SlideShare a Scribd company logo
1 of 23
L7b-1
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
Review: Fixed-Volume CSTR Start-Up
Isothermal (unusual, but simple case), well-mixed CSTR
Unsteady state: concentrations vary with time & accumulation is non-zero
Goal: Determine the time required to reach steady-state operation and
CA as a function of time
moles A in CSTR
D wrt time while
in unsteady state
In Out
- +Generation = Accumulation
A
A0 A A
dN
F F r V
dt
  
CA0u0
u0CA
Use concentration rather than conversion in the balance eqs
 
 
t 1 k
A0
A
C
1 e C
1 k
 

 
 
 
 

 
A
A0 A A
dC
C C r
dt
 
   A A
r kC
 
Integrate to find CA (t) while CSTR of 1st
order rxn is in unsteady-state:
A
A0 A A
dC
C C kC
dt
 
   
L7b-2
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
Review: Time to Reach Steady-State
 
 
t 1 k
A0
A
C
1 e C
1 k
 

 
 
 
 

 
At steady state,
t is large and: 0
A0
AS
C
C
1 k
 

In the unsteady state,
when CA = 0.99CAS:
 
 
t 1 k
A0 A0
s
C C
1 e 0.99
1 k 1 k
 
 
 
   
  
   
 
   
4.6 t
1 k




time to reach 99% (CA = 0.99CAS) of
steady-state concentration in terms of k
99% of the steady-state
concentration is achieved at: A AS
4.6 C 0.99C
1 k




When k is very small
(slow rxn), 1>>k: s
t 4.6

When k is very big
(fast rxn), 1<<k s
4.6
t
k

63% of the steady-state
concentration is achieved at: 1 k



CA = 0.63CAS
L7b-3
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
Semi-batch
FB
Review: Enhanced Yield in Semi-
Batch Reactor
V0 Vf
FD
V0 - u0t
Scenario 2: Improve the product yield obtained from a reversible reaction
       
 
A l B l C l D g
Allowing D(g) to bubble out of solution pushes equilibrium towards completion
A+B⇌
C+D
A+B
Scenario 1: Enhance selectivity of desired product over undesired side product
Higher concentrations of A favor formation of the desired product
Higher concentrations of B favor formation of the undesired side product
A
A+B
→P
V0 + u0t
V0 + u0t
Scenario 1 shown in blue. Scenario 2 shown in red.
L7b-4
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
Review: Mole Balance on A for
Semi-Batch Reactor
CBu0
V0 + u0t
In Out
- + Generation = Accumulation
A
A
dN
0 0 r V
dt
   
Use whatever units are most convenient (NA, CA, XA, etc)
A
A A A
N
C N C V
V
   A
A
dC V
r V
dt
 
A
A A
dC dV
r V V C
dt dt
  
Convert NA to CA using:
In Out
- + Generation = Accumulation
Reactor volume balance:
 
0 0
d V
0 0
dt

 u   
u = u0
  0
0
dV
dt
u
  0 0
V t V
u
  
A
A A 0
dC
r V V C
dt
u
  
Rearrange to get in
terms of dCA/dt
A 0 A
A
C dC
r
V dt
u
  
Goal: Find how CA D with time (assume reactor is well-mixed)
L7b-5
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
Review: Mole Balance on B in
Semi-Batch Reactor
CBu0
V0 + u0t
Mole balance on B:
B
B B0
dN
r V F
dt
  
In Out
- + Generation = Accumulation
B
B0 B
dN
F 0 + r V
dt
 
0
dV
dt
u 
  B
B B B0 0 B B B0 0
dC
d dV
C V r V C C V r V C
dt dt dt
u u
      
 
0 B0 B
B
B
C C
dC
r
dt V
u 
 
Substitute
Balance on B
B B
N C V

Rearrange to get in terms of dCB/dt
B
B 0 B B0 0
dC
C V r V C
dt
u u
  
Goal: Find how CB D with time (assume reactor is well-mixed)
L7b-6
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
Review: Semi-Batch Mole
Balances in Terms of NA
CBu0
V0 + u0t
A
A
dN
r V
dt

A
A
dN
0 0 r V
dt
  
In Out
- + Generation = Accumulation
0 0
N
V t V and C
V
u
  
A A A B
A
0 0
dN dN N N
r V k
dt dt V t
u
   

NB comes from basic mole balance:
B
A B0
dN
r V F
dt
 
B A B
B0
0 0
dN N N
k F
dt V t
u
   

The design eq in terms of XA can be messy. Sometimes it gives a single
equation when using Nj or Cj gives multiple reactor designs
 
A B
A 2
0 0
N N
then r k
V t
u
 

Substitute: -rA = kACACB and
Goal: Find how NA & NB D with time (reactor is well-mixed)
L7b-7
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
X=0
P0 = 20 atm
PBR, 1000 kg cat
X=?
P = ? atm
What conversion and P is
measured at the outlet of the
PBR? The rxn is isothermal at 300
K, assume ideal gas behavior, and
the feed contains pure A (g).
2A→B -rA = kCA
2 α = 0.0008/kg
k=0.1 dm6/mol∙min∙kg cat at 300 K
FA0 = 10 mol min
  A
A
A0
dX
F
d
r '
W
1. Mole balance
2. Rate law   2
A A
r kC
 
  
 
 


A0 A
A
A 0
C 1 X P
C
1 X P

3. Stoichiometry (put CA
in terms of X)
4. Combine
   
 
  
 




2 2
2
A0 A
0
A
A
0
2
A
C 1 X P
k
P
1 X
dX
dW F 
 
 
2
2
A
A0
A
2
0 0
A
1 X
kC
dX P
dW P
1 X
u 
  
   
  
5. Relate P/P0 to W
 
 
0
A
0 0
P
dP T
1 X
dW 2 T P P


 
 
