SlideShare a Scribd company logo
L3b-1
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Ideal CSTR
Design Eq
with XA:
Review: Design Eq & Conversion
D
a
d
C
a
c
B
a
b
A 
fedAmoles
reactedAmoles
XA 
BATCH
SYSTEM: A0Aj0jj XNNN   








j
A0A
j
j0TjT XNNNN 
FLOW
SYSTEM: A0Aj0jj XFFF   








j
A0A
j
j0TjT XFFFF 
r
XF
V
A
A0A


Vr
dt
dX
N A
A
0A 
Ideal Batch Reactor
Design Eq with XA:



AX
0 A
A
0A
Vr
dX
Nt
A
A
0A r
dV
dX
F 
Ideal SS PFR
Design Eq with XA:



AX
0 A
A
0A
r
dX
FV
'r
dW
dX
F A
A
0A 
Ideal SS PBR
Design Eq with XA:



AX
0 A
A
0A
'r
dX
FW
j≡ stoichiometric coefficient;
positive for products, negative
for reactants
L3b-2
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Review: Sizing CSTRsWe can determine the volume of the CSTR required to achieve a specific
conversion if we know how the reaction rate rj depends on the conversion Xj
A
A
0A
CSTR
A
A0A
CSTR X
r
F
V
r
XF
V 









Ideal SS
CSTR
design eq.
Volume is
product of FA0/-rA
and XA
• Plot FA0/-rA vs XA (Levenspiel plot)
• VCSTR is the rectangle with a base of XA,exit and a height of FA0/-rA at XA,exit

FA 0
rA
X
Area = Volume of CSTR
X1
V 
FA 0
rA



X1
 X1
L3b-3
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
FA 0
rA
Area = Volume of PFR
V 
0
X1

FA 0
rA





dX
X1
Area = VPFR or Wcatalyst, PBR
dX
'r
F
W
1X
0 A
0A
 







Review: Sizing PFRs & PBRs
We can determine the volume (catalyst weight) of a PFR (PBR) required to
achieve a specific Xj if we know how the reaction rate rj depends on Xj
A
exit,AX
0 A
0A
PFR
exit,AX
0 A
A
0APFR dX
r
F
V
r
dX
FV  









Ideal PFR
design eq.
• Plot FA0/-rA vs XA (Experimentally determined numerical values)
• VPFR (WPBR) is the area under the curve FA0/-rA vs XA,exit
A
exit,AX
0 A
0A
PBR
exit,AX
0 A
A
0APBR dX
r
F
W
r
dX
FW  








Ideal PBR
design eq.
dX
r
F
V
1X
0 A
0A
 







L3b-4
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Numerical Evaluation of Integrals (A.4)
Simpson’s one-third rule (3-point):
        210
2X
0
XfXf4Xf
3
h
dxxf 
hXX
2
XX
h 01
02 


Trapezoidal rule (2-point):
      10
1X
0
XfXf
2
h
dxxf 
01 XXh 
Simpson’s three-eights rule (4-point):
          3210
3X
0
XfXf3Xf3Xfh
8
3
dxxf 
3
XX
h 03 

h2XXhXX 0201 
Simpson’s five-point quadrature :
            43210
4X
0
XfXf4Xf2Xf4Xf
3
h
dxxf 
4
XX
h 04 

L3b-5
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Review: Reactors in Series
2 CSTRs 2 PFRs
CSTR→PFR
VCSTR1 VPFR2
VPFR2VCSTR1
VCSTR2
VPFR1
VPFR1
VCSTR2
VCSTR1 + VPFR2
≠
VPFR1 + CCSTR2
PFR→CSTR
A
A0
r-
F
 
i j
CSTRPFRPFR VVV
If is monotonically
increasing then:
CSTR
i j
CSTRPFR VVV  
L3b-6
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Chapter 2 Examples
L3b-7
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
1. Calculate FA0/-rA for each conversion value in the tableFA0/-rA
Calculate the reactor volumes for each configuration shown below for the reaction data
in the table when the molar flow rate is 52 mol/min.
FA0, X0
X1=0.3
X2=0.8
Config 1
X1=0.3
FA0, X0 X2=0.8
Config 2
A
exit,AX
in,AX A
0A
nPFR dX
r
F
V  






