SlideShare a Scribd company logo
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Brian M. Walsh
Devin Pugh-Thomas
Hyung Lee
Norman P. Barnes (SSAI)
NASA Langley Research Center
Hampton, VA 23681 USA
Lanthanide-Doped Mid-Infrared Materials
Spectroscopy and Laser Prospects
International Conference on Luminescence
Wroclaw, Poland, July 13 – 18, 2014
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Why Study Mid Infrared Ln3+Lasers?
• Innovation -  Mid Infrared lasers utilizing Lanthanide
series ions (Ln3+) have not been thoroughly studied.
•  Decadal Survey – Mid Infrared lasers needed for DIAL
systems simply are not available at present.
• Enabling – Invent specialized lasers that industry is
unwilling to invest in or universities not likely to pursue.
• Atmosphere – Some constituents in atmospheric chemistry
only available for study at Mid IR wavelengths.
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
MIR Molecular Absorption
Wavelength (µm)
Because of the molecular
absorption and the eye
safety requirements, the
optimum spectral range is
in the 2 to 10 µm region.
3 – 5 µm : Atmospheric sensing
7– 10 µm : Defense & Security
NIR MIR NIR MIR
•  Lockheed Martin
Space Act Agreement - Interest in
Mid Infrared Lasers for 3 – 5 µm
& 9 – 12 µm applications (??)
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Atmospheric Molecular Absorption
Thermal IR (Mid IR to Far IR) Fingerprint Region
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Trace gasses of interest - GACM
Methane Carbon Monoxide Ozone
Nitrogen Dioxide Sulphur Dioxide Formaldehyde
GACM – Global Atmospheric Composition Mission
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Methane Carbon Monoxide Ozone
Nitrogen Dioxide Sulphur Dioxide Formaldehyde
GACM – Global Atmospheric Composition Mission
Mid Infrared Wavelengths - GACM
3.15 – 3.57 µm
7.50 – 8.30 µm
2.31 – 2.41 µm
4.50 – 4.87 µm
4.70 – 4.79 µm
9.37 – 9.90 µm
3.40 – 3.84 µm
4.45 – 4.70 µm
7.50 – 8.10 µm
7.13 – 7.75 µm 3.20 – 3.40 µm
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Options for Mid Infrared Lasers
Mid-Infrared Laser Applications in Spectroscopy
F.K. Tittel, D. Richter, A. Fried, Solid-State Mid-Infrared Laser Sources (Springer-Verlag 2003)
Reference:
①  Semiconductor Lasers: Lead-Salt, Quantum Cascade and Antimonide are possibilities, but
require cryogenic cooling and have highly divergent beams.
②  Solid State lasers: Cr2+ II-VI lasers are low gain materials, resulting in low power/energy.
③  Parametric frequency conversion such as OPO & DFG suffer from a variety of drawbacks:
phase matching, design complexity, alignment sensitivity, and laser induced damage (LID).
④  Laser pumped Ln3+ lasers:
High power or energy in a narrow
spectral bandwidth or diffraction
limited beam is often a reason to
select them over other technologies.
A wide variety of pulse widths and
pulse repetition frequencies (from
cw to 1GHz) can be achieved.
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Advantages of Ln3+ Solid State Lasers
• All solid state laser-pumped lasers
- Capable of high power or high energy.
- Reliable, low voltage, compact, robust and versatile.
- No phase matching required, pump and laser are temporally separate.
- Probability of laser induced damage can be mitigated
• Tunable options
- 2 to 10 micrometers (many transitions in Ln3+:hosts)
- Can exhibit narrow spectral bandwidth.
- Selection more reliable (only 1 wavelength is resonant).
• Reasonable efficiency
- Ln3+ series ions in low phonon hosts (limit nonradiative processes)
- Can store energy over relatively long time intervals (Q-switching)
- Good laser beam quality even with pump laser quality over 2xDL
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Approach
• Quantum Mechanics
- Quantum Mechanics describes the physics of laser materials.
- Computer models predict new materials to meet objectives.
• Spectroscopy of materials
- Validates the physics of potential laser materials.
- Provides parameters for understanding the laser.
• Challenges
- Nonradiative transitions quench luminescence.
- Low phonon materials needed (fluorides, chlorides, bromides).
• Outlook
- Many Transitions possible (Dieke Diagram)
- MIR transitions not well studied (Data is needed)
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Materials Modeling
• Cost effective design tool
– Uses Quantum Mechanical model
– Models physics from lattice structure
• Predicts new materials
– Tm:Ho:LuLF, LuAG (Winds, CO2)
– Nd:YGAG, YSAG (Water Vapor)
• Predicts essential parameters
– Energy levels (laser wavelengths)
– Lifetimes (pump storage efficiency)
– Energy transfer rates (laser efficiency)
{Dodecahedral}
(Tetrahedral)[Octahedral]
Oxygen
Rare Earth
Al, Ga, Fe
{A3+}3[B3+]2 (C3+)3O12
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Nonradiative Processes (Phonons)
photons phonons
A. Shalav et al, Solar Energy Materials & Solar Cells 91 (2007) 829–842
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Energy levels of Ln3+ ions (Dieke)
Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry
M.D. Chambers, D.R. Clarke, Annual Review of Materials Research, Vol. 39: 325-359 (August 2009)
Reference:
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
NIR Lanthanide Lasers
0
5000
10000
15000
20000
Nd Ho Er Tm Yb
4I9/2
4I11/2
4I13/2
4I15/2
4F3/2
1.32
1.06
0.94
5I8
5I7
5I6
5I5
5I4
5F5
5F4
5S2
4F5/2
4F7/2
4F9/2
2H11/2
4G5/2
4G7/2
4I15/2
4I13/2
4I11/2
4I9/2
4F9/2
4S3/2
4F7/2
4F5/2
3H6
3F4
3H5
3H4
3F2
3F3
3.0
2.1
1.9
1.47
1.63
2.3
2.94
1.03
1.73
1.23
0.86
Energy(cm-1)
diode laser
pump bands
Rare Earth: Y, Sc, (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)
Lanthanides
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
4I9/2
MIR Lanthanide Lasers I
4I11/2
4I13/2
4I15/2
NdPr Sm Eu Dy
3H4
3H5
3H6
6F1/2+3/2+6H15/2
3F3
3F4
6H5/2
5F5/2
6H7/2
6H9/2
6H11/2
6H13/2 7F5
7F3
7F2
7F1
7F0
7F4
6H15/2
6H9/2+6F11/2
6H11/2
6H13/2
4.2 – 6.2
4.4 – 5.9
2.2 – 2.8
2.3 – 2.5
3.7 – 5.6
4.7 – 12.8
2.9 – 4.6
5.9 – 10.6
4.4 – 13.3
3.9 – 5.8
2.8 – 3.6
4.0 – 4.8
3F2
6.3 – 8.5
2.6 – 3.2
3.4 – 6.0
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
MIR Lanthanide Lasers II
Tb Ho Er Tm
4I15/2
4I9/2
4I11/2
4I13/2
3H6
5I8
3H4
3H5
3F4
5I4
5I5
5I6
5I7
7F6
7F2
7F3
7F4
7F5
7F0,1
7.4 – 14.9
3.9 – 5.6
2.1 – 2.5
3.6 – 4.2
2.8 – 3.5
4.0 – 5.3
2.6 – 3.0
2.2 – 2.5
3.4 – 4.3
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
MIR Laser Systems
 
