LECTURE 3
DESIGN PROBLEM OF FLAT PLATE SLAB
By
MD. MAHBUB-UL-ALAM
ASST. PROF, DEPT. OF CIVIL ENGG.
Stamford University Bangladesh
8/8/2015 2
Design Example 01
A flat plate floor system with
panels 24 by 20 ft is supported
on 20 in. square columns.
Design the interior panel. Use
f’c = 4 ksi and fy = 60 ksi and
floor finish 24 psf and LL=80
psf.
8/8/2015 M.Alam,Asst. Prof, CEN, SUB 3
Step 1: Calculation of Minimum Thickness ‘h’
Design Example 01
Slab thickness of an interior panel for fy = 60 ksi and no edge beams,
Effective depths, ds = 9.0-1.0 = 8.0 inch
dl = 9.0-1.5 = 7.5 inch
''0.9''12.8
33
2012x24
33
l
h n



4
Design Example 01
Step-2: Calculation of Column and Middle Strips
Use the smaller of l1 or l2, so l2 = 20 ft
ft5
4
ft20
4
2

l
l
The column strip width,
b = 2( 5 ft) = 10 ft = 120 in
The middle strips in both
directions are
   
   in168ft14ft52ft24
in120ft10ft52ft20
s
l


b
b
8/8/2015 M.Alam,Asst. Prof, CEN, SUB 5
Design Example 01
Step-3: Calculation of Total Static Moment ‘M0’
  ksf292.0psf29280x6.1245.1122.1.wtTotal
psf5.112150x
12
9
slabofweightSelf


Moment Mo for the long direction.
       ft-k0.364
8
ft333.22ft20k/ft292.0
8
M
ft333.22
in12
ft1
2
in20
2ft24
222
n12
ol
n



















lwl
l
24’ 24’
20’
20’
20’
l2ln
8/8/2015 6
Design Example 01
Step-3: Calculation of Total Static Moment ‘M0’
Moment Mo for the short direction
       ft-k3.294
8
ft333.18ft24k/ft292.0
8
M
ft333.18
in12
ft1
2
in20
2ft20
222
n12
ol
n



















lwl
l
24’ 24’
20’
20’
24’
l2
ln
7
Design Example 01
Step-4: Longitudinal Distribution of ‘M0’
For an Interior panel
For interior span
0.35 M0
Ln/2 Ln/2
0.65 M0 0.65 M0
at least
M0
+
- -
 
  ft-k4.127ft-k36435.0
ft-k6.236ft-k64365.0

-ve Moment at both supports
+ve Moment at mid span
Long Direction
-ve Moment at both supports
+ve Moment at mid span
 
  ft-k103ft-k94.3235.0
ft-k3.191ft-k94.3265.0


Short Direction
8/8/2015 M.Alam,Asst. Prof, CEN, SUB 8
Design Example 01
Step-5: Transverse Distribution of ‘M0’
Long Direction
These distributions depend on the ratio of length l2/l1 and α1 l2/l1
0
l
l
8333.0
24
20
l
l
0
1
2
1
1
2
1





8/8/2015 M.Alam,Asst. Prof, CEN, SUB 9
Design Example 01
Step-5: Transverse Distribution of ‘M0’
Long Direction
Distribution % of –ve and +ve moments into column strips are as below:
Factor = 0.75 Factor = 0.60
8/8/2015 M.Alam,Asst. Prof, CEN, SUB 10
Column Strip
Middle Strip
Design Example 01
Step-5: Transverse Distribution of ‘M0’
Long Direction
ftk44.764.127x60.0momentve
ftk45.1776.236x75.0momentve


ftk96.504.127x40.0momentve
ftk15.596.236x25.0momentve


8/8/2015 M.Alam,Asst. Prof, CEN, SUB 11
Design Example 01
Step-5: Transverse Distribution of ‘M0’
Short Direction
These distributions also depend on the ratio of length l2/l1 and α1 l2/l1
0
l
l
222.1
20
24
l
l
0
1
2
1
1
2
1





