.012 N-m, Ra=1.2 ohms, KT=0.06 N-m/A, Ke=0.06 V-s/rad.
It has a maximum speed of 500 rad/s with a maximum current of 2 A.
Find: a) maximum output torque, b) maximum mechanical output
power, c) maximum armature voltage, d) no-load speed at maximum
armature voltage.
EXAMPLE 14-1 SOLUTION (1)
8
lesson14et438a.pptx
Define given variables
a) Tmax occurs at Imax so….
Answer
b) Find Pmax
Answer
EXAMPLE 14-1 SOLUTION (2)
9
lesson14et438a.pptx
c) Find maximum back emf
Answer
d) Find no-load motor speed
At no-load, T=0. Load torque is zero.
T=0
TRANSFER FUNCTION OF ARMATURE-
CONTROLLED DC MOTOR
10
lesson14et438a.pptx
Write all variables as time functions
Jm
Bm
La
T(t)
eb(t)
ia(t)
ea(t)
+ +
RaWrite electrical equations
and mechanical equations.
Use the electromechanical
relationships to couple the
two equations.
Consider ea(t) and eb(t) as inputs and ia(t) as output. Write KVL
around armature
=)t(ea  )t(iR aa
dt
)t(di
L a
 )t(eb
Mechanical Dynamics )t(B
dt
)t(d
J)t(T mm
m
m w
w
=
TRANSFER FUNCTION OF ARMATURE-
CONTROLLED DC MOTOR
11
lesson14et438a.pptx
Electromechanical equations
)t(iK)t(T
)t(K)t(e
aT
mEb
=
w=
Find the transfer function between armature voltage and motor speed
?
)s(E
)s(
a
m
=

Take Laplace transform of equations and write in I/O form
 )s(E)s(E
RsL
1
)s(I
)s(I)RsL()s(E)s(E
)s(E)s(I)RsL()s(E
)s(E)s(IR)s(IsL)s(E
ba
a
a
aaba
baaa
baaaa







=
=
=
=
TRANSFER FUNCTION OF ARMATURE-
CONTROLLED DC MOTOR
12
lesson14et438a.pptx
)s(IK)s(T
)s(K)s(E
aE
mEb
=
=
Laplace Transform of Electromechanical Equations
)s(B)s(sJ)s(T mmmm =
Laplace Transform of Mechanical System Dynamics
)t(B
dt
)t(d
J)t(T mm
m
m w
w
=
Rewrite mechanical equation as I/O equation
         sT
BsJ
1
ssBsJsT
mm
mmmm 






==
BLOCK DIAGRAM OF ARMATURE-
CONTROLLED DC MOTOR
13
lesson14et438a.pptx
Draw block diagram from the following equations
 )s(E)s(E
RsL
1
)s(I ba
a
a 






=
1/(Las+Ra)
Ea(s) Ia(s)
+ -
KT
Eb(s)
)s(IK)s(T aT =
1/(Jms+Bm
)
T(s)
   sT
BsJ
1
s
mm
m 






=
m(s)
)s(K)s(E mEb =
Ke
Note: The dc motor has an inherent feedback
from the CEMF. This can improve system stability
by adding a electromechanical damping
TRANSFER FUNCTION OF ARMATURE-
CONTROLLED DC MOTOR
14
lesson14et438a.pptx
Use the feedback formula to reduce the block diagram
   
   sHsG1
sG
)s(E
s
a
m

=

EK)s(H =
G(s) is the product of all the blocks in the forward path
1/(Las+Ra) KT 1/(Jms+Bm
)
 
   mmaa
T
mmaa
T
BsJRsL
K
BsJ
1
RsL
1
KsG

=













=
SIMPLIFICATION OF TRANSFER FUNCTION
15
lesson14et438a.pptx
     
    E
mmaa
T
mmaa
T
a
m
K
BsJRsL
K
1
BsJRsL
K
)s(E
s









=

Substitute G(s) and H(s) into the feedback formula
G(s)
G(s)
H(s)
Simplify by multiplying numerator and
denominator by factors (Las+Ra)(Jms+Bm)
 