  
 
 
  
1
L7b-8
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
X=0
P0 = 20 atm
PBR, 1000 kg cat
X=?
P = ? atm
What conversion and P is
measured at the outlet of the
PBR? The rxn is isothermal at 300
K, assume ideal gas behavior, and
the feed contains pure A (g).
2A→B -rA = kCA
2 α = 0.0008/kg
k=0.1 dm6/mol∙min∙kg cat at 300 K
FA0 = 10 mol min
4. Combine
 
 
2
2
A
A0
A
2
0 0
A
1 X
kC
dX P
dW P
1 X
u 
  
   
  
5. Relate P/P0 to W
 
 
0
A
0
P
dP
1 X
dW 2 P P


 
  
 
 
Simultaneously solve dXA/dW and dP/dW (or dy/dW) using Polymath
First, need to determine , CA0, & u0. Tf T0
T0
N N
N



1 2
0.5
2
 

    
What is CA0?
0
0 0 T0 0 A0
0
P
P V N RT C
RT
  
 
A0 3
3
20atm mol
C 0.813
dm
dm atm
0.082 300K
mol K
  
 

 
 

 
A0
0
A0
F
C
u 
3
0
3
10mol min dm
12.3
min
0.813mol dm
u
  
L7b-10
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
X=0
P0 = 20 atm
PBR, 1000 kg cat
X=?
P = ? atm
What conversion and P is
measured at the outlet of the
PBR? The rxn is isothermal at 300
K, assume ideal gas behavior, and
the feed contains pure A (g).
2A→B -rA = kCA
2 α = 0.0008/kg
k=0.1 dm6/mol∙min∙kg cat at 300 K
FA0 = 10 mol min
 
 
2
2
A
A0
A
2
0 0
A
1 X
kC
dX P
dW P
1 X
u 
  
   
    
 
0
A
0
P
dP
1 X
dW 2 P P


 
  
 
 
Simultaneously solve dXA/dW and dP/dW (or dy/dW) using Polymath
0.5
  
A0 3
mol
C 0.813
dm

3
0
dm
12.3
min
u 
L7b-11
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
X=0
P0 = 20 atm
PBR, 1000 kg cat
X=?
P = ? atm
What conversion and P is
measured at the outlet of the
PBR? The rxn is isothermal at 300
K, assume ideal gas behavior, and
the feed contains pure A (g).
2A→B -rA = kCA
2 α = 0.0008/kg
k=0.1 dm6/mol∙min∙kg cat at 300 K
FA0 = 10 mol min
 
 
2
2
A
A0
A
2
0 0
A
1 X
kC
dX P
dW P
1 X
u 
  
   
    
 
0
A
0
P
dP
1 X
dW 2 P P


 
  
 
 
Simultaneously solve dXA/dW and dP/dW (or dy/dW) using Polymath
0.5
  
A0 3
mol
C 0.813
dm

3
0
dm
12.3
min
u 
L7b-12
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
X = 0.93
What conversion and P is
measured at the outlet of the
PBR? The rxn is isothermal at
300 K, assume ideal gas
behavior, and the feed contains
pure A (g).
P = 14.28 atm
L7b-13
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
What conversion can be achieved in a
fluidized CSTR with the same catalyst weight
and P0 = P (ideal gas behavior, pure A feed)?
A A
A0
dX r '
dW F

  
A0 A 0
A
A 0
C 1 X T
P
C
1 X P T

   
   
  
 
1
T T0
T0
N N 1 1
0
N 1

 
  
0
A0 A
A
F X
CSTR design eq: W
r'


Use info from PBR to determine FA0, CA0 & k
A A
A0
dX kC
dW F
 
   
A A0 A A A0 A
0
P 0.0008
C C 1 X C C 1 X 1 W
P kg
   
     
   
 
 
Isothermal and =0. Ergun eq for P/P0 becomes:
0
P
1 W
P

 
 
A
A
A0
A0
F
k
W
C
X
1 X
 

9atm
1 1000kg
20atm

  0.2025 1 1000kg

   1
0.0008 kg
 

Plug into CA:
Do not plug in P and P0 that occurred in PBR
yet! Use Ergun eq to get P/P0 as a function of
W, plug into design eq & integrate over W!
Use PBR expt
parameters to
solve for α
L7b-14
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
What conversion can be achieved in a
fluidized CSTR with the same catalyst weight
and P0 = P (ideal gas behavior, pure A feed)?
A0 A
A
F X
CSTR design eq: W
r'


Use info from PBR to determine FA0, CA0 & k
A A
A0
dX kC
dW F

 
A A0 A
0.0008
C C 1 X 1 W
kg
 
    
 
 
A
A
A0
A0
F
k
W
C
X
1 X
 

Plug CA into PBR
design eq:
 
A0
A
A
A0
kC
dX 0.0008
1 X 1 W
dW F kg
 
 
   
 
 
 
 
 
 
A0 A
A
A0
0.0008
k C 1 X 1 W
kg
dX
dW F
 
 
 
 
 
 
 
 
 
Rearrange
Integrate so that we can
get values of unknowns
L7b-15
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
What conversion can be achieved in a
fluidized CSTR with the same catalyst weight
and P0 = P (ideal gas behavior, pure A feed)?
A0 A
A
F X
CSTR design eq: W
r'


 
A
A
A0
A0
F
k
W
C
X
1 X
 

 
A
A
A
0
A0
kC
dX 0.0008
PBR design eq : 1 X 1 W
dW kg
F
 
 
  
 
 
 
 
 
 
 
 
  
 
   
 
  
 
A0
A
X W
A
A
A
0 0 0
dX 0.00
kC
F
08
1 W dW
1 X kg
 
 
 
   
 
     
   