8/8/2015 M.Alam,Asst. Prof, CEN, SUB 12
Design Example 01
Step-5: Transverse Distribution of ‘M0’
Short Direction
Distribution % of –ve and +ve moments into column strips are as below:
Factor = 0.75 Factor = 0.60
8/8/2015 M.Alam,Asst. Prof, CEN, SUB 13
Column Strip
Middle Strip
Design Example 01
Step-5: Transverse Distribution of ‘M0’
Short Direction
ftk80.610.103x60.0momentve
ftk48.1433.191x75.0momentve


ftk20.410.103x40.0momentve
ftk83.473.191x25.0momentve


8/8/2015 M.Alam,Asst. Prof, CEN, SUB 14
Design Example 01
Step-6: Check for ‘d’ and ‘Vu’
ok''0.8''39.3d
4
60x0214.0
59.01xd168x60x0214.0x90.012x48.143
''0.8d,''168b,ftk6.48.143moment.maxdirectionshortIn
ok''5.7''35.4d
4
60x0214.0
59.01xd120x60x0214.0x90.012x45.177
MM,Now
0214.0,Let
''5.7d,''120b,ftk45.177moment.maxdirectionlongIn
2
p
2
nu
max
p



















‘d’ check:
8/8/2015 15
Design Example 01
Step-6: Check for ‘d’ and ‘Vu’
‘Vu’ check:
   
   
k72.145lb76.145717
8x96x40004x75.0dbf4V
,tionseccriticalatslabofstrengthshear
0.22.1
20
24
Since
''9675.320275.3202
dc2dc2b,perimeterShear
.columntheoffacesallfrom''75.3
2
d
of
cetandisatoccursshearwaytwoCritical
s0
'
cc
c
210
l









8/8/2015 16
Design Example 01
Step-6: Check for ‘d’ and ‘Vu’
.reqdisorcementinfreshearno,VVSince
k63.138
12x12
5.27x5.27
24x20292.0V
isshearfactoredthe,floor
loadedtheofareatributaryonBased
cu
u








‘Vu’ check:
Design Example 01
Step-7: Calculation of ‘As’
Direction
1
Location
2
Mu,
ft-kips
3
width
b, in
4
d, in
5
Minm
As
in2
6
Reqd.
As in2
7
No. of #4 bars
8
Column
Strip
(slab)
-ve
+ve
177.45
76.44
120
120
7.5
7.5
1.95
1.95
5.92
2.55
30 @ 4.0’’c/c
13 @ 10.0’’ c/c
Middle
strip
-ve
+ve
59.15
50.96
120
120
7.5
7.5
1.95
1.95
1.97
1.70
10 @ 13.0’’ c/c
10 @ 13.0’’ c/c
Column
Strip
(slab)
-ve
+ve
143.48
61.80
120
120
8.0
8.0
1.95
1.95
4.48
1.93
23 @ 5.0’’c/c
13 @ 10.0’’c/c
Middle
strip
-ve
+ve
47.83
41.20
168
168
8.0
8.0
2.72
2.72
1.50
1.29
14 @ 12.5’’ c/c
14 @ 12.5’’ c/c
LongdirectionShortdirection
8/8/2015 18
Design Example 01
Step-7: Calculation of ‘As’
30 #4 @ 4’’ c/c
24’’
20’’
Middle
strip –ve
bars
Top bars in column & middle strips in
both directions
Bottom bars in column & middle strips
in both directions
Column strips
+ve bars
Middle strip
+ve bars23 #4 @ 5’’ c/c
10 #4 @
13’’ c/c
14 #4 @
12.5’’ c/c
8/8/2015 19
Design Example 01
Step-7: Calculation of ‘As’
b
s
u
'
cy
u
s
s
A
A
barselectedoneofArea
areassteelrequiredTotal
barstotalof.no'n'where
inch18or'h2'
1n
stripofWidth
s,Spacing
trequiremensteelimummin)2
.lessiswhicheverinch18or'h2'spacingimummax)1
gconsiderincalculatedisbarsof.No
:8#Column
inchin'd'andkftinMomentMwhere
ksi4f&ksi60fwhenonly,
d4
M
A,steelrequiredTotal
:7#Column
stripmiddleorcolumnofwidthbwhere,bh0018.0AMinimum
:6#Column








