SlideShare a Scribd company logo
1 of 36
Download to read offline
The Author-Topic Model
Presented by:
Darshan Ramakant Bhat
Freeze Francis
Mohammed Haroon D
by M Rosen-Zvi, et al. (UAI 2004)
Overview
● Motivation
● Model Formulation
○ Topic Model ( i.e LDA)
○ Author Model
○ Author Topic Model
● Parameter Estimation
○ Gibbs Sampling Algorithms
● Results and Evaluation
● Applications
Motivation
● joint author-topic modeling had received little attention.
● author modeling has tended to focus on problem of predicting an author given
the document.
● modelling the interests of authors is a fundamental problem raised by a large
corpus (eg: NIPS dataset).
● this paper introduced a generative model that simultaneously models the
content of documents and the interests of authors.
Notations
● Vocabulary set size : V
● Total unique authors : A
● Document d is identified as (wd
, ad
)
● Nd
: number of words in Document d.
● wd
: Vector of Nd
words (subset of vocabulary)
wd
= [w1d
w2d
…….. wNd d
]
● wid
: ith
word in document d
● Ad
: number of authors of Document d
● ad
: Vector of Ad
authors (subset of authors)
ad
= [a1d
a2d
…….. aAd d
]
● Corpus : Collection D documents
= { (w1
, a1
) , (w2
, a2
) ……. (wD
, aD
) }
Plate Notation for Graphical models
● Nodes are random variables
● Edges denote possible dependence
● Observed variables are shaded
● Plates denote replicated structure
Dirichlet distribution
● generalization of beta distribution into multiple dimensions
● Domain : X = (x1
, x2
….. xk
)
○ xi
∈ (0 , 1)
○ k
xi
= 1
○ k-dimensional multinomial distributions
● "distribution over multinomial distributions"
● Parameter : = ( 1
, 2
…… k
)
○ i
> 0 , ∀i
○ determines how the probability mass is distributed
○ Symmetric : 1
= 2
=…… k
● Each sample from a dirichlet is a multinomial distribution.
○ ↑ : denser samples
○ ↓ : sparse samples
Topic 2
(0,1,0)
Topic 1
(1,0,0)
Topic 3
(0,0,1)
.
(⅓,⅓,⅓ )
Fig : Domain of Dirichlet (k=3)
Fig : Symmetric Dirichlet distributions for k=3
pdf
samples
Model Formulation
Topic Model (LDA)
Model topics as distribution over words
Model documents as distribution over topics
Author Model
Model author as distribution over words
Author-Topic Model
Probabilistic model for both author and topics
Model topics as distribution over words
Model authors as distribution over topics
Topic Model : LDA
● Generative model
● Bag of word
● Mixed membership
● Each word in a document has a topic
assignment.
● Each document is associated with a
distribution over topics.
● Each topic is associated with a
distribution over words.
● α : Dirichlet prior parameter on the
per-document topic distributions.
● β : Dirichlet prior parameter on the
per-topic word distribution.
● w : observed word in document
● z : is the topic assigned for w
Fig : LDA model
Author Model
● Simple generative model
● Each author is associated with a
distribution over words.
● Each word has a author assignment.
● β : Dirichlet prior parameter on the
per-author word distributions.
● w : Observed word
● x : is the author chosen for word w
Fig : Author Model
Model Formulation
Topic Model (LDA)
Model topics as distribution over words
Model documents as distribution over topics
Author Model
Model author as distribution over words
Author-Topic Model
Probabilistic model for both author and topics
Model topics as distribution over words
Model authors as distribution over topics
Author-Topic
Model
● Each topic is associated with a
distribution over words.
● Each author is associated with a
distribution over topics.
● Each word in a document has an
author and a topic assignment.
● Topic distribution of document is a
mixture of its authors topic distribution
● α : Dirichlet prior parameter on the
per-author topic distributions.
● x : author chosen for word w
● z : is the topic assigned for w from
author x topic distribution
● w : observed word in document
Fig : Author Topic Model plate notation
Author-Topic
Model
Fig : Author Topic model
Special Cases of ATM
Topic Model (LDA):
Each document is written by a
unique author
● the document determines
the author.