 ←Use numerical
methods to solve
 in,Aout,A
nA
0A
nCSTR XX
r
F
V 


XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n
Convert to seconds→
min
mol
52F 0A 
00
1
52 8
60
67
 
 
 
 A
mol min
m
mol
. F
sin s
-rA is in terms of mol/dm3∙s
L3b-8
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
A(
0
0)
AF
r

3
3
mol
0.0053
d
mol
0.867
s
s
m
m
d

164
1. Calculate FA0/-rA for each conversion value in the table
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA 164
Calculate the reactor volumes for each configuration shown below for the reaction data
in the table when the molar flow rate is 52 mol/min.
FA0, X0
X1=0.3
X2=0.8
Config 1
X1=0.3
FA0, X0 X2=0.8
Config 2
A
exit,AX
in,AX A
0A
nPFR dX
r
F
V  






 ←Use numerical
methods to solve
 in,Aout,A
nA
0A
nCSTR XX
r
F
V 


-rA is in terms of mol/dm3∙s
164
XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n
min
mol
52F 0A 
00
1
52 8
60
67
 
 
 
 A
mol min
m
mol
. F
sin s
Convert to seconds→
L3b-9
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
A(
0
0)
AF
r

3
3
mol
0.0053
d
mol
0.867
s
s
m
m
d

164
1. Calculate FA0/-rA for each conversion value in the table
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA
Calculate the reactor volumes for each configuration shown below for the reaction data
in the table when the molar flow rate is 52 mol/min.
FA0, X0
X1=0.3
X2=0.8
Config 1
X1=0.3
FA0, X0 X2=0.8
Config 2
A
exit,AX
in,AX A
0A
nPFR dX
r
F
V  






 ←Use numerical
methods to solve
 in,Aout,A
nA
0A
nCSTR XX
r
F
V 


-rA is in terms of mol/dm3∙s
164
XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n
min
mol
52F 0A 
00
1
52 8
60
67
 
 
 
 A
mol min
m
mol
. F
sin s
Convert to seconds→ For each –rA that corresponds to
a XA value, use FA0 to calculate
FA0/-rA & fill in the table
L3b-10
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
X1=0.3
FA0, X0
A( 0.85)
3A0
3
mol
0.867F s
molr
0.001
dm s
867 dm 


1. Calculate FA0/-rA for each conversion value in the table
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA 164 167 173 193 217 263 347 482 694 867
Calculate the reactor volumes for each configuration shown below for the reaction data
in the table when the molar flow rate is 52 mol/min.
FA0, X0
X1=0.3
X2=0.8
Config 1
X2=0.8
Config 2
A
exit,AX
in,AX A
0A
nPFR dX
r
F
V  






 ←Use numerical
methods to solve
 in,Aout,A
nA
0A
nCSTR XX
r
F
V 


Convert to seconds→
min
mol
52F 0A 
-rA is in terms of mol/dm3∙s
XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n
00
1
52 8
60
67
 
 
 
 A
mol min
m
mol
. F
sin s
L3b-11
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA 164 167 173 193 217 263 347 482 694 867
FA0, X0
X1=0.3
X2=0.8
Config 1
Reactor 1, PFR from XA0=0 to XA=0.3:


 

 
   
 

        


A
A AA
A A0
A
0.3
A0
PFR1 A
0
A0
X
0
A X
A0
A
X 0.3
0.20A .X 1A 0
F 3 0.3 0
V dX 3
F F
3
rr
F
rr8 3
F
r
4-pt rule:
     1
0.3 A0
PFR A0
3
A
16
F 3
V dX 0.1 3 3 1
r 8
934 173 5167 1.6 dm         
  

A,out
2CSTR
A0
A,o A i
X
, nut
A
F
XV X
r
    2
3
CSTR 694 0.8 3470.3 dmV
Total volume for configuration 1: 51.6 dm3 + 347 dm3 = 398.6 dm3 = 399 dm3
←Use numerical
methods to solve
PFR1 CSTR2
0 
  
 

XA,exit A
PFRn AXA,in A
F
V dX
r
L3b-12
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA 164 167 173 193 217 263 347 482 694 867
Reactor 1, CSTR from XA0=0 to XA=0.3:
Need to evaluate at 6 pts, but since
there is no 6-pt rule, break it up
 0
0
1 0
3
A
A .
A,outCSTR A
F
XV X
r
 

Total volume for configuration 2: 58 dm3 + 173 dm3 = 231 dm3
X1=0.3
FA0, X0 X2=0.8
Config 2
    CSTR
3
0. 583 0193 dmV  

A0
PFR2 A
A
0.8
0.3
F
V dX
r
 
     PFRV
... .                     
 