      
 
 

      
 
 
 
 
1000k
A 2
0
A0
g
3
0
1 2 1 0.0008
ln 1 1 W
1 0.141 3 0.000
kC
F 8 kg kg
 
 
 
 
 
   
 
 
   
 
   
 
 
  
   
 
 
 
 
1000kg
3
2
A
0
A0
A0
1 2 0.0008
ln 1 1 W
1 X 3 0.0008
kC
F kg kg
L7b-16
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
What conversion can be achieved in a
fluidized CSTR with the same catalyst weight
and P0 = P (ideal gas behavior, pure A feed)?
A0 A
A
F X
CSTR design eq: W
r'


 
A
A
A0
A0
F
k
W
C
X
1 X
 

 
A
A
A
0
A0
kC
dX 0.0008
PBR design eq : 1 X 1 W
dW kg
F
 
 
  
 
 
 
 
 
 
 
 
   
 
     
   
      
 
 
      
 
 
 
 
A0
A0
1000kg
3
2
0
1 2 1 0.0008
ln 1 1 W
0.859 3 0.0008 kg kg
kC
F
 
 A0
A0
kC
F
0.152 758.8kg
 
  
4 1 A0
A0
2.0 10 kg
kC
F
Plug this value into
the CSTR eq
   
 
   
   
 
   
      
   
 
   
   
 
   
   
 
A
3 3
2 2
0
A0
0.0008 0.0008
0.152 833.3 kg 1 1 1000kg 833.3 kg 1 1 0k
k
g
kg
C
F kg
   
 
 
     
 
 
 
 
 
A0
A
3
0
2
0.152 833.3 kg 1 1 0.8 833.3 kg 1 1
kC
F
 
  
 
 
A0
A0
0.152 833.3 kg 1 0.0894
kC
F
L7b-17
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
What conversion can be achieved in a
fluidized CSTR with the same catalyst weight
and P0 = P (ideal gas behavior, pure A feed)?
A0 A
A
F X
CSTR design eq: W
r'


 
A
A
A
A0
0
F
kC
X
W
1 X


4 1 A0
A0
kC
2.0 10 kg
F
 


 
4
A
A
1
1
2.0 10 k
X
1000kg
1 X
g
 



 
A
A A
A
X
0.2 0.2 0.2X X
1 X
   

A A
0.2 1.2X 0.17 X
   
Conversion in fluidized CSTR, no pressure drop
L7b-18
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
A + 2B → C Elementary rxn, feed is a stoichiometric mixture
Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction
P0= 6 atm; T = 443K & u0 = 50 dm3/min
3
mol
k 53 at 300K with E=80 kJ/mol, elementary rxn
kg cat min atm

 
How many kg of catalyst is required to achieve XA = 0.8?
1. What is CA0? A0 A0 T0
C y C
 A0
A0
T0
N
y =
N
T0
T0
N P
C
V RT
 
A0 A A0 0 A
A A
F X C X
W W
r' r'
u
  
 
Known: u0 and XA
Unknown: CA0 & -r’A
Fluidized
CSTR
design eq:
Feed is a stoichiometric mixture
→ 1 part A, 2 parts B A0
1 1
y =
1 2 3


A0 A0
P
C y
RT
 
  
  A0 3
mol
C 0.055
dm
 
A0 3
1 6atm
C
3 atm dm
0.082 443K
mol K
 
   
 
  
 
 

 
L7b-19
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
A + 2B → C Elementary rxn, feed is a stoichiometric mixture
Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction
P0= 6 atm; T = 443K & u0 = 50 dm3/min
How many kg of catalyst is required to achieve XA = 0.8?
2. What is –r’A?
A0 A A0 0 A
A A
F X C X
W W
r' r'
u
  
 
Known: u0, XA, & CA0 (0.055 mol/dm3)
Unknown: -r’A
  3
mol
Units on k are:
kg cat min atm
Express rate law in terms
of partial pressure, not Cj

 A
2
B
A kP P
r '
3
mol
k 53 at 300K with E=80 kJ/mol, elementary rxn
kg cat min atm

 
2a. What is PA?
 
 


j
0
j
A
A
j j
C
C
X
1 X


For ideal, isobaric,
isothermal rxn:
 
i i
i
N P
C
V RT
Substitute for Cj & Cj0
 
 
 
 
 
 

j j A
A
j0
j
P
P RT
R
X
1 X
T


 
 
 

j0 j j A
j
A
P X
P
1 X


L7b-20
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
A + 2B → C Elementary rxn, feed is a stoichiometric mixture
Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction
P0= 6 atm; T = 443K & u0 = 50 dm3/min
How many kg of catalyst is required to achieve XA = 0.8?
2. What is –r’A?
A0 A A0 0 A
A A
F X C X
W W
r' r'
u
  
 
Known: u0, XA, & CA0 (0.055 mol/dm3)
Unknown: -r’A
Units on k necessitate expressing rate law in
terms of partial pressure, not Cj
3
mol
k 53 at 300K with E=80 kJ/mol, elementary rxn
kg cat min atm

 
 
j0 j j A
j
A
P X
P
1 X


 


2a. What is PA?
A=-1 A=1
j0 j0 0 j0 j0
J
A0 A0 0 A0 A0
F C C y
F C C y
u
u
    
T T0
A0
T0
N N
y
N
 

  A0
1 2
y (1 2 1)
3 3
   
       
A0 A0 T0
P y P
 A0 A0
1
P 6atm P 2atm
3
 
   
 
 
 
 


 A
A
A
2atm 1 X
P
1 2 3 X

 A
2
B
A kP P
r'
L7b-21
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
A + 2B → C Elementary rxn, feed is a stoichiometric mixture
Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction
P0= 6 atm; T = 443K & u0 = 50 dm3/min
How many kg of catalyst is required to achieve XA = 0.8?
2. What is –r’A?
A0 A A0 0 A
A A
F X C X
W W
r' r'
u
  