Crystal Pump Laser Storage level Upper level Lower level Wavelength (µm) Upper gap (cm-1) Lower gap (cm-1)
Pr:LaF3 Ho:YAG 3H6
3H6
3H5 5.6 - 3.8 1789 1976
Pr:LaF3 Ho:YAG 3H6
3H5
3H4 6.0 - 3.4 1243 1678
Nd:LaF3 Er:YAG 4I15/2
4I15/2
4I13/2 6.2 - 4.2 1608 1695
Nd:LaF3 Cr:ZnSe 4I13/2
4I13/2
4I11/2 5.9 - 4.5 1695 1478 
Sm:LaF3 Er:YAG 6H15/2
6H15/2
6H13/2 8.4 - 6.3 1186 1181
Sm:LaF3 Er:YAG 6H15/2
6H15/2
6H11/2 4.0 - 3.3 1186 1047
Sm:LaF3 Ho:YAG 6H11/2
6H11/2
6H9/2 9.6 - 6.3 1186 930 
Eu:LaF3 Tm:gls 7F6
7F6
7F2 13.0 - 6.0 750 539
Eu:LaF3 Tm:gls 7F6
7F6
7F4 5.8 - 3.9 750 635
Eu:LaF3 Tm:gls 7F6
7F6
7F3 3.6 - 2.7 750 474 
Tb:LaF3 Ho:YAG 7F3
7F3
7F4 13.0 - 6.0 1645 413
Tb:LaF3 Ho:YAG 7F3
7F3
7F4 3.9 - 5.6 1645 413 
Dy:LaF3 Er:YLF 6H9/2
4I9/2
7F11/2 4.9 - 4.1 2024 2024  
Ho:LaF3 Tm:gls 5I5
4I5
5I6 4.0 - 3.8 2369 3278
Ho:LaF3 Nd:YAG 5I6
5I6
5I7 2.8 - 3.4 3278 2697
Er:LaF3 Cr:alex 4I9/2
4I9/2
4I11/2 4.9 - 4.1 2024 3697
Er:LaF3 Er:YAG 4I9/2
4I9/2
4I13/2 3.0 - 2.6 2024 6230
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Mid-IR Spectroscopy Laboratory
A
B C
D
E
F
G
H
A Laser
B Sample Stage
C Collection Optics
D Spectrometer
E Detector
F Lock-in Amplifier
G Power Supply
H Computer
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Dysprosium:BaY2F8
6H13/2 Lifetimes
Johnson & Guggenheim:
1.3 ms (300K)
7.0 ms (77K)
Christensen & Jenssen:
1.28 ms (300K)
8.0 ms (77K)
This work:
1.38 ms (300K)
35 ms (Judd-Ofelt)
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Holmium:BaY2F8
5I6 Lifetimes
Johnson & Guggenheim:
5.0 ms (77K)
Christensen & Jenssen:
5.4 ms (300K)
This work:
5.78 ms (300K)
4.8 ms (Judd-Ofelt)
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Praseodymium: KPb2Br5 Emission
3H6 Lifetimes
This work:
15 ms (300K)
20 ms (Judd-Ofelt)
3H5 Lifetimes
This work:
37 ms (300K)
40 ms (Judd-Ofelt)
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Praseodymium: KPb2Br5 Decay
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Pr: LaF3 , KYF4 , BaY2F8 , YLiF4
Phonon Energy:
LaF3 (300 cm-1)
KYF4 (350 cm-1)
BaY2F8 (420 cm-1)
YLiF4 (560 cm-1)
E3
E2
E1
pump laser
(a) 3-level
E4
E3
E2
E1
pump laser
(b) 4-level
E4
E3
E2
E1
pump laser
(c) Quasi 4-level
E4
E3
E2
E1
pump
laser
(d) Terminated 4-level
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Types of Solid State Lasers
N1 = N2
Cr:Al2O3
N2 = 0
Nd:YAG
N2 > 0
Ho:YLF
E32 < E21
Dy:YLF
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Optical Schematic for Pr MIR Laser
• Simple configurations
– Diode Pumping (1.9 µm)
– EDFA Pumping (1.55 µm)
– Efficient resonator designs
• Selection of materials
– Fluorides: BaY2F8, LaF3, KYF4
– Chlorides: KPb2Cl5
– Bromides: KPb2Br5
• Laser pump parameters
– Pump power ~ 10 - 30W
– Pulse duration ~ 1 - 5 ms
– Pump wavelengths ~1.5 µm & 1.9 µm
Z-type resonator with diode laser pumping
Q-switch
HR M
Laser Crystal DichroicDichroic
Output M
Ring Resonator for EDFA pumping
1.55 µm
EDFA
Input
Mirror
Output
Mirror
HR Mirror
National Aeronautics and
Space Administration
National Aeronautics and
Space Administration
Laser Gain in Pr:LaF3
ICL 2014 – Wroclaw, Poland
• Calculation of gain in Pr:LaF3 based on MIR absorption
– Curve fit absorption coefficient versus wavelength using a series of Lorentzian line shape functions.
– Correlate the measured transmission with the results of the curve fit to identify participating levels.
– Calculate thermal occupation of upper and lower levels for each of the participating levels.
– Calculate energy density needed to achieve optical transparency for each pair of energy levels.
– Calculate gain coefficients for all pairs of levels and select the pair of levels for best performance.
– Use the best pair of energy levels and determine the wavelength and predicted performance.
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
• MIR applications
- Decadal survey (MIR lasers for DIAL not available)
- GACM (CH4, CO, O3, NO2, SO2, CH2O)
• Challenges
- Nonradiative decay processes influence laser transitions
- Low phonon materials needed (e.g., LaF3, BaY2F8, KPb2Br5)
• Spectroscopy of materials
- Spectroscopic properties of Dy:BaY2F8, Ho:BaY2F8, Pr-doped materials
- Consider pumping lasers that match spectroscopy (1 – 2 µm)
• Laser design
- Method for calculation of laser gain in Pr:LaF3
- Optical schematic of Pr MIR lasers designed
Summary
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
• Materials for MIR lasers
- Hosts: BaY2F8, KYF4, LaF3, KPb2Br5, KPb2Cl5
- Ions: Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm
- Apply QMM efforts to facilitate development
• Spectroscopic measurements
- Absorption for identification of pump wavelengths
- Emission for identification of laser wavelengths
- Temporal decay for determination of laser dynamics
• Laser engineering
- Consider pump laser sources (Ln3+ SSL, diode)
- Consider optics for laser resonator specific for MIR
- Construct resonator based on design for MIR lasers
Future Directions
National Aeronautics and
Space Administration
ICL 2014 – Wroclaw, Poland
Acknowledgements
• Dr. Uwe Hommerich (Hampton University, Hampton, VA)
- Provided Pr:KPb2Br5 sample
- Helpful discussions about low phonon mid infrared materials.
• Dr. Alessandra Toncelli (Universita di Pisa, Pisa, Italy)
- Provided Pr:KYF4 sample
• Dr. Akira Yoshikawa (C & A Corporation, Sendai, Japan)
- Vendor for Pr:LaF3 sample
• Dr. Arlete Cassanho, Dr. Hans Jensen (AC Materials, Tarpon Springs, FL)
- Vendor for Pr:BaY2F8 sample
National Aeronautics and
Space Administration
2011 LRSB Peer Review
Brian M. Walsh
Laser Remote Sensing Branch
Email: brian.m.walsh@nasa.gov
Phone: 757 864-7112
NASA Langley
Research Center