263 263 34217
3
4 3 3
8 33 2
482193 694
0 08 5
7
0 30 5
3 point rule 4 point rule
3
173 dm
PFR2CSTR1
   
 
0.
A0 A0
PF
0.3
R2 A A
A
05
.
.
5
8
A0
F F
V dX dX
r r
Must evaluate as many
pts as possible when
the curve isn’t flat
L3b-13
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
ACSTR
A
A
V
X
C
r
 
    
 
 0
0
CSTR
A
A
A
V
C
r
X
 
   
 
00
For a given CA0, the space time  needed to achieve 80% conversion in a
CSTR is 5 h. Determine (if possible) the CSTR volume required to process 2
ft3/min and achieve 80% conversion for the same reaction using the same CA0.
What is the space velocity (SV) for this system?
space time holding time mean residenceh
V
time

    
0
5
=5 h 0=2 ft3/min
 
ft
min h
hV
min  
      
3
60
5
2 3
V ft  600
V
SV



0 1Space
velocity:
-1
h
SV . h   

0 2
5
1 1
Notice that we did not need to solve the CSTR design equation to solve this problem.
Also, this answer does not depend on the type of flow reactor used.
XA=0.8
A
CSTR A
AF
r
XV
 
  
 
0 A
A
CSTR
A
C
r
V
X
 
  



0
0
   0
0
V
V 


L3b-14
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
XA,exit
PFR
A
A
X AA,in
C
V dX
r
 
    
 
 0
0
A product is produced by a nonisothermal, nonelementary, multiple-reaction
mechanism. Assume the volumetric flow rate is constant & the same in both reactors.
Data for this reaction is shown in the graph below. Use this graph to determine which
of the 2 configurations that follow give the smaller total reactor volume.
FA0, X0
X1=0.3
X2=0.7
Config 2
X1=0.3
FA0, X0 X2=0.7
Config 1
 A
CSTR A,out A,in
A
V X X
r
C 
  
 
 0
0
Shown on graph
XA,exit
PFRn A
AA,in
A
X
V dX
F
r
 
   
 
0
CSTR
A
A
A
V X
r
F 
  
 
0
• Since 0 is the same in both reactors, we can use this graph to compare the 2
configurations
• PFR- volume is 0 multiplied by the area under the curve between XA,in & XA,out
• CSTR- volume is 0 multiplied by the product of CA0/-rA,outlet times (XA,out - XA,in)
L3b-15
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
A product is produced by a nonisothermal, nonelementary, multiple-reaction
mechanism. Assume the volumetric flow rate is constant & the same in both reactors.
Data for this reaction is shown in the graph below. Use this graph to determine which
of the 2 configurations that follow give the smaller total reactor volume.
FA0, X0
X1=0.3
X2=0.7
Config 2
X1=0.3
FA0, X0 X2=0.7
Config 1
• PFR- V is 0 multiplied by the area under the curve between XA,in & XA,out
• CSTR- V is 0 multiplied by the product of CA0/-rA,outlet times (XA,out - XA,in)
Config 1 Config 2
Less shaded area
Config 2 (PFRXA,out=0.3 first, and CSTRXA,out=0.7 second) has the smaller VTotal
XA=0.3
XA=0.7
XA=0.3
XA=0.7

More Related Content

What's hot

Aspen Plus Tutorial - LHHW - reverse propane cycle
Aspen Plus Tutorial - LHHW - reverse propane cycleAspen Plus Tutorial - LHHW - reverse propane cycle
Aspen Plus Tutorial - LHHW - reverse propane cycle
Hamed Hoorijani
 
Lab report conduction
Lab report   conduction Lab report   conduction
Lab report conduction
Khairiyah Sulaiman
 
Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Aspen Plus - Physical Properties (1 of 2) (Slideshare)Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Chemical Engineering Guy
 
Che 412 cre 1 notes
Che 412 cre 1 notesChe 412 cre 1 notes
Che 412 cre 1 notes
Khaemba stephen
 