● author assignment becomes
trivial.
● author’s topic distribution
can be viewed as
document’s topic
distribution.
Special Cases of ATM
Author Model:
each author writes about a unique topic
● the author determines the topic.
● topic assignment becomes trivial.
● topic’s word distribution can be
viewed as author’s word
distribution.
Variables to be inferred
Variables to be inferred
Variables to be inferred
Collapsed Gibbs Sampling - LDA
● The assignment variables contain information about and .
● Use this information to directly update the Topic assignment variable with the
next sample. This is Collapsed Gibbs Sampling.
Collapsed Gibbs Sampling - Author Model
● Need to infer Author - word distribution A
● WIth Collapsing GIbbs sampling, directly infer author word assignments
Author Topic Model - Collapsed Gibbs Sampling
● Need to infer T
and ϴA
● Instead through
collapsed Gibbs
Sampling directly infer
Topic and Author
assignments
● By finding the author -
topic joint distribution
conditioned on all other
variables
Example
AUTHOR 1 2 2 1 1
TOPIC 3 2 1 3 1
WORD epilepsy dynamic bayesian EEG model
TOPIC-1 TOPIC-2 TOPIC-3
epilepsy 1 0 35
dynamic 18 20 1
bayesian 42 15 0
EEG 0 5 20
model 10 8 1
...
TOPIC-1 TOPIC-2 TOPIC-3
AUTHOR-1 20 14 2
AUTHOR-2 20 21 5
AUTHOR-3 11 8 15
AUTHOR-4 5 15 14
...
Example
AUTHOR 1 2 ? 1 1
TOPIC 3 2 ? 3 1
WORD epilepsy dynamic bayesian EEG model
TOPIC-1 TOPIC-2 TOPIC-3
epilepsy 1 0 35
dynamic 18 20 1
bayesian 42(41) 15 0
EEG 0 5 20
model 10 8 1
...
TOPIC-1 TOPIC-2 TOPIC-3
AUTHOR-1 20 14 2
AUTHOR-2 20(19) 21 5
AUTHOR-3 11 8 15
AUTHOR-4 5 15 14
...
Author-Topic How much topic ‘j’ likes the word ‘bayesian’ How much author ‘k’ likes the topic
A1T1 41/97 20/36
A2T1 41/97 19/45
A1T2 15/105 14/36
A2T2 ... ...
A2T3 ... ...
A2T3 ... ...
● To draw new Author-Topic assignment (equivalently)
○ Roll K X ad
sided die with these probabilities
○ Assign the Author-Topic tuple to the word
AUTHOR 1 2 1 1 1
TOPIC 3 2 3 3 1
WORD epilepsy dynamic bayesian EEG model
Example (cont..)
● Update the probability ( T
and A
) tables with new values
● This implies increasing the popularity of topic in author and word in topic
Sample Output (CORA dataset)Topicprobabilities
Topics shown with 10 most probable words
Author :
Experimental Results
● Experiment is done on two types of dataset, papers are chosen from NIPS and
CiteSeer database
● Extremely common words are removed from the corpus, leading V=13,649
unique words in NIPS and V=30,799 in CiteSeer, 2037 authors in NIPS and
85,465 in CiteSeer
● NIPS contains many documents which are closely related to learning theory
and machine learning
● CiteSeer contains variety of topics from User Interface to Solar astrophysics
Examples of topic author distribution
Importance ofTopicprobabilityofarandomauthor
Evaluating the predictive power
● Predictive power of the model is measured quantitatively using perplexity.
● Perplexity is ability to predict the words on a new unseen documents
● Perplexity of set of d words in a document (wd
,ad
) is
● When p(wd
|ad
) is high perplexity ≈ 1, otherwise it will be a high positive
quantity.
Continued….
● Approximate equation to calculate the joint probability
Continued….
Applications
● It can be used in automatic reviewer recommendation for a paper review.
● Given an abstract of a paper and a list of the authors plus their known past
collaborators, generate a list of other highly likely authors for this abstract who
might serve as good reviewers.
References
● Rosen-Zvi, Michal, et al. "The author-topic model for authors and documents."
Proceedings of the 20th conference on Uncertainty in artificial intelligence.
AUAI Press, 2004.
● D. M. Blei, A. Y. Ng, and M. I. Jordan (2003). “Latent Dirichlet Allocation”.
Journal of Machine Learning Research, 3 : 993–1022.
● T. L. Griffiths, and M. Steyvers (2004). “Finding scientific topics”. Proceedings
of the National Academy of Sciences, 101 (suppl. 1), 5228–5235.
● https://github.com/arongdari/python-topic-model
● https://www.coursera.org/learn/ml-clustering-and-retrieval/home/welcome
Questions?