More Related Content

What's hot

Electronic spectra problems
Electronic spectra problemsElectronic spectra problems
Electronic spectra problems
SANTHANAM V
 
Surfaces of Metal Oxides.
Surfaces of Metal Oxides.Surfaces of Metal Oxides.
Judd-Ofelt Theory: Principles and Practices
Judd-Ofelt Theory: Principles and PracticesJudd-Ofelt Theory: Principles and Practices
Judd-Ofelt Theory: Principles and Practices
Brian Walsh
 
Thermally Activated Delayed Fluorescence (TADF)
Thermally Activated Delayed Fluorescence (TADF)Thermally Activated Delayed Fluorescence (TADF)
Thermally Activated Delayed Fluorescence (TADF)
BISWAJIT KUMAR BARMAN
 
Jahn Teller effect LO_0.ppt
Jahn Teller effect LO_0.pptJahn Teller effect LO_0.ppt
Jahn Teller effect LO_0.ppt
AsifAli165576
 
Vibrational spectroscopy.pptx
Vibrational spectroscopy.pptxVibrational spectroscopy.pptx
Vibrational spectroscopy.pptx
PeterMuhwezi2
 
SPINELS,INVERSE SPINELS AND PEROVSKITES
SPINELS,INVERSE SPINELS AND PEROVSKITESSPINELS,INVERSE SPINELS AND PEROVSKITES
SPINELS,INVERSE SPINELS AND PEROVSKITES
Shobana Subramaniam
 
Molecular Orbital Theory For Diatomic Species
Molecular Orbital Theory For Diatomic Species  Molecular Orbital Theory For Diatomic Species
Molecular Orbital Theory For Diatomic Species
Yogesh Mhadgut
 
Crystal defects
Crystal defectsCrystal defects
Crystal defects
Rawat DA Greatt
 
Pauli exclusion principle
Pauli exclusion principlePauli exclusion principle
Pauli exclusion principle
MuhammadImran1151
 
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Sajjad Ullah
 
Structure types of crystals
Structure types of crystalsStructure types of crystals
Structure types of crystals
Picasa_10
 
Multiferroic
MultiferroicMultiferroic
Multiferroic
.Jayanta Saha
 
Inorganic polymers
Inorganic polymersInorganic polymers
Inorganic polymers
Manju Sebastian
 
Metal Carbonyls
Metal CarbonylsMetal Carbonyls
Metal Carbonyls
SPCGC AJMER
 
Synthesis & characterization of magnesium ferrites & exploring its microwave ...
Synthesis & characterization of magnesium ferrites & exploring its microwave ...Synthesis & characterization of magnesium ferrites & exploring its microwave ...
Synthesis & characterization of magnesium ferrites & exploring its microwave ...
Nikita Gupta
 
Swati nir
Swati nirSwati nir
Swati nir
sanjay patil
 
Zeeman effect
Zeeman effectZeeman effect
Zeeman effect
sheneaziz3
 
Simple structures of solid state chemistry
Simple structures of solid state chemistrySimple structures of solid state chemistry
Simple structures of solid state chemistry
Mohammed Anzar Sakharkar
 
Zeeman and Stark Effect
Zeeman and Stark EffectZeeman and Stark Effect
Zeeman and Stark Effect
DEPARTMENT OF PHYSICS
 

What's hot (20)

Electronic spectra problems
Electronic spectra problemsElectronic spectra problems
Electronic spectra problems
 
Surfaces of Metal Oxides.
Surfaces of Metal Oxides.Surfaces of Metal Oxides.
Surfaces of Metal Oxides.
 
Judd-Ofelt Theory: Principles and Practices
Judd-Ofelt Theory: Principles and PracticesJudd-Ofelt Theory: Principles and Practices
Judd-Ofelt Theory: Principles and Practices
 
Thermally Activated Delayed Fluorescence (TADF)
Thermally Activated Delayed Fluorescence (TADF)Thermally Activated Delayed Fluorescence (TADF)
Thermally Activated Delayed Fluorescence (TADF)
 
Jahn Teller effect LO_0.ppt
Jahn Teller effect LO_0.pptJahn Teller effect LO_0.ppt
Jahn Teller effect LO_0.ppt
 
Vibrational spectroscopy.pptx
Vibrational spectroscopy.pptxVibrational spectroscopy.pptx
Vibrational spectroscopy.pptx
 
SPINELS,INVERSE SPINELS AND PEROVSKITES
SPINELS,INVERSE SPINELS AND PEROVSKITESSPINELS,INVERSE SPINELS AND PEROVSKITES
SPINELS,INVERSE SPINELS AND PEROVSKITES
 