    ETmmaa
T
a
m
KKBsJRsL
K
)s(E
s

=

Expand factors and collect like terms of s
 
)BRKK(s)LBJR(sJL
K
)s(E
s
maETamma
2
ma
T
a
m

=

Final Formula
Roots of denominator effected by values of parameters. Can be Imaginary.
DC MOTOR POSITION TRANSFER FUNCTION
16
lesson14et438a.pptx
Motor shaft position is the integral of the motor velocity with respect
to time. To find shaft position, integrate velocity
)t(dt)t(dt
dt
)t(d
)t(
dt
)t(d
=w=

w=


To find the motor shaft position with respect to armature voltage, reduce
the following block diagram
1/(Las+Ra)
Ea(s)
Ia(s)
+ - KT
Eb(s)
1/(Jms+Bm
)
T(s)
m(s)
Ke
1/s
Qm(s)
DC MOTOR POSITION TRANSFER FUNCTION
17
lesson14et438a.pptx
   
   
    sBRKKsJRBLsJL
K
)s(E
)s(
)BRKKsJRBLsJL(s
K
)s(E
)s(
BRKKsJRBLsJL
K
s
1
)s(E
)s(
maET
2
mama
3
mm
T
a
m
maETmama
2
mm
T
a
m
maETmama
2
mm
T
a
m

=
Q

=
Q












=
Q
T.F.
Position found by multiplying speed by 1/s (integration in time)
)s(
s
1
)s( mm 



=Q
REDUCED ORDER MODEL
18
lesson14et438a.pptx
Electrical time constant is much smaller than mechanical time constant.
Usually neglected. Reduced transfer function becomes…
Define motor time constants
e
a
a
m
m
m
R
L
and
B
J
==
Where: m = mechanical time constant
e = electrical time constant
maET
ma
s
maET
T
s
s
s
a
m
BRKK
JR
and
BRKK
K
KWhere
s1
K
)s(E
)s(


=

=

=

MOTOR WITH LOAD
19
lesson14et438a.pptx
Consider a motor with load connected through a speed reducer.
Load inertia = JL
Load viscous friction = BL
Motor coupled to speed reducer, motor shaft coupled to smaller gear
with N1 teeth. Load connected to larger gear with N2 teeth.
21m
1
2
L
21m
2
1
L
NNm-NT
N
N
T
NNrad/sec
N
N






=
w





=w
Gear reduction decreases speed but increases torque
Pmech=constant. Similar to transformer action
MOTOR WITH LOAD
20
lesson14et438a.pptx
Speed changer affects on load friction and rotational inertia
Without speed changer (direct coupling)
rad/s-m-NJJJ
s/rad-m-NBBB
2
LmT
LmT
=
=
Where: BT = total viscous friction
JT = total rotational inertia
BL = load viscous friction
Bm = motor viscous friction
Jm = motor rotational inertia
JL = load rotational inertia
With speed changer
rad/s-m-NJ
N
N
JJ
s/rad-m-NB
N
N
BB
2
L
2
2
1
mT
L
2
2
1
mT






=






=
MOTOR WITH LOAD BLOCK DIAGRAM
21
lesson14et438a.pptx
1/(Las+Ra)
Ia(s)
+ - KT
Eb(s)
1/(JTs+BT
)
T(s)
m(s)
Ke
N1/N2
L(s)Ea(s)
Inertia and
friction of load
included
 