More Related Content

What's hot

Принтер гэж юу вэ? laser printer Printer gej yu we
Принтер гэж юу вэ? laser printer Printer gej yu weПринтер гэж юу вэ? laser printer Printer gej yu we
Принтер гэж юу вэ? laser printer Printer gej yu weЦэнд-Аюуш О.
 
システム制御とディープラーニング
システム制御とディープラーニングシステム制御とディープラーニング
システム制御とディープラーニングKeio Robotics Association
 
【DL輪読会】HyperTree Proof Search for Neural Theorem Proving
【DL輪読会】HyperTree Proof Search for Neural Theorem Proving【DL輪読会】HyperTree Proof Search for Neural Theorem Proving
【DL輪読会】HyperTree Proof Search for Neural Theorem ProvingDeep Learning JP
 
[DL輪読会]Estimating Predictive Uncertainty via Prior Networks
[DL輪読会]Estimating Predictive Uncertainty via Prior Networks[DL輪読会]Estimating Predictive Uncertainty via Prior Networks
[DL輪読会]Estimating Predictive Uncertainty via Prior NetworksDeep Learning JP
 
【勉強会】自己組織化マップ(SOM)
【勉強会】自己組織化マップ(SOM)【勉強会】自己組織化マップ(SOM)
【勉強会】自己組織化マップ(SOM)Jun Harada
 
15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学Ken'ichi Matsui
 
Э.Хэрлэн - Е-МАРКЕТИНГ НЭВТРҮҮЛЭХ НЬ (Талх Чихэр хувьцаат компаний жишээн дээр)
Э.Хэрлэн - Е-МАРКЕТИНГ НЭВТРҮҮЛЭХ НЬ  (Талх Чихэр хувьцаат компаний жишээн дээр)Э.Хэрлэн - Е-МАРКЕТИНГ НЭВТРҮҮЛЭХ НЬ  (Талх Чихэр хувьцаат компаний жишээн дээр)
Э.Хэрлэн - Е-МАРКЕТИНГ НЭВТРҮҮЛЭХ НЬ (Талх Чихэр хувьцаат компаний жишээн дээр)batnasanb
 
Learning-to-Rank meetup Vol. 1
Learning-to-Rank meetup Vol. 1Learning-to-Rank meetup Vol. 1
Learning-to-Rank meetup Vol. 1Koji Sekiguchi
 
【DL輪読会】Poisoning Language Models During Instruction Tuning Instruction Tuning...
【DL輪読会】Poisoning Language Models During Instruction Tuning Instruction Tuning...【DL輪読会】Poisoning Language Models During Instruction Tuning Instruction Tuning...
【DL輪読会】Poisoning Language Models During Instruction Tuning Instruction Tuning...Deep Learning JP
 
[DL輪読会]Causality Inspired Representation Learning for Domain Generalization
[DL輪読会]Causality Inspired Representation Learning for Domain Generalization[DL輪読会]Causality Inspired Representation Learning for Domain Generalization
[DL輪読会]Causality Inspired Representation Learning for Domain GeneralizationDeep Learning JP
 