 
Known: u0, XA, & CA0 (0.055 mol/dm3)
Unknown: -r’A
3
mol
k 53 at 300K with E=80 kJ/mol, elementary rxn
kg cat min atm

 
2b. What is PB? B=-2
j0 j0 j0
J
A0 A0 A0
F C y
F C y
   
2
3
   B0
B
A0
F 2
2
F 1
   
 
 


B
A0 j j A
A
P
P X
1 X


 
 



 A
B
A
4atm 1 X
P
1 2 3 X
 
 

 

B
A
A
2atm 2 2X
1 2 3 X
P
 
 


 A
A
A
2atm 1 X
P
1 2 3 X

 A
2
B
A kP P
r'
L7b-22
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
A + 2B → C Elementary rxn, feed is a stoichiometric mixture
Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction
P0= 6 atm; T = 443K & u0 = 50 dm3/min
How many kg of catalyst is required to achieve XA = 0.8?
2. What is –r’A?
A0 A A0 0 A
A A
F X C X
W W
r' r'
u
  
 
Known: u0, XA, & CA0 (0.055 mol/dm3)
Unknown: -r’A
3
mol
k 53 at 300K with E=80 kJ/mol, elementary rxn
kg cat min atm

 
 
 


 A
B
A
4atm 1 X
P
1 2 3 X
 
 


 A
A
A
2atm 1 X
P
1 2 3 X
2c. What is k at 443K?
 
 

  
  

E 1 1
R T T
1 2
44 0
K 3
3 0 K
k e
k
  

 
 
  
 
 
   
 
 
 
80000J mol 1 1
8.314J mol K 300K 443K
3
443K
mol
53 e
kgcat min atm
k




 6
443K 3
mol
k 1.663 10
kgcat min atm

 A
2
B
A kP P
r'
L7b-23
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
2. What is –r’A?
A0 A A0 0 A
A A
F X C X
W W
r' r'
u
  
 
Known: u0, XA, & CA0 (0.055 mol/dm3)
Unknown: -r’A

 A
2
B
A kP P
r '  
 


 A
B
A
4atm 1 X
P
1 2 3 X
 
 


 A
A
A
2atm 1 X
P
1 2 3 X
 
 
6
443K 3
mol
k 1.663 10
kgcat min atm
 
 
 
 
 


 

 
 

 
  


 


 
 
 A
A
3
2
A
A
A
6 2a 4a
mol
1.663 10
kgcat min at
tm 1 X
1 2 3
tm 1 X
1 2 3 X X
m
r '
 
 
 
 
  
 
 
 
   
  
  


3
6 3 A
A 3 3
A
1 X
mol
r' 1.663 10 32atm
kgcat min atm 1 2 3 X
A + 2B → C Elementary rxn, feed is a stoichiometric mixture
Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction
P0= 6 atm; T = 443K & u0 = 50 dm3/min
How many kg of catalyst is required to achieve XA = 0.8?
3
mol
k 53 at 300K with E=80 kJ/mol, elementary rxn
kg cat min atm

 
L7b-24
Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved.
How many kg of catalyst is required to achieve XA = 0.8?
3
mol
k 53 at 300K with E=80 kJ/mol, elementary rxn
kg cat min atm

 
 
 
 
 
 
 
  
  
 
  
 

 
   
  
   

3
3
3
6 3
3 3
1 0.8
mol
1.663 10 32atm
k
dm
50
gcat min atm 1 2 3 0.8
mol
0.055
d
W
8
mi
0.
m n
 
 
 
 
  
 
 
 
   
  
  


3
6 3 A
A 3 3
A
1 X
mol
r' 1.663 10 32atm
kgcat min atm 1 2 3 X

 A0 0
A
A
C X
W
r '
u
CA0 =0.055 mol/dm3
7
W 5.24 10 kg cat

 
A + 2B → C Elementary rxn, feed is a stoichiometric mixture
Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction
P0= 6 atm; T = 443K & u0 = 50 dm3/min

More Related Content

What's hot

Ethylene Plant Design Considerations
Ethylene Plant Design ConsiderationsEthylene Plant Design Considerations
Ethylene Plant Design ConsiderationsGerard B. Hawkins
 
FIREBALL FORMATION AND COMBUSTION OPTIMIZATION IN A BOILER
FIREBALL FORMATION AND COMBUSTION OPTIMIZATION  IN A BOILERFIREBALL FORMATION AND COMBUSTION OPTIMIZATION  IN A BOILER
FIREBALL FORMATION AND COMBUSTION OPTIMIZATION IN A BOILERkumaraswamy Hiremath
 
Fired Heater Efficiency Guide
Fired Heater Efficiency GuideFired Heater Efficiency Guide
Fired Heater Efficiency Guidejustinforth
 
Ejercicios de Química Orgánica Básica - 4.Fenoles, éteres, aminas, nitroderiv...
Ejercicios de Química Orgánica Básica - 4.Fenoles, éteres, aminas, nitroderiv...Ejercicios de Química Orgánica Básica - 4.Fenoles, éteres, aminas, nitroderiv...
Ejercicios de Química Orgánica Básica - 4.Fenoles, éteres, aminas, nitroderiv...Triplenlace Química
 
Circulating Fluidized Bed Boiler (cfb) training module
Circulating Fluidized Bed Boiler (cfb) training module Circulating Fluidized Bed Boiler (cfb) training module
Circulating Fluidized Bed Boiler (cfb) training module Alexander Ual
 
60167331 secondary-reformer
60167331 secondary-reformer60167331 secondary-reformer
60167331 secondary-reformerKhai Huynh
 