Molecular Orbital Theory For Diatomic Species
Molecular Orbital Theory For Diatomic Species  Molecular Orbital Theory For Diatomic Species
Molecular Orbital Theory For Diatomic Species
 
Crystal defects
Crystal defectsCrystal defects
Crystal defects
 
Pauli exclusion principle
Pauli exclusion principlePauli exclusion principle
Pauli exclusion principle
 
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
 
Structure types of crystals
Structure types of crystalsStructure types of crystals
Structure types of crystals
 
Multiferroic
MultiferroicMultiferroic
Multiferroic
 
Inorganic polymers
Inorganic polymersInorganic polymers
Inorganic polymers
 
Metal Carbonyls
Metal CarbonylsMetal Carbonyls
Metal Carbonyls
 
Synthesis & characterization of magnesium ferrites & exploring its microwave ...
Synthesis & characterization of magnesium ferrites & exploring its microwave ...Synthesis & characterization of magnesium ferrites & exploring its microwave ...
Synthesis & characterization of magnesium ferrites & exploring its microwave ...
 
Swati nir
Swati nirSwati nir
Swati nir
 
Zeeman effect
Zeeman effectZeeman effect
Zeeman effect
 
Simple structures of solid state chemistry
Simple structures of solid state chemistrySimple structures of solid state chemistry
Simple structures of solid state chemistry
 
Zeeman and Stark Effect
Zeeman and Stark EffectZeeman and Stark Effect
Zeeman and Stark Effect
 

Similar to Lanthanide-Doped Mid-Infrared Materials

Resume_Mohan
Resume_MohanResume_Mohan
Resume_Mohan
Mohan Babu
 
Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019
Philippe Smet
 
Schlossberg - Lasers and Optics - Spring Review 2013
Schlossberg - Lasers and Optics - Spring Review 2013Schlossberg - Lasers and Optics - Spring Review 2013
Schlossberg - Lasers and Optics - Spring Review 2013
The Air Force Office of Scientific Research
 
11. malibs in argon (jo pcs)
11. malibs in argon (jo pcs)11. malibs in argon (jo pcs)
11. malibs in argon (jo pcs)
Ali Khumaeni
 
Pomrenke - Photonics and Optoelectronics - Spring Review 2013
Pomrenke - Photonics and Optoelectronics - Spring Review 2013Pomrenke - Photonics and Optoelectronics - Spring Review 2013
Pomrenke - Photonics and Optoelectronics - Spring Review 2013
The Air Force Office of Scientific Research
 
Project Report
Project ReportProject Report
Project Report
aryan sinha
 
hatano article
hatano articlehatano article
hatano article
Richard C. Slater
 
AJ_Article
AJ_ArticleAJ_Article
AJ_Article
Andrew GottWorth
 
Jyväskylän yliopiston kiihdytinlaboratorio - perustutkimusta ja uusia avauksi...
Jyväskylän yliopiston kiihdytinlaboratorio - perustutkimusta ja uusia avauksi...Jyväskylän yliopiston kiihdytinlaboratorio - perustutkimusta ja uusia avauksi...
Jyväskylän yliopiston kiihdytinlaboratorio - perustutkimusta ja uusia avauksi...
STUK - Säteilyturvakeskus
 
637126main stysley presentation
637126main stysley presentation637126main stysley presentation
637126main stysley presentation
Clifford Stone
 
Report In Japan 20060613 Liuxu
Report In Japan 20060613 LiuxuReport In Japan 20060613 Liuxu
Report In Japan 20060613 Liuxu
巍 陆
 
Bas, Derek A CV US 20160901
Bas, Derek A CV US 20160901Bas, Derek A CV US 20160901
Bas, Derek A CV US 20160901
Derek Bas
 
XRD And XRF2.pptx
XRD And XRF2.pptxXRD And XRF2.pptx
XRD And XRF2.pptx
Dr. Rekha ram Choudhary
 
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
Sérgio Sacani
 
Analytical methods and instrumentation syllabus
Analytical methods and instrumentation  syllabusAnalytical methods and instrumentation  syllabus
Analytical methods and instrumentation syllabus
Thivya Prasad
 
Engineering Skills
Engineering SkillsEngineering Skills
Engineering Skills
isaacchao
 
PR4 IGARSS_2011_BEZY_final.ppt
PR4 IGARSS_2011_BEZY_final.pptPR4 IGARSS_2011_BEZY_final.ppt
PR4 IGARSS_2011_BEZY_final.ppt
grssieee
 
Image Reduction Programs for Non-Circular Core Fiber Scrambler
Image Reduction Programs for Non-Circular Core Fiber ScramblerImage Reduction Programs for Non-Circular Core Fiber Scrambler
Image Reduction Programs for Non-Circular Core Fiber Scrambler
Joseph Regan
 
Cern general information
Cern general informationCern general information
D01L10 G Ristic - Applied Physics Laboratory (APL) at the Faculty of Electron...
D01L10 G Ristic - Applied Physics Laboratory (APL) at the Faculty of Electron...D01L10 G Ristic - Applied Physics Laboratory (APL) at the Faculty of Electron...
D01L10 G Ristic - Applied Physics Laboratory (APL) at the Faculty of Electron...
SEENET-MTP
 

Similar to Lanthanide-Doped Mid-Infrared Materials (20)

Resume_Mohan
Resume_MohanResume_Mohan
Resume_Mohan
 
Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019
 
Schlossberg - Lasers and Optics - Spring Review 2013
Schlossberg - Lasers and Optics - Spring Review 2013Schlossberg - Lasers and Optics - Spring Review 2013
Schlossberg - Lasers and Optics - Spring Review 2013
 
11. malibs in argon (jo pcs)
11. malibs in argon (jo pcs)11. malibs in argon (jo pcs)
11. malibs in argon (jo pcs)
 
Pomrenke - Photonics and Optoelectronics - Spring Review 2013
Pomrenke - Photonics and Optoelectronics - Spring Review 2013Pomrenke - Photonics and Optoelectronics - Spring Review 2013
Pomrenke - Photonics and Optoelectronics - Spring Review 2013
 
Project Report
Project ReportProject Report
Project Report
 
hatano article
hatano articlehatano article
hatano article
 
AJ_Article
AJ_ArticleAJ_Article
AJ_Article
 
Jyväskylän yliopiston kiihdytinlaboratorio - perustutkimusta ja uusia avauksi...
Jyväskylän yliopiston kiihdytinlaboratorio - perustutkimusta ja uusia avauksi...Jyväskylän yliopiston kiihdytinlaboratorio - perustutkimusta ja uusia avauksi...
Jyväskylän yliopiston kiihdytinlaboratorio - perustutkimusta ja uusia avauksi...
 