)BRKK(s)LBJR(sJL
N
N
K
)s(E
s
maETamma
2
ma
2
1
T
a
m








=

Transfer function with speed changer
MOTOR POSITION WITH LOAD BLOCK
DIAGRAM
22
lesson14et438a.pptx
1/(Las+Ra)
Ia(s)
+ -
KT
Eb(s)
1/(JTs+BT
)
T(s)
m(s)
Ke
N1/N2
QL(s)Ea(s)
1/s
L(s)
 
s)BRKK(s)LBJR(sJL
N
N
K
)s(E
s
maET
2
amma
3
ma
2
1
T
a
L








=
Q
Motor position transfer function with speed changer. Note: multiplication
by s
DC MOTOR TRANSFER FUNCTION EXAMPLE
23
lesson14et438a.pptx
Example 14-2: A permanent magnet dc motor has the following
specifications.
Maximum speed = 500 rad/sec
Maximum armature current = 2.0 A
Voltage constant (Ke) = 0.06 V-s/rad
Torque constant (KT) = 0.06 N-m/A
Friction torque = 0.012 N-m
Armature resistance = 1.2 ohms
Armature inductance = 0.020 H
Armature inertia = 6.2x10-4 N-m-s2/rad
Armature viscous friction = 1x10-4 N-m-s/rad
a) Determine the voltage/velocity and voltage/position transfer
functions for this motor
b) Determine the voltage/velocity and voltage/position transfer
functions for the motor neglecting the electrical time constant.
EXAMPLE 14-2 SOLUTION (1)
24
lesson14et438a.pptx
Define all motor parameters
a) Full transfer function model
EXAMPLE 14-2 SOLUTION (2)
25
lesson14et438a.pptx
Compute denominator coefficients from parameter values
Can normalize constant by dividing numerator and denominator by 0.00372
EXAMPLE 14-2 SOLUTION (3)
26
lesson14et438a.pptx
To covert this to a position transfer function, multiple it by 1/s
b) Compute the transfer functions ignoring the electrical time constant
EXAMPLE 14-2 SOLUTION (4)
27
lesson14et438a.pptx
Compute parameter values
LESSON 14: TRANSFER FUNCTIONS
OF DC MOTORS
ET 438a Automatic Control Systems Technology
lesson14et438a.pptx
28

More Related Content

What's hot

Module 3 electric propulsion electric vehicle technology ppt
Module 3 electric propulsion   electric vehicle technology pptModule 3 electric propulsion   electric vehicle technology ppt
Module 3 electric propulsion electric vehicle technology ppt
DrCVMOHAN
 
Mesin ac ch4
Mesin ac ch4Mesin ac ch4
Mesin ac ch4
roger sitohang
 
Three level inverter
Three level inverterThree level inverter
Three level inverter
Vinay Singh
 
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
emredurna
 
Lecture 5 Servomotor driver, control & Model
Lecture 5   Servomotor driver, control & ModelLecture 5   Servomotor driver, control & Model
Lecture 5 Servomotor driver, control & Model
Manipal Institute of Technology
 
Permanent magnet synchronous motor
Permanent magnet synchronous motorPermanent magnet synchronous motor
Permanent magnet synchronous motor
Zeeshan Akhtar
 
Exp 2 (1)2. To plot Swing Curve for one Machine System
Exp 2 (1)2.	To plot Swing Curve for one Machine SystemExp 2 (1)2.	To plot Swing Curve for one Machine System
Exp 2 (1)2. To plot Swing Curve for one Machine System
Shweta Yadav
 
POWER SYSTEM OSCILLATIONS
POWER SYSTEM OSCILLATIONSPOWER SYSTEM OSCILLATIONS
POWER SYSTEM OSCILLATIONS
Power System Operation
 
Power System Stability Introduction
Power System Stability IntroductionPower System Stability Introduction
Power System Stability Introduction
Power System Operation
 
EXCITATION SYSTEMS
EXCITATION SYSTEMSEXCITATION SYSTEMS
EXCITATION SYSTEMS
Power System Operation
 
Firing angle control
Firing angle controlFiring angle control
Firing angle control
jawaharramaya
 
Block diagram Examples
Block diagram ExamplesBlock diagram Examples
Block diagram Examples
Sagar Kuntumal
 
Speed control Of DC Machines
Speed control Of DC MachinesSpeed control Of DC Machines
Speed control Of DC Machines
Dinesh Sharma
 