Lec 3 design problem of flat plate slab

  • 1.
    LECTURE 3 DESIGN PROBLEMOF FLAT PLATE SLAB By MD. MAHBUB-UL-ALAM ASST. PROF, DEPT. OF CIVIL ENGG. Stamford University Bangladesh
  • 2.
    8/8/2015 2 Design Example01 A flat plate floor system with panels 24 by 20 ft is supported on 20 in. square columns. Design the interior panel. Use f’c = 4 ksi and fy = 60 ksi and floor finish 24 psf and LL=80 psf.
  • 3.
    8/8/2015 M.Alam,Asst. Prof,CEN, SUB 3 Step 1: Calculation of Minimum Thickness ‘h’ Design Example 01 Slab thickness of an interior panel for fy = 60 ksi and no edge beams, Effective depths, ds = 9.0-1.0 = 8.0 inch dl = 9.0-1.5 = 7.5 inch ''0.9''12.8 33 2012x24 33 l h n   
  • 4.
    4 Design Example 01 Step-2:Calculation of Column and Middle Strips Use the smaller of l1 or l2, so l2 = 20 ft ft5 4 ft20 4 2  l l The column strip width, b = 2( 5 ft) = 10 ft = 120 in The middle strips in both directions are        in168ft14ft52ft24 in120ft10ft52ft20 s l   b b
  • 5.
    8/8/2015 M.Alam,Asst. Prof,CEN, SUB 5 Design Example 01 Step-3: Calculation of Total Static Moment ‘M0’   ksf292.0psf29280x6.1245.1122.1.wtTotal psf5.112150x 12 9 slabofweightSelf   Moment Mo for the long direction.        ft-k0.364 8 ft333.22ft20k/ft292.0 8 M ft333.22 in12 ft1 2 in20 2ft24 222 n12 ol n                    lwl l 24’ 24’ 20’ 20’ 20’ l2ln
  • 6.
    8/8/2015 6 Design Example01 Step-3: Calculation of Total Static Moment ‘M0’ Moment Mo for the short direction        ft-k3.294 8 ft333.18ft24k/ft292.0 8 M ft333.18 in12 ft1 2 in20 2ft20 222 n12 ol n                    lwl l 24’ 24’ 20’ 20’ 24’ l2 ln
  • 7.
    7 Design Example 01 Step-4:Longitudinal Distribution of ‘M0’ For an Interior panel For interior span 0.35 M0 Ln/2 Ln/2 0.65 M0 0.65 M0 at least M0 + - -     ft-k4.127ft-k36435.0 ft-k6.236ft-k64365.0  -ve Moment at both supports +ve Moment at mid span Long Direction -ve Moment at both supports +ve Moment at mid span     ft-k103ft-k94.3235.0 ft-k3.191ft-k94.3265.0   Short Direction
  • 8.
    8/8/2015 M.Alam,Asst. Prof,CEN, SUB 8 Design Example 01 Step-5: Transverse Distribution of ‘M0’ Long Direction These distributions depend on the ratio of length l2/l1 and α1 l2/l1 0 l l 8333.0 24 20 l l 0 1 2 1 1 2 1     
  • 9.
    8/8/2015 M.Alam,Asst. Prof,CEN, SUB 9 Design Example 01 Step-5: Transverse Distribution of ‘M0’ Long Direction Distribution % of –ve and +ve moments into column strips are as below: Factor = 0.75 Factor = 0.60
  • 10.
    8/8/2015 M.Alam,Asst. Prof,CEN, SUB 10 Column Strip Middle Strip Design Example 01 Step-5: Transverse Distribution of ‘M0’ Long Direction ftk44.764.127x60.0momentve ftk45.1776.236x75.0momentve   ftk96.504.127x40.0momentve ftk15.596.236x25.0momentve  
  • 11.
    8/8/2015 M.Alam,Asst. Prof,CEN, SUB 11 Design Example 01 Step-5: Transverse Distribution of ‘M0’ Short Direction These distributions also depend on the ratio of length l2/l1 and α1 l2/l1 0 l l 222.1 20 24 l l 0 1 2 1 1 2 1     
