 John 6:47 
Truly, truly, I say to you, whoever believes has 
eternal life. 
 Isaiah 33:22 
For the LORD is our judge, the LORD is our 
lawgiver, the LORD is our king; he will save 
us.
The Quadratic Formula
Quadratic Formula 
IF 
0 2 ax bx  c  
THEN 
4 2    
 
b b ac 
a 
x 
2
Proving the Quadratic Formula 
 Solve by completing the square 
ax2 bx  c  0 
c 
a 
b 
x    2 
x 
a 
2 2 
2 
b 
b 
a 
 
  
2 4a 
 
 
 
 
c 
a 
b 
2 
x     2 
a 
b 
a 
b 
x 
a 
2 
2 
2 
4 4 
c 
a 
2 2 
b 
 
x    
a 
b 
a 
 
 
 
 
 2 
2 4 
b ac 
2 
2 2 
4 
4 
b 
a 
 
2 a 
x 
 
  
 
 
 
 
 
b ac 
a 
b 
a 
x 
2 
4 
2 
2  
   
2 2 
4 
x    
2 2 
b 
b 
2 4 4 
a 
ac 
a 
a 
 
 
 
 
2 LCM  4a 
b ac 
b 
4 2    
b b ac 
a 
x 
2 
 
a 
a 
x 
2 
4 
2 
2  
  
#1 Solve using the quadratic formula. 
3 7 2 0 2 x  x   
a  3, b  7, c  2 
4 2    
 
b b ac 
a 
x 
2 
( 7) ( 7) 4(3)(2) 2      
2(3) 
x  
7  49  24 
6 
x  
7  25 
7  5 
6 
x  
12 
6 
x  
2 
6 
x  
1 
3 
x  2, 
6 
x 
#2 Solve using the quadratic formula 
2 4 5 2 x  x  
a  2, b  4, c  5 
4 2    
 
b b ac 
a 
x 
2 
( 4) ( 4) 4(2)( 5) 2       
2(2) 
x  
4  16  40 
4 
x  
4  56 
4 
x  
4  414 
4 
4  2 14 
4 
x  
x  
2 4 5 0 2 x  x   
14 
2 
x 1 
x  2.9 x  0.9
Solve using the quadratic formula 
3. 
4. 
5. 
5 7 2 x  x   
3m 8 10m 2   
3 
5 
x i 
2 
   
2 
2 
3 
m  4,  
x 64 16x 2   
x 8
#3 Solve using the quadratic formula 
5 7 2 x  x   
a 1, b  5, c  7 
4 2    
 
b b ac 
a 
x 
2 
5 5 4(1)(7) 2    
2(1) 
x  
 5  25  28 
2 
x  
 5   3 
2 
x  
3 
5 
x i 
2 
   
2 
5 7 0 2 x  x   
3 
5 
x i 
2 
   
2
#4 Solve using the quadratic formula 
3m 8 10m 2   
a  3, b  10, c  8 
4 2    
 
b b ac 
a 
m 
2 
( 10) ( 10) 4(3)( 8) 2       
2(3) 
m  
10  100  96 
6 
m  
10  196 
10 14 
6 
m  
24 
6 
m  
4 
6 
m   
2 
3 
m  4,  
3 10 8 0 2 m  m  
6 
m 
#5 Solve using the quadratic formula 
x 64 16x 2   
a 1, b  16, c  64 
4 2    
 
b b ac 
a 
x 
2 
16 16 4(1)(64) 2    
  
2(1) 
x  
16  256  256 
2 
x  
16  0 
2 
x  
x 8 
16 64 0 2 x  x  
The Discriminant 
 Discriminant  In the quadratic 
formula, the expression 
underneath the radical 
that describes the 
nature of the roots.
Understanding the discriminant 
Discriminant 
ac b 4 2  
# of real roots 
4 0 2 b  ac  2 real roots 
4 0 2 b  ac  1 real roots 
4 0 2 b  ac  No real roots
#6 Using the discriminant 
4 3 1 0 2 y  y   
a  4, b  3, c  1 
discriminant b 4ac 2   
discrimina nt ( 3) 4(4)( 1) 2     
discriminant  916 
discriminant  25 
25  0 
2 real roots
#7 Using the discriminant 
4 5 2 x  x  
a  4, b  1, c  5 
discriminant b 4ac 2   
discrimina nt ( 1) 4(4)(5) 2    
discriminant  180 
discriminant  79 
79 0 
no real roots
Using the discriminant 
8. 
9. 
2 4 5 2 x  x  
4 8 4 2 x  x  
discriminant  56 
2 real roots 
discriminant  0 
1 real root
#8 Using the discriminant 
2 4 5 2 x  x  
2 4 5 0 2 x  x   
discriminant b 4ac 2   
discrimina nt ( 4) 4(2)( 5) 2     
discriminant  1640 
discriminant  56 
56  0 
2 real roots
#9 Using the discriminant 
4 8 4 2 x  x  
4 8 4 0 2 x  x   
discriminant b 4ac 2   
discrimina nt ( 8) 4(4)(4) 2    
discriminant  6464 
discriminant  0 
0  0 
1 real root