Cooling tower full report
Cooling tower full reportCooling tower full report
Cooling tower full report
Azlan Skool
 
Distillation
DistillationDistillation
Distillation
Sujeet TAMBE
 
Ejercicios destilacion
Ejercicios destilacionEjercicios destilacion
Ejercicios destilacion
jose alex mendoza miranda
 
Feed conditions in distillation column with respect to feed plate and reflux
Feed conditions in distillation column with respect to feed plate and refluxFeed conditions in distillation column with respect to feed plate and reflux
Feed conditions in distillation column with respect to feed plate and reflux
Ihsan Wassan
 
Design of heat transfer surfaces in agitated vessels
Design of heat transfer surfaces in agitated vesselsDesign of heat transfer surfaces in agitated vessels
Design of heat transfer surfaces in agitated vessels
Arcangelo Di Tano
 
Krkk tugas
Krkk tugasKrkk tugas
Krkk tugas
Hazima Asni
 
Chemical Reaction Engineering
Chemical Reaction EngineeringChemical Reaction Engineering
Chemical Reaction Engineering
Mujeeb UR Rahman
 
Controlling the explosion risks within hammer mills
Controlling the explosion risks within hammer millsControlling the explosion risks within hammer mills
Controlling the explosion risks within hammer mills
Milling and Grain magazine
 
Manufacture of acetonitrile 2015
Manufacture of acetonitrile 2015Manufacture of acetonitrile 2015
Manufacture of acetonitrile 2015
Aliasgar Mandsaurwala
 
Space time and Space velocity, CSTR
Space time and Space velocity, CSTRSpace time and Space velocity, CSTR
Space time and Space velocity, CSTR
Mujeeb UR Rahman
 
Manufacturing process of n ox, hno3 and nh4 salts
Manufacturing process of n ox, hno3 and nh4 saltsManufacturing process of n ox, hno3 and nh4 salts
Manufacturing process of n ox, hno3 and nh4 salts
Souvikbiswas52
 
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
Chemical Engineering Guy
 
Solution manual chemical reaction engineering, 3rd edition Octave levenspiel
Solution manual chemical reaction engineering, 3rd edition Octave levenspielSolution manual chemical reaction engineering, 3rd edition Octave levenspiel
Solution manual chemical reaction engineering, 3rd edition Octave levenspiel
Ana Lu Hernandez Chavarria
 

What's hot (20)

Chapter 6
Chapter 6Chapter 6
Chapter 6
 
experiment Cstr 40l
experiment Cstr 40lexperiment Cstr 40l
experiment Cstr 40l
 
Aspen Plus Tutorial - LHHW - reverse propane cycle
Aspen Plus Tutorial - LHHW - reverse propane cycleAspen Plus Tutorial - LHHW - reverse propane cycle
Aspen Plus Tutorial - LHHW - reverse propane cycle
 
Lab report conduction
Lab report   conduction Lab report   conduction
Lab report conduction
 
Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Aspen Plus - Physical Properties (1 of 2) (Slideshare)Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Aspen Plus - Physical Properties (1 of 2) (Slideshare)
 
Che 412 cre 1 notes
Che 412 cre 1 notesChe 412 cre 1 notes
Che 412 cre 1 notes
 
GC lab report
GC lab reportGC lab report
GC lab report
 
Cooling tower full report
Cooling tower full reportCooling tower full report
Cooling tower full report
 
Distillation
DistillationDistillation
Distillation
 
Ejercicios destilacion
Ejercicios destilacionEjercicios destilacion
Ejercicios destilacion
 
Feed conditions in distillation column with respect to feed plate and reflux
Feed conditions in distillation column with respect to feed plate and refluxFeed conditions in distillation column with respect to feed plate and reflux
Feed conditions in distillation column with respect to feed plate and reflux
 
Design of heat transfer surfaces in agitated vessels
Design of heat transfer surfaces in agitated vesselsDesign of heat transfer surfaces in agitated vessels
Design of heat transfer surfaces in agitated vessels
 
Krkk tugas
Krkk tugasKrkk tugas
Krkk tugas
 
Chemical Reaction Engineering
Chemical Reaction EngineeringChemical Reaction Engineering
Chemical Reaction Engineering
 
Controlling the explosion risks within hammer mills
Controlling the explosion risks within hammer millsControlling the explosion risks within hammer mills
Controlling the explosion risks within hammer mills
 