POWER-ELECTRONICS.ppt
POWER-ELECTRONICS.pptPOWER-ELECTRONICS.ppt
POWER-ELECTRONICS.ppt
GateIESbyIITian
 
Preinforme rectificador no controlado
Preinforme rectificador no controladoPreinforme rectificador no controlado
Preinforme rectificador no controladoLautaro Narvaez
 
Power System Analysis Unit - V
Power System Analysis Unit - VPower System Analysis Unit - V
Power System Analysis Unit - V
arunatshare
 
Electrical machine slide share
Electrical machine slide shareElectrical machine slide share
Electrical machine slide share
Mohammed Waris Senan
 
PWM RECTIFIER
PWM RECTIFIERPWM RECTIFIER
PWM RECTIFIER
shiv kapil
 
Electric drive
Electric driveElectric drive
Electric drive
AshwinMathiyalagan
 
Informe no 1
Informe   no 1Informe   no 1
Informe no 1
Edison Fabricio
 

What's hot (20)

Module 3 electric propulsion electric vehicle technology ppt
Module 3 electric propulsion   electric vehicle technology pptModule 3 electric propulsion   electric vehicle technology ppt
Module 3 electric propulsion electric vehicle technology ppt
 
Mesin ac ch4
Mesin ac ch4Mesin ac ch4
Mesin ac ch4
 
Three level inverter
Three level inverterThree level inverter
Three level inverter
 
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
 
Lecture 5 Servomotor driver, control & Model
Lecture 5   Servomotor driver, control & ModelLecture 5   Servomotor driver, control & Model
Lecture 5 Servomotor driver, control & Model
 
Permanent magnet synchronous motor
Permanent magnet synchronous motorPermanent magnet synchronous motor
Permanent magnet synchronous motor
 
Exp 2 (1)2. To plot Swing Curve for one Machine System
Exp 2 (1)2.	To plot Swing Curve for one Machine SystemExp 2 (1)2.	To plot Swing Curve for one Machine System
Exp 2 (1)2. To plot Swing Curve for one Machine System
 
POWER SYSTEM OSCILLATIONS
POWER SYSTEM OSCILLATIONSPOWER SYSTEM OSCILLATIONS
POWER SYSTEM OSCILLATIONS
 
Power System Stability Introduction
Power System Stability IntroductionPower System Stability Introduction
Power System Stability Introduction
 
EXCITATION SYSTEMS
EXCITATION SYSTEMSEXCITATION SYSTEMS
EXCITATION SYSTEMS
 
Firing angle control
Firing angle controlFiring angle control
Firing angle control
 
Block diagram Examples
Block diagram ExamplesBlock diagram Examples
Block diagram Examples
 
Speed control Of DC Machines
Speed control Of DC MachinesSpeed control Of DC Machines
Speed control Of DC Machines
 
POWER-ELECTRONICS.ppt
POWER-ELECTRONICS.pptPOWER-ELECTRONICS.ppt
POWER-ELECTRONICS.ppt
 
Preinforme rectificador no controlado
Preinforme rectificador no controladoPreinforme rectificador no controlado
Preinforme rectificador no controlado
 
Power System Analysis Unit - V
Power System Analysis Unit - VPower System Analysis Unit - V
Power System Analysis Unit - V
 
Electrical machine slide share
Electrical machine slide shareElectrical machine slide share
Electrical machine slide share
 
PWM RECTIFIER
PWM RECTIFIERPWM RECTIFIER
PWM RECTIFIER
 
Electric drive
Electric driveElectric drive
Electric drive
 
Informe no 1
Informe   no 1Informe   no 1
Informe no 1
 

Similar to Lesson14et438a

تحكم في الآلات الكهربائية 1.pptx
تحكم في الآلات الكهربائية 1.pptxتحكم في الآلات الكهربائية 1.pptx
تحكم في الآلات الكهربائية 1.pptx
Ahmed598945
 