トピックモデルの評価指標 Perplexity とは何なのか?
トピックモデルの評価指標 Perplexity とは何なのか?トピックモデルの評価指標 Perplexity とは何なのか?
トピックモデルの評価指標 Perplexity とは何なのか?hoxo_m
 
[DL輪読会]representation learning via invariant causal mechanisms
[DL輪読会]representation learning via invariant causal mechanisms[DL輪読会]representation learning via invariant causal mechanisms
[DL輪読会]representation learning via invariant causal mechanismsDeep Learning JP
 
Munkhjin бизнес нь эдийн засгийн ойлголтоор, хүмүүсийг ашиг
Munkhjin бизнес нь эдийн засгийн ойлголтоор, хүмүүсийг ашигMunkhjin бизнес нь эдийн засгийн ойлголтоор, хүмүүсийг ашиг
Munkhjin бизнес нь эдийн засгийн ойлголтоор, хүмүүсийг ашигUsukhuu Galaa
 
「トピックモデルによる統計的潜在意味解析」読書会 2章前半
「トピックモデルによる統計的潜在意味解析」読書会 2章前半「トピックモデルによる統計的潜在意味解析」読書会 2章前半
「トピックモデルによる統計的潜在意味解析」読書会 2章前半koba cky
 
NIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding Model
NIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding ModelNIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding Model
NIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding ModelSeiya Tokui
 
【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)
【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)
【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)Deep Learning JP
 
論文紹介:Parameter-Efficient Transfer Learning for NLP
論文紹介:Parameter-Efficient Transfer Learning for NLP論文紹介:Parameter-Efficient Transfer Learning for NLP
論文紹介:Parameter-Efficient Transfer Learning for NLPToru Tamaki
 
Зочид буудлын өрөө захиалгын шаардлага
Зочид буудлын өрөө захиалгын шаардлагаЗочид буудлын өрөө захиалгын шаардлага
Зочид буудлын өрөө захиалгын шаардлагаMoba Anax
 

What's hot (20)

Принтер гэж юу вэ? laser printer Printer gej yu we
Принтер гэж юу вэ? laser printer Printer gej yu weПринтер гэж юу вэ? laser printer Printer gej yu we
Принтер гэж юу вэ? laser printer Printer gej yu we
 
システム制御とディープラーニング
システム制御とディープラーニングシステム制御とディープラーニング
システム制御とディープラーニング
 
Pp Lect2 1
Pp Lect2 1Pp Lect2 1
Pp Lect2 1
 
【DL輪読会】HyperTree Proof Search for Neural Theorem Proving
【DL輪読会】HyperTree Proof Search for Neural Theorem Proving【DL輪読会】HyperTree Proof Search for Neural Theorem Proving
【DL輪読会】HyperTree Proof Search for Neural Theorem Proving
 
[DL輪読会]Estimating Predictive Uncertainty via Prior Networks
[DL輪読会]Estimating Predictive Uncertainty via Prior Networks[DL輪読会]Estimating Predictive Uncertainty via Prior Networks
[DL輪読会]Estimating Predictive Uncertainty via Prior Networks
 
【勉強会】自己組織化マップ(SOM)
【勉強会】自己組織化マップ(SOM)【勉強会】自己組織化マップ(SOM)
【勉強会】自己組織化マップ(SOM)
 
15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学
 
database 10
database 10database 10
database 10
 
Э.Хэрлэн - Е-МАРКЕТИНГ НЭВТРҮҮЛЭХ НЬ (Талх Чихэр хувьцаат компаний жишээн дээр)
Э.Хэрлэн - Е-МАРКЕТИНГ НЭВТРҮҮЛЭХ НЬ  (Талх Чихэр хувьцаат компаний жишээн дээр)Э.Хэрлэн - Е-МАРКЕТИНГ НЭВТРҮҮЛЭХ НЬ  (Талх Чихэр хувьцаат компаний жишээн дээр)
Э.Хэрлэн - Е-МАРКЕТИНГ НЭВТРҮҮЛЭХ НЬ (Талх Чихэр хувьцаат компаний жишээн дээр)
 