Manufacture of acetonitrile 2015
Manufacture of acetonitrile 2015Manufacture of acetonitrile 2015
Manufacture of acetonitrile 2015
 
Space time and Space velocity, CSTR
Space time and Space velocity, CSTRSpace time and Space velocity, CSTR
Space time and Space velocity, CSTR
 
Manufacturing process of n ox, hno3 and nh4 salts
Manufacturing process of n ox, hno3 and nh4 saltsManufacturing process of n ox, hno3 and nh4 salts
Manufacturing process of n ox, hno3 and nh4 salts
 
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
 
Solution manual chemical reaction engineering, 3rd edition Octave levenspiel
Solution manual chemical reaction engineering, 3rd edition Octave levenspielSolution manual chemical reaction engineering, 3rd edition Octave levenspiel
Solution manual chemical reaction engineering, 3rd edition Octave levenspiel
 

Similar to L3b reactor sizing example problems

L3b Reactor sizing example problems.pptx
L3b Reactor sizing example problems.pptxL3b Reactor sizing example problems.pptx
L3b Reactor sizing example problems.pptx
studentptawest
 
L3b reactor sizing example problems
L3b reactor sizing example problemsL3b reactor sizing example problems
L3b reactor sizing example problems
Abdelfattah Amari
 
Lec4_PDF.pdf
Lec4_PDF.pdfLec4_PDF.pdf
Lec4_PDF.pdf
jawedtravel
 
L4 Rate laws and stoichiometry.pptx
L4 Rate laws and stoichiometry.pptxL4 Rate laws and stoichiometry.pptx
L4 Rate laws and stoichiometry.pptx
ssuserdea4ba
 
ideal reactors
ideal reactorsideal reactors
ideal reactors
Karnav Rana
 
L18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptxL18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptx
SatyamJaiswal90
 
9214541.pptx
9214541.pptx9214541.pptx
9214541.pptx
abrhsh abadi
 
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptxL7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
PatelkevinJayeshkuma
 
14 activefilters
14 activefilters14 activefilters
14 activefilters
You-Yin Chen
 
Reactor3 (2)
Reactor3 (2)Reactor3 (2)
Reactor3 (2)
VIVEK GUPTA
 
2009 TRB Workshop
2009 TRB Workshop2009 TRB Workshop
2009 TRB Workshop
Dragos Andrei
 
Flow cytometry
Flow cytometryFlow cytometry
Flow cytometry
qlqiao
 
transfarmers and generators
transfarmers and generatorstransfarmers and generators
transfarmers and generators
sridharGowda20
 
L9b Selectivity example problems.pptx
L9b Selectivity example problems.pptxL9b Selectivity example problems.pptx
L9b Selectivity example problems.pptx
ssuserc6fd3e
 
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Tim Krimmel, MEM
 
Non-Uniqueness in Reservoir Models of Fractured Horizontal Wells
Non-Uniqueness in Reservoir Models of Fractured Horizontal WellsNon-Uniqueness in Reservoir Models of Fractured Horizontal Wells
Non-Uniqueness in Reservoir Models of Fractured Horizontal Wells
Narayan Nair
 
Performance evaluation of nested costas codes
Performance evaluation of nested costas codesPerformance evaluation of nested costas codes
Performance evaluation of nested costas codes
AnithaBhavani1
 
Reactor3
Reactor3Reactor3
Reactor3
VIVEK GUPTA
 
Aircraft propulsion ideal turbofan performance
Aircraft propulsion   ideal turbofan performanceAircraft propulsion   ideal turbofan performance
Aircraft propulsion ideal turbofan performance
Anurak Atthasit
 

Similar to L3b reactor sizing example problems (20)

L3b Reactor sizing example problems.pptx
L3b Reactor sizing example problems.pptxL3b Reactor sizing example problems.pptx
L3b Reactor sizing example problems.pptx
 
L3b reactor sizing example problems
L3b reactor sizing example problemsL3b reactor sizing example problems
L3b reactor sizing example problems
 
Lec4_PDF.pdf
Lec4_PDF.pdfLec4_PDF.pdf
Lec4_PDF.pdf
 
L4 Rate laws and stoichiometry.pptx
L4 Rate laws and stoichiometry.pptxL4 Rate laws and stoichiometry.pptx
L4 Rate laws and stoichiometry.pptx
 
ideal reactors
ideal reactorsideal reactors
ideal reactors
 
L18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptxL18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptx
 