Lab manual
Lab manualLab manual
Lab manual
hrlgaikwad
 
EE503.29.ppt
EE503.29.pptEE503.29.ppt
EE503.29.ppt
Vara Prasad
 
lecture11.pdf
lecture11.pdflecture11.pdf
lecture11.pdf
getaneh30
 
18053522.pdf
18053522.pdf18053522.pdf
18053522.pdf
LucasMogaka
 
Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo
 
Csl3 19 j15
Csl3 19 j15Csl3 19 j15
Csl3 19 j15
kodam2512
 
dc motor control and DC drives Control -
dc motor control and DC drives Control -dc motor control and DC drives Control -
dc motor control and DC drives Control -
yarrammastanamma
 
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdfSolucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
SANTIAGO PABLO ALBERTO
 
Lec 05(actuator sizing).pdf
Lec 05(actuator sizing).pdfLec 05(actuator sizing).pdf
Lec 05(actuator sizing).pdf
Mohamed Atef
 
Chapter 08
Chapter 08Chapter 08
Chapter 08
Tha Mike
 
Electrical Engineering Assignment Help
Electrical Engineering Assignment HelpElectrical Engineering Assignment Help
Electrical Engineering Assignment Help
Edu Assignment Help
 
Agc
AgcAgc
Transfer fn mech. systm
Transfer fn mech. systmTransfer fn mech. systm
Transfer fn mech. systm
Syed Saeed
 
Transfer Function Cse ppt
Transfer Function Cse pptTransfer Function Cse ppt
Transfer Function Cse ppt
sanjaytron
 
Lecture 7 modelling-of__real_world_systems
Lecture 7 modelling-of__real_world_systemsLecture 7 modelling-of__real_world_systems
Lecture 7 modelling-of__real_world_systemsSaifullah Memon
 
Metal cutting tool position control using static output feedback and full sta...
Metal cutting tool position control using static output feedback and full sta...Metal cutting tool position control using static output feedback and full sta...
Metal cutting tool position control using static output feedback and full sta...
Mustefa Jibril
 
Electricmotor3
Electricmotor3Electricmotor3
Electricmotor3
Senthil Kumar
 

Similar to Lesson14et438a (20)

تحكم في الآلات الكهربائية 1.pptx
تحكم في الآلات الكهربائية 1.pptxتحكم في الآلات الكهربائية 1.pptx
تحكم في الآلات الكهربائية 1.pptx
 
Lab manual
Lab manualLab manual
Lab manual
 
EE503.29.ppt
EE503.29.pptEE503.29.ppt
EE503.29.ppt
 
lecture11.pdf
lecture11.pdflecture11.pdf
lecture11.pdf
 
18053522.pdf
18053522.pdf18053522.pdf
18053522.pdf
 
Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation Project
 
Csl3 19 j15
Csl3 19 j15Csl3 19 j15
Csl3 19 j15
 
dc motor control and DC drives Control -
dc motor control and DC drives Control -dc motor control and DC drives Control -
dc motor control and DC drives Control -
 
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdfSolucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
 
Dynamics
DynamicsDynamics
Dynamics
 
Lec 05(actuator sizing).pdf
Lec 05(actuator sizing).pdfLec 05(actuator sizing).pdf
Lec 05(actuator sizing).pdf
 
Chapter 08
Chapter 08Chapter 08
Chapter 08
 
Electrical Engineering Assignment Help
Electrical Engineering Assignment HelpElectrical Engineering Assignment Help
Electrical Engineering Assignment Help
 
Agc
AgcAgc
Agc
 
Transfer fn mech. systm
Transfer fn mech. systmTransfer fn mech. systm
Transfer fn mech. systm
 
Transfer Function Cse ppt
Transfer Function Cse pptTransfer Function Cse ppt
Transfer Function Cse ppt
 
Lecture 7 modelling-of__real_world_systems
Lecture 7 modelling-of__real_world_systemsLecture 7 modelling-of__real_world_systems
Lecture 7 modelling-of__real_world_systems
 
Abdul Haseeb
Abdul HaseebAbdul Haseeb
Abdul Haseeb
 
Metal cutting tool position control using static output feedback and full sta...
Metal cutting tool position control using static output feedback and full sta...Metal cutting tool position control using static output feedback and full sta...
Metal cutting tool position control using static output feedback and full sta...
 