Learning-to-Rank meetup Vol. 1
Learning-to-Rank meetup Vol. 1Learning-to-Rank meetup Vol. 1
Learning-to-Rank meetup Vol. 1
 
【DL輪読会】Poisoning Language Models During Instruction Tuning Instruction Tuning...
【DL輪読会】Poisoning Language Models During Instruction Tuning Instruction Tuning...【DL輪読会】Poisoning Language Models During Instruction Tuning Instruction Tuning...
【DL輪読会】Poisoning Language Models During Instruction Tuning Instruction Tuning...
 
[DL輪読会]Causality Inspired Representation Learning for Domain Generalization
[DL輪読会]Causality Inspired Representation Learning for Domain Generalization[DL輪読会]Causality Inspired Representation Learning for Domain Generalization
[DL輪読会]Causality Inspired Representation Learning for Domain Generalization
 
トピックモデルの評価指標 Perplexity とは何なのか?
トピックモデルの評価指標 Perplexity とは何なのか?トピックモデルの評価指標 Perplexity とは何なのか?
トピックモデルの評価指標 Perplexity とは何なのか?
 
[DL輪読会]representation learning via invariant causal mechanisms
[DL輪読会]representation learning via invariant causal mechanisms[DL輪読会]representation learning via invariant causal mechanisms
[DL輪読会]representation learning via invariant causal mechanisms
 
Munkhjin бизнес нь эдийн засгийн ойлголтоор, хүмүүсийг ашиг
Munkhjin бизнес нь эдийн засгийн ойлголтоор, хүмүүсийг ашигMunkhjin бизнес нь эдийн засгийн ойлголтоор, хүмүүсийг ашиг
Munkhjin бизнес нь эдийн засгийн ойлголтоор, хүмүүсийг ашиг
 
「トピックモデルによる統計的潜在意味解析」読書会 2章前半
「トピックモデルによる統計的潜在意味解析」読書会 2章前半「トピックモデルによる統計的潜在意味解析」読書会 2章前半
「トピックモデルによる統計的潜在意味解析」読書会 2章前半
 
NIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding Model
NIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding ModelNIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding Model
NIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding Model
 
【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)
【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)
【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)
 
論文紹介:Parameter-Efficient Transfer Learning for NLP
論文紹介:Parameter-Efficient Transfer Learning for NLP論文紹介:Parameter-Efficient Transfer Learning for NLP
論文紹介:Parameter-Efficient Transfer Learning for NLP
 
Зочид буудлын өрөө захиалгын шаардлага
Зочид буудлын өрөө захиалгын шаардлагаЗочид буудлын өрөө захиалгын шаардлага
Зочид буудлын өрөө захиалгын шаардлага
 

Similar to Author Topic Model

TopicModels_BleiPaper_Summary.pptx
TopicModels_BleiPaper_Summary.pptxTopicModels_BleiPaper_Summary.pptx
TopicModels_BleiPaper_Summary.pptxKalpit Desai
 
graduate_thesis (1)
graduate_thesis (1)graduate_thesis (1)
graduate_thesis (1)Sihan Chen
 
Latent dirichletallocation presentation
Latent dirichletallocation presentationLatent dirichletallocation presentation
Latent dirichletallocation presentationSoojung Hong
 
Diversified Social Media Retrieval for News Stories
Diversified Social Media Retrieval for News StoriesDiversified Social Media Retrieval for News Stories
Diversified Social Media Retrieval for News StoriesBryan Gummibearehausen
 
Survey of Generative Clustering Models 2008
Survey of Generative Clustering Models 2008Survey of Generative Clustering Models 2008
Survey of Generative Clustering Models 2008Roman Stanchak
 
KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...
KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...
KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...Aaron Li
 
Author paper identification problem final presentation
Author  paper identification problem final presentationAuthor  paper identification problem final presentation
Author paper identification problem final presentationPooja Mishra
 