637126main stysley presentation
637126main stysley presentation637126main stysley presentation
637126main stysley presentation
 
Report In Japan 20060613 Liuxu
Report In Japan 20060613 LiuxuReport In Japan 20060613 Liuxu
Report In Japan 20060613 Liuxu
 
Bas, Derek A CV US 20160901
Bas, Derek A CV US 20160901Bas, Derek A CV US 20160901
Bas, Derek A CV US 20160901
 
XRD And XRF2.pptx
XRD And XRF2.pptxXRD And XRF2.pptx
XRD And XRF2.pptx
 
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
 
Analytical methods and instrumentation syllabus
Analytical methods and instrumentation  syllabusAnalytical methods and instrumentation  syllabus
Analytical methods and instrumentation syllabus
 
Engineering Skills
Engineering SkillsEngineering Skills
Engineering Skills
 
PR4 IGARSS_2011_BEZY_final.ppt
PR4 IGARSS_2011_BEZY_final.pptPR4 IGARSS_2011_BEZY_final.ppt
PR4 IGARSS_2011_BEZY_final.ppt
 
Image Reduction Programs for Non-Circular Core Fiber Scrambler
Image Reduction Programs for Non-Circular Core Fiber ScramblerImage Reduction Programs for Non-Circular Core Fiber Scrambler
Image Reduction Programs for Non-Circular Core Fiber Scrambler
 
Cern general information
Cern general informationCern general information
Cern general information
 
D01L10 G Ristic - Applied Physics Laboratory (APL) at the Faculty of Electron...
D01L10 G Ristic - Applied Physics Laboratory (APL) at the Faculty of Electron...D01L10 G Ristic - Applied Physics Laboratory (APL) at the Faculty of Electron...
D01L10 G Ristic - Applied Physics Laboratory (APL) at the Faculty of Electron...
 

Recently uploaded

Noida Call Girls Number 9999965857 Vip Call Girls Lady Of Your Dream Ready To...
Noida Call Girls Number 9999965857 Vip Call Girls Lady Of Your Dream Ready To...Noida Call Girls Number 9999965857 Vip Call Girls Lady Of Your Dream Ready To...
Noida Call Girls Number 9999965857 Vip Call Girls Lady Of Your Dream Ready To...
choudharydenunisha
 
Explainable Deepfake Image/Video Detection
Explainable Deepfake Image/Video DetectionExplainable Deepfake Image/Video Detection
Explainable Deepfake Image/Video Detection
VasileiosMezaris
 
Methods of grain storage Structures in India.pdf
Methods of grain storage Structures in India.pdfMethods of grain storage Structures in India.pdf
Methods of grain storage Structures in India.pdf
PirithiRaju
 
Holsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdf
Holsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdfHolsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdf
Holsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdf
frank0071
 
Call Girls Noida🔥9873777170🔥Gorgeous Escorts in Noida Available 24/7
Call Girls Noida🔥9873777170🔥Gorgeous Escorts in Noida Available 24/7Call Girls Noida🔥9873777170🔥Gorgeous Escorts in Noida Available 24/7
Call Girls Noida🔥9873777170🔥Gorgeous Escorts in Noida Available 24/7
yashika sharman06
 
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Sérgio Sacani
 
Physics Investigatory Project on transformers. Class 12th
Physics Investigatory Project on transformers. Class 12thPhysics Investigatory Project on transformers. Class 12th
Physics Investigatory Project on transformers. Class 12th
pihuart12
 
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDSJAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
Sérgio Sacani
 
一比一原版美国佩斯大学毕业证如何办理
一比一原版美国佩斯大学毕业证如何办理一比一原版美国佩斯大学毕业证如何办理
一比一原版美国佩斯大学毕业证如何办理
gyhwyo
 
一比一原版(macewan学位证书)加拿大麦科文大学毕业证如何办理
一比一原版(macewan学位证书)加拿大麦科文大学毕业证如何办理一比一原版(macewan学位证书)加拿大麦科文大学毕业证如何办理
一比一原版(macewan学位证书)加拿大麦科文大学毕业证如何办理
xzydcvt
 
Delhi Call Girls ✓WhatsApp 9999965857 🔝Top Class Call Girl Service Available
Delhi Call Girls ✓WhatsApp 9999965857 🔝Top Class Call Girl Service AvailableDelhi Call Girls ✓WhatsApp 9999965857 🔝Top Class Call Girl Service Available
Delhi Call Girls ✓WhatsApp 9999965857 🔝Top Class Call Girl Service Available
kk090568
 
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
Sérgio Sacani
 
BANANA BUNCHY TOP K R.pptx
BANANA BUNCHY  TOP               K R.pptxBANANA BUNCHY  TOP               K R.pptx
BANANA BUNCHY TOP K R.pptx
KARTHIK REDDY C A
 
Nutaceuticsls herbal drug technology CVS, cancer.pptx
Nutaceuticsls herbal drug technology CVS, cancer.pptxNutaceuticsls herbal drug technology CVS, cancer.pptx
Nutaceuticsls herbal drug technology CVS, cancer.pptx
vimalveerammal
 
Quality assurance B.pharm 6th semester BP606T UNIT 5
Quality assurance B.pharm 6th semester BP606T UNIT 5Quality assurance B.pharm 6th semester BP606T UNIT 5
Quality assurance B.pharm 6th semester BP606T UNIT 5
vimalveerammal
 
Embracing Deep Variability For Reproducibility and Replicability
Embracing Deep Variability For Reproducibility and ReplicabilityEmbracing Deep Variability For Reproducibility and Replicability
Embracing Deep Variability For Reproducibility and Replicability
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
 
GBSN - Microbiology (Unit 2) Antimicrobial agents
GBSN - Microbiology (Unit 2) Antimicrobial agentsGBSN - Microbiology (Unit 2) Antimicrobial agents
GBSN - Microbiology (Unit 2) Antimicrobial agents
Areesha Ahmad
 
Evaluation and Identification of J'BaFofi the Giant Spider of Congo and Moke...
Evaluation and Identification of J'BaFofi the Giant  Spider of Congo and Moke...Evaluation and Identification of J'BaFofi the Giant  Spider of Congo and Moke...
Evaluation and Identification of J'BaFofi the Giant Spider of Congo and Moke...
MrSproy
 
Reaching the age of Adolescence- Class 8
Reaching the age of Adolescence- Class 8Reaching the age of Adolescence- Class 8
Reaching the age of Adolescence- Class 8
abhinayakamasamudram
 
Post translation modification by Suyash Garg
Post translation modification by Suyash GargPost translation modification by Suyash Garg
Post translation modification by Suyash Garg
suyashempire
 

Recently uploaded (20)

Noida Call Girls Number 9999965857 Vip Call Girls Lady Of Your Dream Ready To...
Noida Call Girls Number 9999965857 Vip Call Girls Lady Of Your Dream Ready To...Noida Call Girls Number 9999965857 Vip Call Girls Lady Of Your Dream Ready To...
Noida Call Girls Number 9999965857 Vip Call Girls Lady Of Your Dream Ready To...
 