9214541.pptx
9214541.pptx9214541.pptx
9214541.pptx
 
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptxL7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
 
14 activefilters
14 activefilters14 activefilters
14 activefilters
 
Reactor3 (2)
Reactor3 (2)Reactor3 (2)
Reactor3 (2)
 
2009 TRB Workshop
2009 TRB Workshop2009 TRB Workshop
2009 TRB Workshop
 
Flow cytometry
Flow cytometryFlow cytometry
Flow cytometry
 
transfarmers and generators
transfarmers and generatorstransfarmers and generators
transfarmers and generators
 
L9b Selectivity example problems.pptx
L9b Selectivity example problems.pptxL9b Selectivity example problems.pptx
L9b Selectivity example problems.pptx
 
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
 
Non-Uniqueness in Reservoir Models of Fractured Horizontal Wells
Non-Uniqueness in Reservoir Models of Fractured Horizontal WellsNon-Uniqueness in Reservoir Models of Fractured Horizontal Wells
Non-Uniqueness in Reservoir Models of Fractured Horizontal Wells
 
Performance evaluation of nested costas codes
Performance evaluation of nested costas codesPerformance evaluation of nested costas codes
Performance evaluation of nested costas codes
 
Reactor3
Reactor3Reactor3
Reactor3
 
Lec4 anim
Lec4 animLec4 anim
Lec4 anim
 
Aircraft propulsion ideal turbofan performance
Aircraft propulsion   ideal turbofan performanceAircraft propulsion   ideal turbofan performance
Aircraft propulsion ideal turbofan performance
 

Recently uploaded

J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
Kamal Acharya
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
DuvanRamosGarzon1
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 

Recently uploaded (20)