Electricmotor3
Electricmotor3Electricmotor3
Electricmotor3
 

Recently uploaded

Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 

Recently uploaded (20)

Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 

Lesson14et438a

  • 1. LESSON 14: TRANSFER FUNCTIONS OF DC MOTORS ET 438a Automatic Control Systems Technology1 lesson14et438a.pptx
  • 2. LEARNING OBJECTIVES 2 lesson14et438a.pptx After this presentation you will be able to:  Write the transfer function for an armature controlled dc motor.  Write a transfer function for a dc motor that relates input voltage to shaft position.  Represent a mechanical load using a mathematical model.  Explain how negative feedback affects dc motor performance.
  • 3. STEADY-STATE OPERATION OF SEPARATELY EXCITED DC MOTORS 3 lesson14et438a.pptx Consider steady-state model wm ia = armature current eb= back emf ea= armature terminal voltage wm = motor speed (rad/sec) T = motor torque Tf = static friction torque Ra = armature resistance La = armature inductance Jm = rotational inertia Bm = viscous friction Review the steady-state relationships Of machine
  • 4. STEADY-STATE OPERATION OF SEPARATELY EXCITED DC MOTORS 4 lesson14et438a.pptx Relationships of Separately Excited Dc Motor ia T -Tf DT Dia KT=DT/Dia Torque-Current Curve Back EMF Curve wm eb DT Dia KT=DT/Dia Speed-Torque Curve T wm DT Dwm wm=wnl – (Dwm/DT)T wnl
  • 5. STEADY-STATE MOTOR EQUATIONS 5 lesson14et438a.pptx Developed Torque m-NTiKT faT = T = motor torque KT = torque constant Tf = motor friction torque ia = armature current KVL in Armature Circuit VeRie baaa = wm= shaft speed (rad/s) eb = back emf Ke = back emf constant Back EMF VKe meb w= Developed Power WTP m w= ea= armature voltage eb = back emf Ra = armature resistance P = shaft power
  • 6. 6 lesson14et438a.pptx STEADY-STATE MOTOR EQUATIONS Combining the previous equations gives: eT afaT m KK R)TT(eK   =w e aaa m K Rie  =w If the load torque is zero (T=0) then the above equation (1) gives the no-load speed (1) (2) eT afaT nl KK R)T(eK   =w
  • 7. STEADY-STATE MOTOR OPERATION 7 lesson14et438a.pptx Example 14-1: An armature-controlled dc motor has the following ratings: Tf=0.012 N-m, Ra=1.2 ohms, KT=0.06 N-m/A, Ke=0.06 V-s/rad. It has a maximum speed of 500 rad/s with a maximum current of 2 A. Find: a) maximum output torque, b) maximum mechanical output power, c) maximum armature voltage, d) no-load speed at maximum armature voltage.
  • 8. EXAMPLE 14-1 SOLUTION (1) 8 lesson14et438a.pptx Define given variables a) Tmax occurs at Imax so…. Answer b) Find Pmax Answer
  • 9. EXAMPLE 14-1 SOLUTION (2) 9 lesson14et438a.pptx c) Find maximum back emf Answer d) Find no-load motor speed At no-load, T=0. Load torque is zero. T=0
  • 10. TRANSFER FUNCTION OF ARMATURE- CONTROLLED DC MOTOR 10 lesson14et438a.pptx Write all variables as time functions Jm Bm La T(t) eb(t) ia(t) ea(t) + + RaWrite electrical equations and mechanical equations. Use the electromechanical relationships to couple the two equations. Consider ea(t) and eb(t) as inputs and ia(t) as output. Write KVL around armature =)t(ea  )t(iR aa dt )t(di L a  )t(eb Mechanical Dynamics )t(B dt )t(d J)t(T mm m m w w =