Explainable Deepfake Image/Video Detection
Explainable Deepfake Image/Video DetectionExplainable Deepfake Image/Video Detection
Explainable Deepfake Image/Video Detection
 
Methods of grain storage Structures in India.pdf
Methods of grain storage Structures in India.pdfMethods of grain storage Structures in India.pdf
Methods of grain storage Structures in India.pdf
 
Holsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdf
Holsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdfHolsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdf
Holsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdf
 
Call Girls Noida🔥9873777170🔥Gorgeous Escorts in Noida Available 24/7
Call Girls Noida🔥9873777170🔥Gorgeous Escorts in Noida Available 24/7Call Girls Noida🔥9873777170🔥Gorgeous Escorts in Noida Available 24/7
Call Girls Noida🔥9873777170🔥Gorgeous Escorts in Noida Available 24/7
 
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
 
Physics Investigatory Project on transformers. Class 12th
Physics Investigatory Project on transformers. Class 12thPhysics Investigatory Project on transformers. Class 12th
Physics Investigatory Project on transformers. Class 12th
 
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDSJAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
 
一比一原版美国佩斯大学毕业证如何办理
一比一原版美国佩斯大学毕业证如何办理一比一原版美国佩斯大学毕业证如何办理
一比一原版美国佩斯大学毕业证如何办理
 
一比一原版(macewan学位证书)加拿大麦科文大学毕业证如何办理
一比一原版(macewan学位证书)加拿大麦科文大学毕业证如何办理一比一原版(macewan学位证书)加拿大麦科文大学毕业证如何办理
一比一原版(macewan学位证书)加拿大麦科文大学毕业证如何办理
 
Delhi Call Girls ✓WhatsApp 9999965857 🔝Top Class Call Girl Service Available
Delhi Call Girls ✓WhatsApp 9999965857 🔝Top Class Call Girl Service AvailableDelhi Call Girls ✓WhatsApp 9999965857 🔝Top Class Call Girl Service Available
Delhi Call Girls ✓WhatsApp 9999965857 🔝Top Class Call Girl Service Available
 
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
 
BANANA BUNCHY TOP K R.pptx
BANANA BUNCHY  TOP               K R.pptxBANANA BUNCHY  TOP               K R.pptx
BANANA BUNCHY TOP K R.pptx
 
Nutaceuticsls herbal drug technology CVS, cancer.pptx
Nutaceuticsls herbal drug technology CVS, cancer.pptxNutaceuticsls herbal drug technology CVS, cancer.pptx
Nutaceuticsls herbal drug technology CVS, cancer.pptx
 
Quality assurance B.pharm 6th semester BP606T UNIT 5
Quality assurance B.pharm 6th semester BP606T UNIT 5Quality assurance B.pharm 6th semester BP606T UNIT 5
Quality assurance B.pharm 6th semester BP606T UNIT 5
 
Embracing Deep Variability For Reproducibility and Replicability
Embracing Deep Variability For Reproducibility and ReplicabilityEmbracing Deep Variability For Reproducibility and Replicability
Embracing Deep Variability For Reproducibility and Replicability
 
GBSN - Microbiology (Unit 2) Antimicrobial agents
GBSN - Microbiology (Unit 2) Antimicrobial agentsGBSN - Microbiology (Unit 2) Antimicrobial agents
GBSN - Microbiology (Unit 2) Antimicrobial agents
 
Evaluation and Identification of J'BaFofi the Giant Spider of Congo and Moke...
Evaluation and Identification of J'BaFofi the Giant  Spider of Congo and Moke...Evaluation and Identification of J'BaFofi the Giant  Spider of Congo and Moke...
Evaluation and Identification of J'BaFofi the Giant Spider of Congo and Moke...
 
Reaching the age of Adolescence- Class 8
Reaching the age of Adolescence- Class 8Reaching the age of Adolescence- Class 8
Reaching the age of Adolescence- Class 8
 
Post translation modification by Suyash Garg
Post translation modification by Suyash GargPost translation modification by Suyash Garg
Post translation modification by Suyash Garg
 