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015rusbase
 
Graph Techniques for Natural Language Processing
Graph Techniques for Natural Language ProcessingGraph Techniques for Natural Language Processing
Graph Techniques for Natural Language ProcessingSujit Pal
 
Topic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsTopic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsClaudia Wagner
 
A Neural Probabilistic Language Model_v2
A Neural Probabilistic Language Model_v2A Neural Probabilistic Language Model_v2
A Neural Probabilistic Language Model_v2Jisoo Jang
 
A Text Mining Research Based on LDA Topic Modelling
A Text Mining Research Based on LDA Topic ModellingA Text Mining Research Based on LDA Topic Modelling
A Text Mining Research Based on LDA Topic Modellingcsandit
 
A TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLING
A TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLINGA TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLING
A TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLINGcscpconf
 

Similar to Author Topic Model (20)

Topic modelling
Topic modellingTopic modelling
Topic modelling
 
TopicModels_BleiPaper_Summary.pptx
TopicModels_BleiPaper_Summary.pptxTopicModels_BleiPaper_Summary.pptx
TopicModels_BleiPaper_Summary.pptx
 
graduate_thesis (1)
graduate_thesis (1)graduate_thesis (1)
graduate_thesis (1)
 
Latent dirichletallocation presentation
Latent dirichletallocation presentationLatent dirichletallocation presentation
Latent dirichletallocation presentation
 
Topic Models
Topic ModelsTopic Models
Topic Models
 
Diversified Social Media Retrieval for News Stories
Diversified Social Media Retrieval for News StoriesDiversified Social Media Retrieval for News Stories
Diversified Social Media Retrieval for News Stories
 
Topic Modeling
Topic ModelingTopic Modeling
Topic Modeling
 
Survey of Generative Clustering Models 2008
Survey of Generative Clustering Models 2008Survey of Generative Clustering Models 2008
Survey of Generative Clustering Models 2008
 
话题模型2
话题模型2话题模型2
话题模型2
 
KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...
KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...
KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...
 
Author paper identification problem final presentation
Author  paper identification problem final presentationAuthor  paper identification problem final presentation
Author paper identification problem final presentation
 
Lec1
Lec1Lec1
Lec1
 
Spatial LDA
Spatial LDASpatial LDA
Spatial LDA
 
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
 
Graph Techniques for Natural Language Processing
Graph Techniques for Natural Language ProcessingGraph Techniques for Natural Language Processing
Graph Techniques for Natural Language Processing
 
Probabilistic content models,
Probabilistic content models,Probabilistic content models,
Probabilistic content models,
 
Topic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsTopic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic Models
 
A Neural Probabilistic Language Model_v2
A Neural Probabilistic Language Model_v2A Neural Probabilistic Language Model_v2
A Neural Probabilistic Language Model_v2
 
A Text Mining Research Based on LDA Topic Modelling
A Text Mining Research Based on LDA Topic ModellingA Text Mining Research Based on LDA Topic Modelling
A Text Mining Research Based on LDA Topic Modelling
 
A TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLING
A TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLINGA TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLING
A TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLING
 

Recently uploaded

Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?XfilesPro
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 

Recently uploaded (20)

Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 

Author Topic Model

  • 1. The Author-Topic Model Presented by: Darshan Ramakant Bhat Freeze Francis Mohammed Haroon D by M Rosen-Zvi, et al. (UAI 2004)
  • 2. Overview ● Motivation ● Model Formulation ○ Topic Model ( i.e LDA) ○ Author Model ○ Author Topic Model ● Parameter Estimation ○ Gibbs Sampling Algorithms ● Results and Evaluation ● Applications
  • 3. Motivation ● joint author-topic modeling had received little attention. ● author modeling has tended to focus on problem of predicting an author given the document. ● modelling the interests of authors is a fundamental problem raised by a large corpus (eg: NIPS dataset). ● this paper introduced a generative model that simultaneously models the content of documents and the interests of authors.
  • 4. Notations ● Vocabulary set size : V ● Total unique authors : A ● Document d is identified as (wd , ad ) ● Nd : number of words in Document d. ● wd : Vector of Nd words (subset of vocabulary) wd = [w1d w2d …….. wNd d ] ● wid : ith word in document d ● Ad : number of authors of Document d ● ad : Vector of Ad authors (subset of authors) ad = [a1d a2d …….. aAd d ] ● Corpus : Collection D documents = { (w1 , a1 ) , (w2 , a2 ) ……. (wD , aD ) }
  • 5. Plate Notation for Graphical models ● Nodes are random variables ● Edges denote possible dependence ● Observed variables are shaded ● Plates denote replicated structure
  • 6. Dirichlet distribution ● generalization of beta distribution into multiple dimensions ● Domain : X = (x1 , x2 ….. xk ) ○ xi ∈ (0 , 1) ○ k xi = 1 ○ k-dimensional multinomial distributions ● "distribution over multinomial distributions" ● Parameter : = ( 1 , 2 …… k ) ○ i > 0 , ∀i ○ determines how the probability mass is distributed ○ Symmetric : 1 = 2 =…… k ● Each sample from a dirichlet is a multinomial distribution. ○ ↑ : denser samples ○ ↓ : sparse samples Topic 2 (0,1,0) Topic 1 (1,0,0) Topic 3 (0,0,1) . (⅓,⅓,⅓ ) Fig : Domain of Dirichlet (k=3)
  • 7. Fig : Symmetric Dirichlet distributions for k=3 pdf samples
  • 8. Model Formulation Topic Model (LDA) Model topics as distribution over words Model documents as distribution over topics Author Model Model author as distribution over words Author-Topic Model Probabilistic model for both author and topics Model topics as distribution over words Model authors as distribution over topics
  • 9. Topic Model : LDA ● Generative model ● Bag of word ● Mixed membership ● Each word in a document has a topic assignment. ● Each document is associated with a distribution over topics. ● Each topic is associated with a distribution over words. ● α : Dirichlet prior parameter on the per-document topic distributions. ● β : Dirichlet prior parameter on the per-topic word distribution. ● w : observed word in document ● z : is the topic assigned for w Fig : LDA model
  • 10. Author Model ● Simple generative model ● Each author is associated with a distribution over words. ● Each word has a author assignment. ● β : Dirichlet prior parameter on the per-author word distributions. ● w : Observed word ● x : is the author chosen for word w Fig : Author Model
  • 11. Model Formulation Topic Model (LDA) Model topics as distribution over words Model documents as distribution over topics Author Model Model author as distribution over words Author-Topic Model Probabilistic model for both author and topics Model topics as distribution over words Model authors as distribution over topics
  • 12. Author-Topic Model ● Each topic is associated with a distribution over words. ● Each author is associated with a distribution over topics. ● Each word in a document has an author and a topic assignment. ● Topic distribution of document is a mixture of its authors topic distribution ● α : Dirichlet prior parameter on the per-author topic distributions. ● x : author chosen for word w ● z : is the topic assigned for w from author x topic distribution ● w : observed word in document Fig : Author Topic Model plate notation
  • 14. Special Cases of ATM Topic Model (LDA): Each document is written by a unique author ● the document determines the author. ● author assignment becomes trivial. ● author’s topic distribution can be viewed as document’s topic distribution.