Boiler efficiency by loss Method
Boiler efficiency by loss MethodBoiler efficiency by loss Method
Boiler efficiency by loss MethodRajeev Saini
 
The Benefits and Disadvantages of Potash in Steam Reforming
The Benefits and Disadvantages of Potash in Steam ReformingThe Benefits and Disadvantages of Potash in Steam Reforming
The Benefits and Disadvantages of Potash in Steam ReformingGerard B. Hawkins
 

What's hot (15)

Ethylene Plant Design Considerations
Ethylene Plant Design ConsiderationsEthylene Plant Design Considerations
Ethylene Plant Design Considerations
 
FIREBALL FORMATION AND COMBUSTION OPTIMIZATION IN A BOILER
FIREBALL FORMATION AND COMBUSTION OPTIMIZATION  IN A BOILERFIREBALL FORMATION AND COMBUSTION OPTIMIZATION  IN A BOILER
FIREBALL FORMATION AND COMBUSTION OPTIMIZATION IN A BOILER
 
Furnace Draft.docx
Furnace Draft.docxFurnace Draft.docx
Furnace Draft.docx
 
Cracking the Ethane Cracker
Cracking the Ethane CrackerCracking the Ethane Cracker
Cracking the Ethane Cracker
 
Fired Heater Efficiency Guide
Fired Heater Efficiency GuideFired Heater Efficiency Guide
Fired Heater Efficiency Guide
 
Ejercicios de Química Orgánica Básica - 4.Fenoles, éteres, aminas, nitroderiv...
Ejercicios de Química Orgánica Básica - 4.Fenoles, éteres, aminas, nitroderiv...Ejercicios de Química Orgánica Básica - 4.Fenoles, éteres, aminas, nitroderiv...
Ejercicios de Química Orgánica Básica - 4.Fenoles, éteres, aminas, nitroderiv...
 
Circulating Fluidized Bed Boiler (cfb) training module
Circulating Fluidized Bed Boiler (cfb) training module Circulating Fluidized Bed Boiler (cfb) training module
Circulating Fluidized Bed Boiler (cfb) training module
 
60167331 secondary-reformer
60167331 secondary-reformer60167331 secondary-reformer
60167331 secondary-reformer
 
C2 Acetylene Hydrogenation
C2 Acetylene HydrogenationC2 Acetylene Hydrogenation
C2 Acetylene Hydrogenation
 
Boiler efficiency by loss Method
Boiler efficiency by loss MethodBoiler efficiency by loss Method
Boiler efficiency by loss Method
 
Ntpc Ltd.
Ntpc Ltd.Ntpc Ltd.
Ntpc Ltd.
 
OBTENCION DE ALCANOS.pptx
OBTENCION DE ALCANOS.pptxOBTENCION DE ALCANOS.pptx
OBTENCION DE ALCANOS.pptx
 
Kbr
KbrKbr
Kbr
 
Steam Turbine
Steam TurbineSteam Turbine
Steam Turbine
 
The Benefits and Disadvantages of Potash in Steam Reforming
The Benefits and Disadvantages of Potash in Steam ReformingThe Benefits and Disadvantages of Potash in Steam Reforming
The Benefits and Disadvantages of Potash in Steam Reforming
 

Similar to L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx

Thermodynamics Hw#4
Thermodynamics Hw#4Thermodynamics Hw#4
Thermodynamics Hw#4littlepine13
 
L18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptxL18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptxSatyamJaiswal90
 
L9b Selectivity example problems.pptx
L9b Selectivity example problems.pptxL9b Selectivity example problems.pptx
L9b Selectivity example problems.pptxssuserc6fd3e
 
slides-matbal-2up.pdf
slides-matbal-2up.pdfslides-matbal-2up.pdf
slides-matbal-2up.pdfKETEM1
 
Reaktor Alir Tangki Berpengaduk
Reaktor Alir Tangki BerpengadukReaktor Alir Tangki Berpengaduk
Reaktor Alir Tangki BerpengadukLeo Simanjuntak
 
Thermodynamics lecture 5
Thermodynamics lecture 5Thermodynamics lecture 5
Thermodynamics lecture 5Archit Gadhok
 
Thermodynamics lecture 9
Thermodynamics lecture 9Thermodynamics lecture 9
Thermodynamics lecture 9Archit Gadhok
 
The Material Balance for Chemical Reactors
The Material Balance for Chemical ReactorsThe Material Balance for Chemical Reactors
The Material Balance for Chemical ReactorsMagnusMG
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.Lawrence kok
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.Lawrence kok
 
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.Lawrence kok
 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.pptBlahBeleh
 

Similar to L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx (20)

Thermodynamics Hw#4
Thermodynamics Hw#4Thermodynamics Hw#4
Thermodynamics Hw#4
 
L18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptxL18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptx
 
Reactor3 (2)
Reactor3 (2)Reactor3 (2)
Reactor3 (2)
 
L9b Selectivity example problems.pptx
L9b Selectivity example problems.pptxL9b Selectivity example problems.pptx
L9b Selectivity example problems.pptx
 
slides-matbal-2up.pdf
slides-matbal-2up.pdfslides-matbal-2up.pdf
slides-matbal-2up.pdf
 
Reaktor Alir Tangki Berpengaduk
Reaktor Alir Tangki BerpengadukReaktor Alir Tangki Berpengaduk
Reaktor Alir Tangki Berpengaduk
 
Thermodynamics lecture 5
Thermodynamics lecture 5Thermodynamics lecture 5
Thermodynamics lecture 5
 
ideal reactors
ideal reactorsideal reactors
ideal reactors
 
Thermodynamics lecture 9
Thermodynamics lecture 9Thermodynamics lecture 9
Thermodynamics lecture 9
 