Lanthanide-Doped Mid-Infrared Materials

  • 1. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Brian M. Walsh Devin Pugh-Thomas Hyung Lee Norman P. Barnes (SSAI) NASA Langley Research Center Hampton, VA 23681 USA Lanthanide-Doped Mid-Infrared Materials Spectroscopy and Laser Prospects International Conference on Luminescence Wroclaw, Poland, July 13 – 18, 2014
  • 2. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Why Study Mid Infrared Ln3+Lasers? • Innovation -  Mid Infrared lasers utilizing Lanthanide series ions (Ln3+) have not been thoroughly studied. •  Decadal Survey – Mid Infrared lasers needed for DIAL systems simply are not available at present. • Enabling – Invent specialized lasers that industry is unwilling to invest in or universities not likely to pursue. • Atmosphere – Some constituents in atmospheric chemistry only available for study at Mid IR wavelengths.
  • 3. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland MIR Molecular Absorption Wavelength (µm) Because of the molecular absorption and the eye safety requirements, the optimum spectral range is in the 2 to 10 µm region. 3 – 5 µm : Atmospheric sensing 7– 10 µm : Defense & Security NIR MIR NIR MIR •  Lockheed Martin Space Act Agreement - Interest in Mid Infrared Lasers for 3 – 5 µm & 9 – 12 µm applications (??)
  • 4. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Atmospheric Molecular Absorption Thermal IR (Mid IR to Far IR) Fingerprint Region
  • 5. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Trace gasses of interest - GACM Methane Carbon Monoxide Ozone Nitrogen Dioxide Sulphur Dioxide Formaldehyde GACM – Global Atmospheric Composition Mission
  • 6. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Methane Carbon Monoxide Ozone Nitrogen Dioxide Sulphur Dioxide Formaldehyde GACM – Global Atmospheric Composition Mission Mid Infrared Wavelengths - GACM 3.15 – 3.57 µm 7.50 – 8.30 µm 2.31 – 2.41 µm 4.50 – 4.87 µm 4.70 – 4.79 µm 9.37 – 9.90 µm 3.40 – 3.84 µm 4.45 – 4.70 µm 7.50 – 8.10 µm 7.13 – 7.75 µm 3.20 – 3.40 µm
  • 7. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Options for Mid Infrared Lasers Mid-Infrared Laser Applications in Spectroscopy F.K. Tittel, D. Richter, A. Fried, Solid-State Mid-Infrared Laser Sources (Springer-Verlag 2003) Reference: ①  Semiconductor Lasers: Lead-Salt, Quantum Cascade and Antimonide are possibilities, but require cryogenic cooling and have highly divergent beams. ②  Solid State lasers: Cr2+ II-VI lasers are low gain materials, resulting in low power/energy. ③  Parametric frequency conversion such as OPO & DFG suffer from a variety of drawbacks: phase matching, design complexity, alignment sensitivity, and laser induced damage (LID). ④  Laser pumped Ln3+ lasers: High power or energy in a narrow spectral bandwidth or diffraction limited beam is often a reason to select them over other technologies. A wide variety of pulse widths and pulse repetition frequencies (from cw to 1GHz) can be achieved.
  • 8. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Advantages of Ln3+ Solid State Lasers • All solid state laser-pumped lasers - Capable of high power or high energy. - Reliable, low voltage, compact, robust and versatile. - No phase matching required, pump and laser are temporally separate. - Probability of laser induced damage can be mitigated • Tunable options - 2 to 10 micrometers (many transitions in Ln3+:hosts) - Can exhibit narrow spectral bandwidth. - Selection more reliable (only 1 wavelength is resonant). • Reasonable efficiency - Ln3+ series ions in low phonon hosts (limit nonradiative processes) - Can store energy over relatively long time intervals (Q-switching) - Good laser beam quality even with pump laser quality over 2xDL
  • 9. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Approach • Quantum Mechanics - Quantum Mechanics describes the physics of laser materials. - Computer models predict new materials to meet objectives. • Spectroscopy of materials - Validates the physics of potential laser materials. - Provides parameters for understanding the laser. • Challenges - Nonradiative transitions quench luminescence. - Low phonon materials needed (fluorides, chlorides, bromides). • Outlook - Many Transitions possible (Dieke Diagram) - MIR transitions not well studied (Data is needed)
  • 10. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Materials Modeling • Cost effective design tool – Uses Quantum Mechanical model – Models physics from lattice structure • Predicts new materials – Tm:Ho:LuLF, LuAG (Winds, CO2) – Nd:YGAG, YSAG (Water Vapor) • Predicts essential parameters – Energy levels (laser wavelengths) – Lifetimes (pump storage efficiency) – Energy transfer rates (laser efficiency) {Dodecahedral} (Tetrahedral)[Octahedral] Oxygen Rare Earth Al, Ga, Fe {A3+}3[B3+]2 (C3+)3O12
  • 11. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Nonradiative Processes (Phonons) photons phonons A. Shalav et al, Solar Energy Materials & Solar Cells 91 (2007) 829–842
  • 12. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Energy levels of Ln3+ ions (Dieke) Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry M.D. Chambers, D.R. Clarke, Annual Review of Materials Research, Vol. 39: 325-359 (August 2009) Reference:
  • 13. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland NIR Lanthanide Lasers 0 5000 10000 15000 20000 Nd Ho Er Tm Yb 4I9/2 4I11/2 4I13/2 4I15/2 4F3/2 1.32 1.06 0.94 5I8 5I7 5I6 5I5 5I4 5F5 5F4 5S2 4F5/2 4F7/2 4F9/2 2H11/2 4G5/2 4G7/2 4I15/2 4I13/2 4I11/2 4I9/2 4F9/2 4S3/2 4F7/2 4F5/2 3H6 3F4 3H5 3H4 3F2 3F3 3.0 2.1 1.9 1.47 1.63 2.3 2.94 1.03 1.73 1.23 0.86 Energy(cm-1) diode laser pump bands Rare Earth: Y, Sc, (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) Lanthanides
  • 14. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland 4I9/2 MIR Lanthanide Lasers I 4I11/2 4I13/2 4I15/2 NdPr Sm Eu Dy 3H4 3H5 3H6 6F1/2+3/2+6H15/2 3F3 3F4 6H5/2 5F5/2 6H7/2 6H9/2 6H11/2 6H13/2 7F5 7F3 7F2 7F1 7F0 7F4 6H15/2 6H9/2+6F11/2 6H11/2 6H13/2 4.2 – 6.2 4.4 – 5.9 2.2 – 2.8 2.3 – 2.5 3.7 – 5.6 4.7 – 12.8 2.9 – 4.6 5.9 – 10.6 4.4 – 13.3 3.9 – 5.8 2.8 – 3.6 4.0 – 4.8 3F2 6.3 – 8.5 2.6 – 3.2 3.4 – 6.0