J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 

L3b reactor sizing example problems

  • 1. L3b-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Ideal CSTR Design Eq with XA: Review: Design Eq & Conversion D a d C a c B a b A  fedAmoles reactedAmoles XA  BATCH SYSTEM: A0Aj0jj XNNN            j A0A j j0TjT XNNNN  FLOW SYSTEM: A0Aj0jj XFFF            j A0A j j0TjT XFFFF  r XF V A A0A   Vr dt dX N A A 0A  Ideal Batch Reactor Design Eq with XA:    AX 0 A A 0A Vr dX Nt A A 0A r dV dX F  Ideal SS PFR Design Eq with XA:    AX 0 A A 0A r dX FV 'r dW dX F A A 0A  Ideal SS PBR Design Eq with XA:    AX 0 A A 0A 'r dX FW j≡ stoichiometric coefficient; positive for products, negative for reactants
  • 2. L3b-2 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Review: Sizing CSTRsWe can determine the volume of the CSTR required to achieve a specific conversion if we know how the reaction rate rj depends on the conversion Xj A A 0A CSTR A A0A CSTR X r F V r XF V           Ideal SS CSTR design eq. Volume is product of FA0/-rA and XA • Plot FA0/-rA vs XA (Levenspiel plot) • VCSTR is the rectangle with a base of XA,exit and a height of FA0/-rA at XA,exit  FA 0 rA X Area = Volume of CSTR X1 V  FA 0 rA    X1  X1
  • 3. L3b-3 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. FA 0 rA Area = Volume of PFR V  0 X1  FA 0 rA      dX X1 Area = VPFR or Wcatalyst, PBR dX 'r F W 1X 0 A 0A          Review: Sizing PFRs & PBRs We can determine the volume (catalyst weight) of a PFR (PBR) required to achieve a specific Xj if we know how the reaction rate rj depends on Xj A exit,AX 0 A 0A PFR exit,AX 0 A A 0APFR dX r F V r dX FV            Ideal PFR design eq. • Plot FA0/-rA vs XA (Experimentally determined numerical values) • VPFR (WPBR) is the area under the curve FA0/-rA vs XA,exit A exit,AX 0 A 0A PBR exit,AX 0 A A 0APBR dX r F W r dX FW           Ideal PBR design eq. dX r F V 1X 0 A 0A         
  • 4. L3b-4 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Numerical Evaluation of Integrals (A.4) Simpson’s one-third rule (3-point):         210 2X 0 XfXf4Xf 3 h dxxf  hXX 2 XX h 01 02    Trapezoidal rule (2-point):       10 1X 0 XfXf 2 h dxxf  01 XXh  Simpson’s three-eights rule (4-point):           3210 3X 0 XfXf3Xf3Xfh 8 3 dxxf  3 XX h 03   h2XXhXX 0201  Simpson’s five-point quadrature :             43210 4X 0 XfXf4Xf2Xf4Xf 3 h dxxf  4 XX h 04  
  • 5. L3b-5 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Review: Reactors in Series 2 CSTRs 2 PFRs CSTR→PFR VCSTR1 VPFR2 VPFR2VCSTR1 VCSTR2 VPFR1 VPFR1 VCSTR2 VCSTR1 + VPFR2 ≠ VPFR1 + CCSTR2 PFR→CSTR A A0 r- F   i j CSTRPFRPFR VVV If is monotonically increasing then: CSTR i j CSTRPFR VVV  
  • 6. L3b-6 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Chapter 2 Examples
  • 7. L3b-7 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 1. Calculate FA0/-rA for each conversion value in the tableFA0/-rA Calculate the reactor volumes for each configuration shown below for the reaction data in the table when the molar flow rate is 52 mol/min. FA0, X0 X1=0.3 X2=0.8 Config 1 X1=0.3 FA0, X0 X2=0.8 Config 2 A exit,AX in,AX A 0A nPFR dX r F V          ←Use numerical methods to solve  in,Aout,A nA 0A nCSTR XX r F V    XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n Convert to seconds→ min mol 52F 0A  00 1 52 8 60 67        A mol min m mol . F sin s -rA is in terms of mol/dm3∙s
  • 8. L3b-8 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. A( 0 0) AF r  3 3 mol 0.0053 d mol 0.867 s s m m d  164 1. Calculate FA0/-rA for each conversion value in the table XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA 164 Calculate the reactor volumes for each configuration shown below for the reaction data in the table when the molar flow rate is 52 mol/min. FA0, X0 X1=0.3 X2=0.8 Config 1 X1=0.3 FA0, X0 X2=0.8 Config 2 A exit,AX in,AX A 0A nPFR dX r F V          ←Use numerical methods to solve  in,Aout,A nA 0A nCSTR XX r F V    -rA is in terms of mol/dm3∙s 164 XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n min mol 52F 0A  00 1 52 8 60 67        A mol min m mol . F sin s Convert to seconds→
  • 9. L3b-9 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. A( 0 0) AF r  3 3 mol 0.0053 d mol 0.867 s s m m d  164 1. Calculate FA0/-rA for each conversion value in the table XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA Calculate the reactor volumes for each configuration shown below for the reaction data in the table when the molar flow rate is 52 mol/min. FA0, X0 X1=0.3 X2=0.8 Config 1 X1=0.3 FA0, X0 X2=0.8 Config 2 A exit,AX in,AX A 0A nPFR dX r F V          ←Use numerical methods to solve  in,Aout,A nA 0A nCSTR XX r F V    -rA is in terms of mol/dm3∙s 164 XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n min mol 52F 0A  00 1 52 8 60 67        A mol min m mol . F sin s Convert to seconds→ For each –rA that corresponds to a XA value, use FA0 to calculate FA0/-rA & fill in the table