Chapter_7.pdf
Chapter_7.pdfChapter_7.pdf
Chapter_7.pdf
 
Ch.12
Ch.12Ch.12
Ch.12
 
Lec4_PDF.pdf
Lec4_PDF.pdfLec4_PDF.pdf
Lec4_PDF.pdf
 
conversion and reactor sizing
conversion and reactor sizingconversion and reactor sizing
conversion and reactor sizing
 
The Material Balance for Chemical Reactors
The Material Balance for Chemical ReactorsThe Material Balance for Chemical Reactors
The Material Balance for Chemical Reactors
 
L3b reactor sizing example problems
L3b reactor sizing example problemsL3b reactor sizing example problems
L3b reactor sizing example problems
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
 
Ch04
Ch04Ch04
Ch04
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
 
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.ppt
 

Recently uploaded

MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 

Recently uploaded (20)

MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 

L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx

  • 1. L7b-1 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. Review: Fixed-Volume CSTR Start-Up Isothermal (unusual, but simple case), well-mixed CSTR Unsteady state: concentrations vary with time & accumulation is non-zero Goal: Determine the time required to reach steady-state operation and CA as a function of time moles A in CSTR D wrt time while in unsteady state In Out - +Generation = Accumulation A A0 A A dN F F r V dt    CA0u0 u0CA Use concentration rather than conversion in the balance eqs     t 1 k A0 A C 1 e C 1 k               A A0 A A dC C C r dt      A A r kC   Integrate to find CA (t) while CSTR of 1st order rxn is in unsteady-state: A A0 A A dC C C kC dt      
  • 2. L7b-2 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. Review: Time to Reach Steady-State     t 1 k A0 A C 1 e C 1 k               At steady state, t is large and: 0 A0 AS C C 1 k    In the unsteady state, when CA = 0.99CAS:     t 1 k A0 A0 s C C 1 e 0.99 1 k 1 k                        4.6 t 1 k     time to reach 99% (CA = 0.99CAS) of steady-state concentration in terms of k 99% of the steady-state concentration is achieved at: A AS 4.6 C 0.99C 1 k     When k is very small (slow rxn), 1>>k: s t 4.6  When k is very big (fast rxn), 1<<k s 4.6 t k  63% of the steady-state concentration is achieved at: 1 k    CA = 0.63CAS
  • 3. L7b-3 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. Semi-batch FB Review: Enhanced Yield in Semi- Batch Reactor V0 Vf FD V0 - u0t Scenario 2: Improve the product yield obtained from a reversible reaction           A l B l C l D g Allowing D(g) to bubble out of solution pushes equilibrium towards completion A+B⇌ C+D A+B Scenario 1: Enhance selectivity of desired product over undesired side product Higher concentrations of A favor formation of the desired product Higher concentrations of B favor formation of the undesired side product A A+B →P V0 + u0t V0 + u0t Scenario 1 shown in blue. Scenario 2 shown in red.
  • 4. L7b-4 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. Review: Mole Balance on A for Semi-Batch Reactor CBu0 V0 + u0t In Out - + Generation = Accumulation A A dN 0 0 r V dt     Use whatever units are most convenient (NA, CA, XA, etc) A A A A N C N C V V    A A dC V r V dt   A A A dC dV r V V C dt dt    Convert NA to CA using: In Out - + Generation = Accumulation Reactor volume balance:   0 0 d V 0 0 dt   u    u = u0   0 0 dV dt u   0 0 V t V u    A A A 0 dC r V V C dt u    Rearrange to get in terms of dCA/dt A 0 A A C dC r V dt u    Goal: Find how CA D with time (assume reactor is well-mixed)
  • 5. L7b-5 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. Review: Mole Balance on B in Semi-Batch Reactor CBu0 V0 + u0t Mole balance on B: B B B0 dN r V F dt    In Out - + Generation = Accumulation B B0 B dN F 0 + r V dt   0 dV dt u    B B B B0 0 B B B0 0 dC d dV C V r V C C V r V C dt dt dt u u          0 B0 B B B C C dC r dt V u    Substitute Balance on B B B N C V  Rearrange to get in terms of dCB/dt B B 0 B B0 0 dC C V r V C dt u u    Goal: Find how CB D with time (assume reactor is well-mixed)
  • 6. L7b-6 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. Review: Semi-Batch Mole Balances in Terms of NA CBu0 V0 + u0t A A dN r V dt  A A dN 0 0 r V dt    In Out - + Generation = Accumulation 0 0 N V t V and C V u    A A A B A 0 0 dN dN N N r V k dt dt V t u      NB comes from basic mole balance: B A B0 dN r V F dt   B A B B0 0 0 dN N N k F dt V t u      The design eq in terms of XA can be messy. Sometimes it gives a single equation when using Nj or Cj gives multiple reactor designs   A B A 2 0 0 N N then r k V t u    Substitute: -rA = kACACB and Goal: Find how NA & NB D with time (reactor is well-mixed)