  • 11. TRANSFER FUNCTION OF ARMATURE- CONTROLLED DC MOTOR 11 lesson14et438a.pptx Electromechanical equations )t(iK)t(T )t(K)t(e aT mEb = w= Find the transfer function between armature voltage and motor speed ? )s(E )s( a m =  Take Laplace transform of equations and write in I/O form  )s(E)s(E RsL 1 )s(I )s(I)RsL()s(E)s(E )s(E)s(I)RsL()s(E )s(E)s(IR)s(IsL)s(E ba a a aaba baaa baaaa        = = = =
  • 12. TRANSFER FUNCTION OF ARMATURE- CONTROLLED DC MOTOR 12 lesson14et438a.pptx )s(IK)s(T )s(K)s(E aE mEb = = Laplace Transform of Electromechanical Equations )s(B)s(sJ)s(T mmmm = Laplace Transform of Mechanical System Dynamics )t(B dt )t(d J)t(T mm m m w w = Rewrite mechanical equation as I/O equation          sT BsJ 1 ssBsJsT mm mmmm        ==
  • 13. BLOCK DIAGRAM OF ARMATURE- CONTROLLED DC MOTOR 13 lesson14et438a.pptx Draw block diagram from the following equations  )s(E)s(E RsL 1 )s(I ba a a        = 1/(Las+Ra) Ea(s) Ia(s) + - KT Eb(s) )s(IK)s(T aT = 1/(Jms+Bm ) T(s)    sT BsJ 1 s mm m        = m(s) )s(K)s(E mEb = Ke Note: The dc motor has an inherent feedback from the CEMF. This can improve system stability by adding a electromechanical damping
  • 14. TRANSFER FUNCTION OF ARMATURE- CONTROLLED DC MOTOR 14 lesson14et438a.pptx Use the feedback formula to reduce the block diagram        sHsG1 sG )s(E s a m  =  EK)s(H = G(s) is the product of all the blocks in the forward path 1/(Las+Ra) KT 1/(Jms+Bm )      mmaa T mmaa T BsJRsL K BsJ 1 RsL 1 KsG  =              =
  • 15. SIMPLIFICATION OF TRANSFER FUNCTION 15 lesson14et438a.pptx           E mmaa T mmaa T a m K BsJRsL K 1 BsJRsL K )s(E s          =  Substitute G(s) and H(s) into the feedback formula G(s) G(s) H(s) Simplify by multiplying numerator and denominator by factors (Las+Ra)(Jms+Bm)       ETmmaa T a m KKBsJRsL K )s(E s  =  Expand factors and collect like terms of s   )BRKK(s)LBJR(sJL K )s(E s maETamma 2 ma T a m  =  Final Formula Roots of denominator effected by values of parameters. Can be Imaginary.
  • 16. DC MOTOR POSITION TRANSFER FUNCTION 16 lesson14et438a.pptx Motor shaft position is the integral of the motor velocity with respect to time. To find shaft position, integrate velocity )t(dt)t(dt dt )t(d )t( dt )t(d =w=  w=   To find the motor shaft position with respect to armature voltage, reduce the following block diagram 1/(Las+Ra) Ea(s) Ia(s) + - KT Eb(s) 1/(Jms+Bm ) T(s) m(s) Ke 1/s Qm(s)
  • 17. DC MOTOR POSITION TRANSFER FUNCTION 17 lesson14et438a.pptx             sBRKKsJRBLsJL K )s(E )s( )BRKKsJRBLsJL(s K )s(E )s( BRKKsJRBLsJL K s 1 )s(E )s( maET 2 mama 3 mm T a m maETmama 2 mm T a m maETmama 2 mm T a m  = Q  = Q             = Q T.F. Position found by multiplying speed by 1/s (integration in time) )s( s 1 )s( mm     =Q