  • 15. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland MIR Lanthanide Lasers II Tb Ho Er Tm 4I15/2 4I9/2 4I11/2 4I13/2 3H6 5I8 3H4 3H5 3F4 5I4 5I5 5I6 5I7 7F6 7F2 7F3 7F4 7F5 7F0,1 7.4 – 14.9 3.9 – 5.6 2.1 – 2.5 3.6 – 4.2 2.8 – 3.5 4.0 – 5.3 2.6 – 3.0 2.2 – 2.5 3.4 – 4.3
  • 16. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland MIR Laser Systems   Crystal Pump Laser Storage level Upper level Lower level Wavelength (µm) Upper gap (cm-1) Lower gap (cm-1) Pr:LaF3 Ho:YAG 3H6 3H6 3H5 5.6 - 3.8 1789 1976 Pr:LaF3 Ho:YAG 3H6 3H5 3H4 6.0 - 3.4 1243 1678 Nd:LaF3 Er:YAG 4I15/2 4I15/2 4I13/2 6.2 - 4.2 1608 1695 Nd:LaF3 Cr:ZnSe 4I13/2 4I13/2 4I11/2 5.9 - 4.5 1695 1478  Sm:LaF3 Er:YAG 6H15/2 6H15/2 6H13/2 8.4 - 6.3 1186 1181 Sm:LaF3 Er:YAG 6H15/2 6H15/2 6H11/2 4.0 - 3.3 1186 1047 Sm:LaF3 Ho:YAG 6H11/2 6H11/2 6H9/2 9.6 - 6.3 1186 930  Eu:LaF3 Tm:gls 7F6 7F6 7F2 13.0 - 6.0 750 539 Eu:LaF3 Tm:gls 7F6 7F6 7F4 5.8 - 3.9 750 635 Eu:LaF3 Tm:gls 7F6 7F6 7F3 3.6 - 2.7 750 474  Tb:LaF3 Ho:YAG 7F3 7F3 7F4 13.0 - 6.0 1645 413 Tb:LaF3 Ho:YAG 7F3 7F3 7F4 3.9 - 5.6 1645 413  Dy:LaF3 Er:YLF 6H9/2 4I9/2 7F11/2 4.9 - 4.1 2024 2024   Ho:LaF3 Tm:gls 5I5 4I5 5I6 4.0 - 3.8 2369 3278 Ho:LaF3 Nd:YAG 5I6 5I6 5I7 2.8 - 3.4 3278 2697 Er:LaF3 Cr:alex 4I9/2 4I9/2 4I11/2 4.9 - 4.1 2024 3697 Er:LaF3 Er:YAG 4I9/2 4I9/2 4I13/2 3.0 - 2.6 2024 6230
  • 17. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Mid-IR Spectroscopy Laboratory A B C D E F G H A Laser B Sample Stage C Collection Optics D Spectrometer E Detector F Lock-in Amplifier G Power Supply H Computer
  • 18. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Dysprosium:BaY2F8 6H13/2 Lifetimes Johnson & Guggenheim: 1.3 ms (300K) 7.0 ms (77K) Christensen & Jenssen: 1.28 ms (300K) 8.0 ms (77K) This work: 1.38 ms (300K) 35 ms (Judd-Ofelt)
  • 19. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Holmium:BaY2F8 5I6 Lifetimes Johnson & Guggenheim: 5.0 ms (77K) Christensen & Jenssen: 5.4 ms (300K) This work: 5.78 ms (300K) 4.8 ms (Judd-Ofelt)
  • 20. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Praseodymium: KPb2Br5 Emission 3H6 Lifetimes This work: 15 ms (300K) 20 ms (Judd-Ofelt) 3H5 Lifetimes This work: 37 ms (300K) 40 ms (Judd-Ofelt)
  • 21. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Praseodymium: KPb2Br5 Decay
  • 22. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Pr: LaF3 , KYF4 , BaY2F8 , YLiF4 Phonon Energy: LaF3 (300 cm-1) KYF4 (350 cm-1) BaY2F8 (420 cm-1) YLiF4 (560 cm-1)
  • 23. E3 E2 E1 pump laser (a) 3-level E4 E3 E2 E1 pump laser (b) 4-level E4 E3 E2 E1 pump laser (c) Quasi 4-level E4 E3 E2 E1 pump laser (d) Terminated 4-level National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Types of Solid State Lasers N1 = N2 Cr:Al2O3 N2 = 0 Nd:YAG N2 > 0 Ho:YLF E32 < E21 Dy:YLF
  • 24. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Optical Schematic for Pr MIR Laser • Simple configurations – Diode Pumping (1.9 µm) – EDFA Pumping (1.55 µm) – Efficient resonator designs • Selection of materials – Fluorides: BaY2F8, LaF3, KYF4 – Chlorides: KPb2Cl5 – Bromides: KPb2Br5 • Laser pump parameters – Pump power ~ 10 - 30W – Pulse duration ~ 1 - 5 ms – Pump wavelengths ~1.5 µm & 1.9 µm Z-type resonator with diode laser pumping Q-switch HR M Laser Crystal DichroicDichroic Output M Ring Resonator for EDFA pumping 1.55 µm EDFA Input Mirror Output Mirror HR Mirror
  • 25. National Aeronautics and Space Administration National Aeronautics and Space Administration Laser Gain in Pr:LaF3 ICL 2014 – Wroclaw, Poland • Calculation of gain in Pr:LaF3 based on MIR absorption – Curve fit absorption coefficient versus wavelength using a series of Lorentzian line shape functions. – Correlate the measured transmission with the results of the curve fit to identify participating levels. – Calculate thermal occupation of upper and lower levels for each of the participating levels. – Calculate energy density needed to achieve optical transparency for each pair of energy levels. – Calculate gain coefficients for all pairs of levels and select the pair of levels for best performance. – Use the best pair of energy levels and determine the wavelength and predicted performance.
  • 26. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland • MIR applications - Decadal survey (MIR lasers for DIAL not available) - GACM (CH4, CO, O3, NO2, SO2, CH2O) • Challenges - Nonradiative decay processes influence laser transitions - Low phonon materials needed (e.g., LaF3, BaY2F8, KPb2Br5) • Spectroscopy of materials - Spectroscopic properties of Dy:BaY2F8, Ho:BaY2F8, Pr-doped materials - Consider pumping lasers that match spectroscopy (1 – 2 µm) • Laser design - Method for calculation of laser gain in Pr:LaF3 - Optical schematic of Pr MIR lasers designed Summary
  • 27. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland • Materials for MIR lasers - Hosts: BaY2F8, KYF4, LaF3, KPb2Br5, KPb2Cl5 - Ions: Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm - Apply QMM efforts to facilitate development • Spectroscopic measurements - Absorption for identification of pump wavelengths - Emission for identification of laser wavelengths - Temporal decay for determination of laser dynamics • Laser engineering - Consider pump laser sources (Ln3+ SSL, diode) - Consider optics for laser resonator specific for MIR - Construct resonator based on design for MIR lasers Future Directions
  • 28. National Aeronautics and Space Administration ICL 2014 – Wroclaw, Poland Acknowledgements • Dr. Uwe Hommerich (Hampton University, Hampton, VA) - Provided Pr:KPb2Br5 sample - Helpful discussions about low phonon mid infrared materials. • Dr. Alessandra Toncelli (Universita di Pisa, Pisa, Italy) - Provided Pr:KYF4 sample • Dr. Akira Yoshikawa (C & A Corporation, Sendai, Japan) - Vendor for Pr:LaF3 sample • Dr. Arlete Cassanho, Dr. Hans Jensen (AC Materials, Tarpon Springs, FL) - Vendor for Pr:BaY2F8 sample
  • 29. National Aeronautics and Space Administration 2011 LRSB Peer Review Brian M. Walsh Laser Remote Sensing Branch Email: brian.m.walsh@nasa.gov Phone: 757 864-7112 NASA Langley Research Center