  • 7. L7b-7 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. X=0 P0 = 20 atm PBR, 1000 kg cat X=? P = ? atm What conversion and P is measured at the outlet of the PBR? The rxn is isothermal at 300 K, assume ideal gas behavior, and the feed contains pure A (g). 2A→B -rA = kCA 2 α = 0.0008/kg k=0.1 dm6/mol∙min∙kg cat at 300 K FA0 = 10 mol min   A A A0 dX F d r ' W 1. Mole balance 2. Rate law   2 A A r kC            A0 A A A 0 C 1 X P C 1 X P  3. Stoichiometry (put CA in terms of X) 4. Combine                2 2 2 A0 A 0 A A 0 2 A C 1 X P k P 1 X dX dW F      2 2 A A0 A 2 0 0 A 1 X kC dX P dW P 1 X u            5. Relate P/P0 to W     0 A 0 0 P dP T 1 X dW 2 T P P                 1
  • 8. L7b-8 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. X=0 P0 = 20 atm PBR, 1000 kg cat X=? P = ? atm What conversion and P is measured at the outlet of the PBR? The rxn is isothermal at 300 K, assume ideal gas behavior, and the feed contains pure A (g). 2A→B -rA = kCA 2 α = 0.0008/kg k=0.1 dm6/mol∙min∙kg cat at 300 K FA0 = 10 mol min 4. Combine     2 2 A A0 A 2 0 0 A 1 X kC dX P dW P 1 X u            5. Relate P/P0 to W     0 A 0 P dP 1 X dW 2 P P            Simultaneously solve dXA/dW and dP/dW (or dy/dW) using Polymath First, need to determine , CA0, & u0. Tf T0 T0 N N N    1 2 0.5 2         What is CA0? 0 0 0 T0 0 A0 0 P P V N RT C RT      A0 3 3 20atm mol C 0.813 dm dm atm 0.082 300K mol K              A0 0 A0 F C u  3 0 3 10mol min dm 12.3 min 0.813mol dm u   
  • 9. L7b-10 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. X=0 P0 = 20 atm PBR, 1000 kg cat X=? P = ? atm What conversion and P is measured at the outlet of the PBR? The rxn is isothermal at 300 K, assume ideal gas behavior, and the feed contains pure A (g). 2A→B -rA = kCA 2 α = 0.0008/kg k=0.1 dm6/mol∙min∙kg cat at 300 K FA0 = 10 mol min     2 2 A A0 A 2 0 0 A 1 X kC dX P dW P 1 X u                0 A 0 P dP 1 X dW 2 P P            Simultaneously solve dXA/dW and dP/dW (or dy/dW) using Polymath 0.5    A0 3 mol C 0.813 dm  3 0 dm 12.3 min u 
  • 10. L7b-11 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. X=0 P0 = 20 atm PBR, 1000 kg cat X=? P = ? atm What conversion and P is measured at the outlet of the PBR? The rxn is isothermal at 300 K, assume ideal gas behavior, and the feed contains pure A (g). 2A→B -rA = kCA 2 α = 0.0008/kg k=0.1 dm6/mol∙min∙kg cat at 300 K FA0 = 10 mol min     2 2 A A0 A 2 0 0 A 1 X kC dX P dW P 1 X u                0 A 0 P dP 1 X dW 2 P P            Simultaneously solve dXA/dW and dP/dW (or dy/dW) using Polymath 0.5    A0 3 mol C 0.813 dm  3 0 dm 12.3 min u 
  • 11. L7b-12 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. X = 0.93 What conversion and P is measured at the outlet of the PBR? The rxn is isothermal at 300 K, assume ideal gas behavior, and the feed contains pure A (g). P = 14.28 atm
  • 12. L7b-13 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. What conversion can be achieved in a fluidized CSTR with the same catalyst weight and P0 = P (ideal gas behavior, pure A feed)? A A A0 dX r ' dW F     A0 A 0 A A 0 C 1 X T P C 1 X P T               1 T T0 T0 N N 1 1 0 N 1       0 A0 A A F X CSTR design eq: W r'   Use info from PBR to determine FA0, CA0 & k A A A0 dX kC dW F       A A0 A A A0 A 0 P 0.0008 C C 1 X C C 1 X 1 W P kg                   Isothermal and =0. Ergun eq for P/P0 becomes: 0 P 1 W P      A A A0 A0 F k W C X 1 X    9atm 1 1000kg 20atm    0.2025 1 1000kg     1 0.0008 kg    Plug into CA: Do not plug in P and P0 that occurred in PBR yet! Use Ergun eq to get P/P0 as a function of W, plug into design eq & integrate over W! Use PBR expt parameters to solve for α
  • 13. L7b-14 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. What conversion can be achieved in a fluidized CSTR with the same catalyst weight and P0 = P (ideal gas behavior, pure A feed)? A0 A A F X CSTR design eq: W r'   Use info from PBR to determine FA0, CA0 & k A A A0 dX kC dW F    A A0 A 0.0008 C C 1 X 1 W kg            A A A0 A0 F k W C X 1 X    Plug CA into PBR design eq:   A0 A A A0 kC dX 0.0008 1 X 1 W dW F kg                     A0 A A A0 0.0008 k C 1 X 1 W kg dX dW F                   Rearrange Integrate so that we can get values of unknowns
  • 14. L7b-15 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. What conversion can be achieved in a fluidized CSTR with the same catalyst weight and P0 = P (ideal gas behavior, pure A feed)? A0 A A F X CSTR design eq: W r'     A A A0 A0 F k W C X 1 X      A A A 0 A0 kC dX 0.0008 PBR design eq : 1 X 1 W dW kg F                                        A0 A X W A A A 0 0 0 dX 0.00 kC F 08 1 W dW 1 X kg                                                  1000k A 2 0 A0 g 3 0 1 2 1 0.0008 ln 1 1 W 1 0.141 3 0.000 kC F 8 kg kg                                                1000kg 3 2 A 0 A0 A0 1 2 0.0008 ln 1 1 W 1 X 3 0.0008 kC F kg kg