  • 15. Special Cases of ATM Author Model: each author writes about a unique topic ● the author determines the topic. ● topic assignment becomes trivial. ● topic’s word distribution can be viewed as author’s word distribution.
  • 16. Variables to be inferred
  • 17. Variables to be inferred
  • 18. Variables to be inferred
  • 19. Collapsed Gibbs Sampling - LDA ● The assignment variables contain information about and . ● Use this information to directly update the Topic assignment variable with the next sample. This is Collapsed Gibbs Sampling.
  • 20. Collapsed Gibbs Sampling - Author Model ● Need to infer Author - word distribution A ● WIth Collapsing GIbbs sampling, directly infer author word assignments
  • 21. Author Topic Model - Collapsed Gibbs Sampling ● Need to infer T and ϴA ● Instead through collapsed Gibbs Sampling directly infer Topic and Author assignments ● By finding the author - topic joint distribution conditioned on all other variables
  • 22. Example AUTHOR 1 2 2 1 1 TOPIC 3 2 1 3 1 WORD epilepsy dynamic bayesian EEG model TOPIC-1 TOPIC-2 TOPIC-3 epilepsy 1 0 35 dynamic 18 20 1 bayesian 42 15 0 EEG 0 5 20 model 10 8 1 ... TOPIC-1 TOPIC-2 TOPIC-3 AUTHOR-1 20 14 2 AUTHOR-2 20 21 5 AUTHOR-3 11 8 15 AUTHOR-4 5 15 14 ...
  • 23. Example AUTHOR 1 2 ? 1 1 TOPIC 3 2 ? 3 1 WORD epilepsy dynamic bayesian EEG model TOPIC-1 TOPIC-2 TOPIC-3 epilepsy 1 0 35 dynamic 18 20 1 bayesian 42(41) 15 0 EEG 0 5 20 model 10 8 1 ... TOPIC-1 TOPIC-2 TOPIC-3 AUTHOR-1 20 14 2 AUTHOR-2 20(19) 21 5 AUTHOR-3 11 8 15 AUTHOR-4 5 15 14 ...
  • 24. Author-Topic How much topic ‘j’ likes the word ‘bayesian’ How much author ‘k’ likes the topic A1T1 41/97 20/36 A2T1 41/97 19/45 A1T2 15/105 14/36 A2T2 ... ... A2T3 ... ... A2T3 ... ...
  • 25. ● To draw new Author-Topic assignment (equivalently) ○ Roll K X ad sided die with these probabilities ○ Assign the Author-Topic tuple to the word AUTHOR 1 2 1 1 1 TOPIC 3 2 3 3 1 WORD epilepsy dynamic bayesian EEG model
  • 26. Example (cont..) ● Update the probability ( T and A ) tables with new values ● This implies increasing the popularity of topic in author and word in topic
  • 27. Sample Output (CORA dataset)Topicprobabilities Topics shown with 10 most probable words Author :
  • 28. Experimental Results ● Experiment is done on two types of dataset, papers are chosen from NIPS and CiteSeer database ● Extremely common words are removed from the corpus, leading V=13,649 unique words in NIPS and V=30,799 in CiteSeer, 2037 authors in NIPS and 85,465 in CiteSeer ● NIPS contains many documents which are closely related to learning theory and machine learning ● CiteSeer contains variety of topics from User Interface to Solar astrophysics
  • 29. Examples of topic author distribution
  • 31. Evaluating the predictive power ● Predictive power of the model is measured quantitatively using perplexity. ● Perplexity is ability to predict the words on a new unseen documents ● Perplexity of set of d words in a document (wd ,ad ) is ● When p(wd |ad ) is high perplexity ≈ 1, otherwise it will be a high positive quantity.
  • 32. Continued…. ● Approximate equation to calculate the joint probability
  • 34. Applications ● It can be used in automatic reviewer recommendation for a paper review. ● Given an abstract of a paper and a list of the authors plus their known past collaborators, generate a list of other highly likely authors for this abstract who might serve as good reviewers.
  • 35. References ● Rosen-Zvi, Michal, et al. "The author-topic model for authors and documents." Proceedings of the 20th conference on Uncertainty in artificial intelligence. AUAI Press, 2004. ● D. M. Blei, A. Y. Ng, and M. I. Jordan (2003). “Latent Dirichlet Allocation”. Journal of Machine Learning Research, 3 : 993–1022. ● T. L. Griffiths, and M. Steyvers (2004). “Finding scientific topics”. Proceedings of the National Academy of Sciences, 101 (suppl. 1), 5228–5235. ● https://github.com/arongdari/python-topic-model ● https://www.coursera.org/learn/ml-clustering-and-retrieval/home/welcome