  • 18. REDUCED ORDER MODEL 18 lesson14et438a.pptx Electrical time constant is much smaller than mechanical time constant. Usually neglected. Reduced transfer function becomes… Define motor time constants e a a m m m R L and B J == Where: m = mechanical time constant e = electrical time constant maET ma s maET T s s s a m BRKK JR and BRKK K KWhere s1 K )s(E )s(   =  =  = 
  • 19. MOTOR WITH LOAD 19 lesson14et438a.pptx Consider a motor with load connected through a speed reducer. Load inertia = JL Load viscous friction = BL Motor coupled to speed reducer, motor shaft coupled to smaller gear with N1 teeth. Load connected to larger gear with N2 teeth. 21m 1 2 L 21m 2 1 L NNm-NT N N T NNrad/sec N N       = w      =w Gear reduction decreases speed but increases torque Pmech=constant. Similar to transformer action
  • 20. MOTOR WITH LOAD 20 lesson14et438a.pptx Speed changer affects on load friction and rotational inertia Without speed changer (direct coupling) rad/s-m-NJJJ s/rad-m-NBBB 2 LmT LmT = = Where: BT = total viscous friction JT = total rotational inertia BL = load viscous friction Bm = motor viscous friction Jm = motor rotational inertia JL = load rotational inertia With speed changer rad/s-m-NJ N N JJ s/rad-m-NB N N BB 2 L 2 2 1 mT L 2 2 1 mT       =       =
  • 21. MOTOR WITH LOAD BLOCK DIAGRAM 21 lesson14et438a.pptx 1/(Las+Ra) Ia(s) + - KT Eb(s) 1/(JTs+BT ) T(s) m(s) Ke N1/N2 L(s)Ea(s) Inertia and friction of load included   )BRKK(s)LBJR(sJL N N K )s(E s maETamma 2 ma 2 1 T a m         =  Transfer function with speed changer
  • 22. MOTOR POSITION WITH LOAD BLOCK DIAGRAM 22 lesson14et438a.pptx 1/(Las+Ra) Ia(s) + - KT Eb(s) 1/(JTs+BT ) T(s) m(s) Ke N1/N2 QL(s)Ea(s) 1/s L(s)   s)BRKK(s)LBJR(sJL N N K )s(E s maET 2 amma 3 ma 2 1 T a L         = Q Motor position transfer function with speed changer. Note: multiplication by s
  • 23. DC MOTOR TRANSFER FUNCTION EXAMPLE 23 lesson14et438a.pptx Example 14-2: A permanent magnet dc motor has the following specifications. Maximum speed = 500 rad/sec Maximum armature current = 2.0 A Voltage constant (Ke) = 0.06 V-s/rad Torque constant (KT) = 0.06 N-m/A Friction torque = 0.012 N-m Armature resistance = 1.2 ohms Armature inductance = 0.020 H Armature inertia = 6.2x10-4 N-m-s2/rad Armature viscous friction = 1x10-4 N-m-s/rad a) Determine the voltage/velocity and voltage/position transfer functions for this motor b) Determine the voltage/velocity and voltage/position transfer functions for the motor neglecting the electrical time constant.
  • 24. EXAMPLE 14-2 SOLUTION (1) 24 lesson14et438a.pptx Define all motor parameters a) Full transfer function model
  • 25. EXAMPLE 14-2 SOLUTION (2) 25 lesson14et438a.pptx Compute denominator coefficients from parameter values Can normalize constant by dividing numerator and denominator by 0.00372
  • 26. EXAMPLE 14-2 SOLUTION (3) 26 lesson14et438a.pptx To covert this to a position transfer function, multiple it by 1/s b) Compute the transfer functions ignoring the electrical time constant
  • 27. EXAMPLE 14-2 SOLUTION (4) 27 lesson14et438a.pptx Compute parameter values
  • 28. LESSON 14: TRANSFER FUNCTIONS OF DC MOTORS ET 438a Automatic Control Systems Technology lesson14et438a.pptx 28