  • 12.
    8/8/2015 M.Alam,Asst. Prof,CEN, SUB 12 Design Example 01 Step-5: Transverse Distribution of ‘M0’ Short Direction Distribution % of –ve and +ve moments into column strips are as below: Factor = 0.75 Factor = 0.60
  • 13.
    8/8/2015 M.Alam,Asst. Prof,CEN, SUB 13 Column Strip Middle Strip Design Example 01 Step-5: Transverse Distribution of ‘M0’ Short Direction ftk80.610.103x60.0momentve ftk48.1433.191x75.0momentve   ftk20.410.103x40.0momentve ftk83.473.191x25.0momentve  
  • 14.
    8/8/2015 M.Alam,Asst. Prof,CEN, SUB 14 Design Example 01 Step-6: Check for ‘d’ and ‘Vu’ ok''0.8''39.3d 4 60x0214.0 59.01xd168x60x0214.0x90.012x48.143 ''0.8d,''168b,ftk6.48.143moment.maxdirectionshortIn ok''5.7''35.4d 4 60x0214.0 59.01xd120x60x0214.0x90.012x45.177 MM,Now 0214.0,Let ''5.7d,''120b,ftk45.177moment.maxdirectionlongIn 2 p 2 nu max p                    ‘d’ check:
  • 15.
    8/8/2015 15 Design Example01 Step-6: Check for ‘d’ and ‘Vu’ ‘Vu’ check:         k72.145lb76.145717 8x96x40004x75.0dbf4V ,tionseccriticalatslabofstrengthshear 0.22.1 20 24 Since ''9675.320275.3202 dc2dc2b,perimeterShear .columntheoffacesallfrom''75.3 2 d of cetandisatoccursshearwaytwoCritical s0 ' cc c 210 l         
  • 16.
    8/8/2015 16 Design Example01 Step-6: Check for ‘d’ and ‘Vu’ .reqdisorcementinfreshearno,VVSince k63.138 12x12 5.27x5.27 24x20292.0V isshearfactoredthe,floor loadedtheofareatributaryonBased cu u         ‘Vu’ check:
  • 17.
    Design Example 01 Step-7:Calculation of ‘As’ Direction 1 Location 2 Mu, ft-kips 3 width b, in 4 d, in 5 Minm As in2 6 Reqd. As in2 7 No. of #4 bars 8 Column Strip (slab) -ve +ve 177.45 76.44 120 120 7.5 7.5 1.95 1.95 5.92 2.55 30 @ 4.0’’c/c 13 @ 10.0’’ c/c Middle strip -ve +ve 59.15 50.96 120 120 7.5 7.5 1.95 1.95 1.97 1.70 10 @ 13.0’’ c/c 10 @ 13.0’’ c/c Column Strip (slab) -ve +ve 143.48 61.80 120 120 8.0 8.0 1.95 1.95 4.48 1.93 23 @ 5.0’’c/c 13 @ 10.0’’c/c Middle strip -ve +ve 47.83 41.20 168 168 8.0 8.0 2.72 2.72 1.50 1.29 14 @ 12.5’’ c/c 14 @ 12.5’’ c/c LongdirectionShortdirection
  • 18.
    8/8/2015 18 Design Example01 Step-7: Calculation of ‘As’ 30 #4 @ 4’’ c/c 24’’ 20’’ Middle strip –ve bars Top bars in column & middle strips in both directions Bottom bars in column & middle strips in both directions Column strips +ve bars Middle strip +ve bars23 #4 @ 5’’ c/c 10 #4 @ 13’’ c/c 14 #4 @ 12.5’’ c/c
  • 19.
    8/8/2015 19 Design Example01 Step-7: Calculation of ‘As’ b s u ' cy u s s A A barselectedoneofArea areassteelrequiredTotal barstotalof.no'n'where inch18or'h2' 1n stripofWidth s,Spacing trequiremensteelimummin)2 .lessiswhicheverinch18or'h2'spacingimummax)1 gconsiderincalculatedisbarsof.No :8#Column inchin'd'andkftinMomentMwhere ksi4f&ksi60fwhenonly, d4 M A,steelrequiredTotal :7#Column stripmiddleorcolumnofwidthbwhere,bh0018.0AMinimum :6#Column       