This document provides an overview of the Introduction to Algorithms course, including the course modules and motivating problems. It introduces the Document Distance problem, which aims to define metrics to measure the similarity between documents based on word frequencies. It discusses an initial Python program ("docdist1.py") to calculate document distance that runs inefficiently due to quadratic time list concatenation. Profiling identifies this as the bottleneck. The solution is to use list extension, resulting in "docdist3.py". Further optimizations include using a dictionary to count word frequencies in constant time, creating "docdist4.py". The document outlines remaining opportunities like improving the word extraction and sorting algorithms.