  • 10. L3b-10 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. X1=0.3 FA0, X0 A( 0.85) 3A0 3 mol 0.867F s molr 0.001 dm s 867 dm    1. Calculate FA0/-rA for each conversion value in the table XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA 164 167 173 193 217 263 347 482 694 867 Calculate the reactor volumes for each configuration shown below for the reaction data in the table when the molar flow rate is 52 mol/min. FA0, X0 X1=0.3 X2=0.8 Config 1 X2=0.8 Config 2 A exit,AX in,AX A 0A nPFR dX r F V          ←Use numerical methods to solve  in,Aout,A nA 0A nCSTR XX r F V    Convert to seconds→ min mol 52F 0A  -rA is in terms of mol/dm3∙s XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n 00 1 52 8 60 67        A mol min m mol . F sin s
  • 11. L3b-11 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA 164 167 173 193 217 263 347 482 694 867 FA0, X0 X1=0.3 X2=0.8 Config 1 Reactor 1, PFR from XA0=0 to XA=0.3:                          A A AA A A0 A 0.3 A0 PFR1 A 0 A0 X 0 A X A0 A X 0.3 0.20A .X 1A 0 F 3 0.3 0 V dX 3 F F 3 rr F rr8 3 F r 4-pt rule:      1 0.3 A0 PFR A0 3 A 16 F 3 V dX 0.1 3 3 1 r 8 934 173 5167 1.6 dm              A,out 2CSTR A0 A,o A i X , nut A F XV X r     2 3 CSTR 694 0.8 3470.3 dmV Total volume for configuration 1: 51.6 dm3 + 347 dm3 = 398.6 dm3 = 399 dm3 ←Use numerical methods to solve PFR1 CSTR2 0        XA,exit A PFRn AXA,in A F V dX r
  • 12. L3b-12 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA 164 167 173 193 217 263 347 482 694 867 Reactor 1, CSTR from XA0=0 to XA=0.3: Need to evaluate at 6 pts, but since there is no 6-pt rule, break it up  0 0 1 0 3 A A . A,outCSTR A F XV X r    Total volume for configuration 2: 58 dm3 + 173 dm3 = 231 dm3 X1=0.3 FA0, X0 X2=0.8 Config 2     CSTR 3 0. 583 0193 dmV    A0 PFR2 A A 0.8 0.3 F V dX r        PFRV ... .                        263 263 34217 3 4 3 3 8 33 2 482193 694 0 08 5 7 0 30 5 3 point rule 4 point rule 3 173 dm PFR2CSTR1       0. A0 A0 PF 0.3 R2 A A A 05 . . 5 8 A0 F F V dX dX r r Must evaluate as many pts as possible when the curve isn’t flat
  • 13. L3b-13 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. ACSTR A A V X C r           0 0 CSTR A A A V C r X         00 For a given CA0, the space time  needed to achieve 80% conversion in a CSTR is 5 h. Determine (if possible) the CSTR volume required to process 2 ft3/min and achieve 80% conversion for the same reaction using the same CA0. What is the space velocity (SV) for this system? space time holding time mean residenceh V time       0 5 =5 h 0=2 ft3/min   ft min h hV min          3 60 5 2 3 V ft  600 V SV    0 1Space velocity: -1 h SV . h     0 2 5 1 1 Notice that we did not need to solve the CSTR design equation to solve this problem. Also, this answer does not depend on the type of flow reactor used. XA=0.8 A CSTR A AF r XV        0 A A CSTR A C r V X         0 0    0 0 V V   
  • 14. L3b-14 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. XA,exit PFR A A X AA,in C V dX r           0 0 A product is produced by a nonisothermal, nonelementary, multiple-reaction mechanism. Assume the volumetric flow rate is constant & the same in both reactors. Data for this reaction is shown in the graph below. Use this graph to determine which of the 2 configurations that follow give the smaller total reactor volume. FA0, X0 X1=0.3 X2=0.7 Config 2 X1=0.3 FA0, X0 X2=0.7 Config 1  A CSTR A,out A,in A V X X r C        0 0 Shown on graph XA,exit PFRn A AA,in A X V dX F r         0 CSTR A A A V X r F       0 • Since 0 is the same in both reactors, we can use this graph to compare the 2 configurations • PFR- volume is 0 multiplied by the area under the curve between XA,in & XA,out • CSTR- volume is 0 multiplied by the product of CA0/-rA,outlet times (XA,out - XA,in)
  • 15. L3b-15 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. A product is produced by a nonisothermal, nonelementary, multiple-reaction mechanism. Assume the volumetric flow rate is constant & the same in both reactors. Data for this reaction is shown in the graph below. Use this graph to determine which of the 2 configurations that follow give the smaller total reactor volume. FA0, X0 X1=0.3 X2=0.7 Config 2 X1=0.3 FA0, X0 X2=0.7 Config 1 • PFR- V is 0 multiplied by the area under the curve between XA,in & XA,out • CSTR- V is 0 multiplied by the product of CA0/-rA,outlet times (XA,out - XA,in) Config 1 Config 2 Less shaded area Config 2 (PFRXA,out=0.3 first, and CSTRXA,out=0.7 second) has the smaller VTotal XA=0.3 XA=0.7 XA=0.3 XA=0.7