Lecture 08 quadratic formula and nature of roots

  • 1.
     John 6:47 Truly, truly, I say to you, whoever believes has eternal life.  Isaiah 33:22 For the LORD is our judge, the LORD is our lawgiver, the LORD is our king; he will save us.
  • 2.
  • 3.
    Quadratic Formula IF 0 2 ax bx  c  THEN 4 2     b b ac a x 2
  • 4.
    Proving the QuadraticFormula  Solve by completing the square ax2 bx  c  0 c a b x    2 x a 2 2 2 b b a    2 4a     c a b 2 x     2 a b a b x a 2 2 2 4 4 c a 2 2 b  x    a b a      2 2 4 b ac 2 2 2 4 4 b a  2 a x         b ac a b a x 2 4 2 2     2 2 4 x    2 2 b b 2 4 4 a ac a a     2 LCM  4a b ac b 4 2    b b ac a x 2  a a x 2 4 2 2    
  • 5.
    #1 Solve usingthe quadratic formula. 3 7 2 0 2 x  x   a  3, b  7, c  2 4 2     b b ac a x 2 ( 7) ( 7) 4(3)(2) 2      2(3) x  7  49  24 6 x  7  25 7  5 6 x  12 6 x  2 6 x  1 3 x  2, 6 x 
  • 6.
    #2 Solve usingthe quadratic formula 2 4 5 2 x  x  a  2, b  4, c  5 4 2     b b ac a x 2 ( 4) ( 4) 4(2)( 5) 2       2(2) x  4  16  40 4 x  4  56 4 x  4  414 4 4  2 14 4 x  x  2 4 5 0 2 x  x   14 2 x 1 x  2.9 x  0.9
  • 7.
    Solve using thequadratic formula 3. 4. 5. 5 7 2 x  x   3m 8 10m 2   3 5 x i 2    2 2 3 m  4,  x 64 16x 2   x 8
  • 8.
    #3 Solve usingthe quadratic formula 5 7 2 x  x   a 1, b  5, c  7 4 2     b b ac a x 2 5 5 4(1)(7) 2    2(1) x   5  25  28 2 x   5   3 2 x  3 5 x i 2    2 5 7 0 2 x  x   3 5 x i 2    2
  • 9.
    #4 Solve usingthe quadratic formula 3m 8 10m 2   a  3, b  10, c  8 4 2     b b ac a m 2 ( 10) ( 10) 4(3)( 8) 2       2(3) m  10  100  96 6 m  10  196 10 14 6 m  24 6 m  4 6 m   2 3 m  4,  3 10 8 0 2 m  m  6 m 
  • 10.
    #5 Solve usingthe quadratic formula x 64 16x 2   a 1, b  16, c  64 4 2     b b ac a x 2 16 16 4(1)(64) 2      2(1) x  16  256  256 2 x  16  0 2 x  x 8 16 64 0 2 x  x  
  • 11.
    The Discriminant Discriminant  In the quadratic formula, the expression underneath the radical that describes the nature of the roots.
  • 12.
    Understanding the discriminant Discriminant ac b 4 2  # of real roots 4 0 2 b  ac  2 real roots 4 0 2 b  ac  1 real roots 4 0 2 b  ac  No real roots
  • 13.
    #6 Using thediscriminant 4 3 1 0 2 y  y   a  4, b  3, c  1 discriminant b 4ac 2   discrimina nt ( 3) 4(4)( 1) 2     discriminant  916 discriminant  25 25  0 2 real roots
  • 14.
    #7 Using thediscriminant 4 5 2 x  x  a  4, b  1, c  5 discriminant b 4ac 2   discrimina nt ( 1) 4(4)(5) 2    discriminant  180 discriminant  79 79 0 no real roots
  • 15.
    Using the discriminant 8. 9. 2 4 5 2 x  x  4 8 4 2 x  x  discriminant  56 2 real roots discriminant  0 1 real root
  • 16.
    #8 Using thediscriminant 2 4 5 2 x  x  2 4 5 0 2 x  x   discriminant b 4ac 2   discrimina nt ( 4) 4(2)( 5) 2     discriminant  1640 discriminant  56 56  0 2 real roots
  • 17.
    #9 Using thediscriminant 4 8 4 2 x  x  4 8 4 0 2 x  x   discriminant b 4ac 2   discrimina nt ( 8) 4(4)(4) 2    discriminant  6464 discriminant  0 0  0 1 real root