  • 15. L7b-16 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. What conversion can be achieved in a fluidized CSTR with the same catalyst weight and P0 = P (ideal gas behavior, pure A feed)? A0 A A F X CSTR design eq: W r'     A A A0 A0 F k W C X 1 X      A A A 0 A0 kC dX 0.0008 PBR design eq : 1 X 1 W dW kg F                                                                  A0 A0 1000kg 3 2 0 1 2 1 0.0008 ln 1 1 W 0.859 3 0.0008 kg kg kC F    A0 A0 kC F 0.152 758.8kg      4 1 A0 A0 2.0 10 kg kC F Plug this value into the CSTR eq                                                      A 3 3 2 2 0 A0 0.0008 0.0008 0.152 833.3 kg 1 1 1000kg 833.3 kg 1 1 0k k g kg C F kg                         A0 A 3 0 2 0.152 833.3 kg 1 1 0.8 833.3 kg 1 1 kC F          A0 A0 0.152 833.3 kg 1 0.0894 kC F
  • 16. L7b-17 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. What conversion can be achieved in a fluidized CSTR with the same catalyst weight and P0 = P (ideal gas behavior, pure A feed)? A0 A A F X CSTR design eq: W r'     A A A A0 0 F kC X W 1 X   4 1 A0 A0 kC 2.0 10 kg F       4 A A 1 1 2.0 10 k X 1000kg 1 X g        A A A A X 0.2 0.2 0.2X X 1 X      A A 0.2 1.2X 0.17 X     Conversion in fluidized CSTR, no pressure drop
  • 17. L7b-18 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. A + 2B → C Elementary rxn, feed is a stoichiometric mixture Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction P0= 6 atm; T = 443K & u0 = 50 dm3/min 3 mol k 53 at 300K with E=80 kJ/mol, elementary rxn kg cat min atm    How many kg of catalyst is required to achieve XA = 0.8? 1. What is CA0? A0 A0 T0 C y C  A0 A0 T0 N y = N T0 T0 N P C V RT   A0 A A0 0 A A A F X C X W W r' r' u      Known: u0 and XA Unknown: CA0 & -r’A Fluidized CSTR design eq: Feed is a stoichiometric mixture → 1 part A, 2 parts B A0 1 1 y = 1 2 3   A0 A0 P C y RT        A0 3 mol C 0.055 dm   A0 3 1 6atm C 3 atm dm 0.082 443K mol K                  
  • 18. L7b-19 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. A + 2B → C Elementary rxn, feed is a stoichiometric mixture Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction P0= 6 atm; T = 443K & u0 = 50 dm3/min How many kg of catalyst is required to achieve XA = 0.8? 2. What is –r’A? A0 A A0 0 A A A F X C X W W r' r' u      Known: u0, XA, & CA0 (0.055 mol/dm3) Unknown: -r’A   3 mol Units on k are: kg cat min atm Express rate law in terms of partial pressure, not Cj   A 2 B A kP P r ' 3 mol k 53 at 300K with E=80 kJ/mol, elementary rxn kg cat min atm    2a. What is PA?       j 0 j A A j j C C X 1 X   For ideal, isobaric, isothermal rxn:   i i i N P C V RT Substitute for Cj & Cj0              j j A A j0 j P P RT R X 1 X T          j0 j j A j A P X P 1 X  
  • 19. L7b-20 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. A + 2B → C Elementary rxn, feed is a stoichiometric mixture Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction P0= 6 atm; T = 443K & u0 = 50 dm3/min How many kg of catalyst is required to achieve XA = 0.8? 2. What is –r’A? A0 A A0 0 A A A F X C X W W r' r' u      Known: u0, XA, & CA0 (0.055 mol/dm3) Unknown: -r’A Units on k necessitate expressing rate law in terms of partial pressure, not Cj 3 mol k 53 at 300K with E=80 kJ/mol, elementary rxn kg cat min atm      j0 j j A j A P X P 1 X       2a. What is PA? A=-1 A=1 j0 j0 0 j0 j0 J A0 A0 0 A0 A0 F C C y F C C y u u      T T0 A0 T0 N N y N      A0 1 2 y (1 2 1) 3 3             A0 A0 T0 P y P  A0 A0 1 P 6atm P 2atm 3                  A A A 2atm 1 X P 1 2 3 X   A 2 B A kP P r'
  • 20. L7b-21 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. A + 2B → C Elementary rxn, feed is a stoichiometric mixture Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction P0= 6 atm; T = 443K & u0 = 50 dm3/min How many kg of catalyst is required to achieve XA = 0.8? 2. What is –r’A? A0 A A0 0 A A A F X C X W W r' r' u      Known: u0, XA, & CA0 (0.055 mol/dm3) Unknown: -r’A 3 mol k 53 at 300K with E=80 kJ/mol, elementary rxn kg cat min atm    2b. What is PB? B=-2 j0 j0 j0 J A0 A0 A0 F C y F C y     2 3    B0 B A0 F 2 2 F 1           B A0 j j A A P P X 1 X           A B A 4atm 1 X P 1 2 3 X         B A A 2atm 2 2X 1 2 3 X P        A A A 2atm 1 X P 1 2 3 X   A 2 B A kP P r'
  • 21. L7b-22 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. A + 2B → C Elementary rxn, feed is a stoichiometric mixture Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction P0= 6 atm; T = 443K & u0 = 50 dm3/min How many kg of catalyst is required to achieve XA = 0.8? 2. What is –r’A? A0 A A0 0 A A A F X C X W W r' r' u      Known: u0, XA, & CA0 (0.055 mol/dm3) Unknown: -r’A 3 mol k 53 at 300K with E=80 kJ/mol, elementary rxn kg cat min atm           A B A 4atm 1 X P 1 2 3 X        A A A 2atm 1 X P 1 2 3 X 2c. What is k at 443K?             E 1 1 R T T 1 2 44 0 K 3 3 0 K k e k                          80000J mol 1 1 8.314J mol K 300K 443K 3 443K mol 53 e kgcat min atm k      6 443K 3 mol k 1.663 10 kgcat min atm   A 2 B A kP P r'
  • 22. L7b-23 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. 2. What is –r’A? A0 A A0 0 A A A F X C X W W r' r' u      Known: u0, XA, & CA0 (0.055 mol/dm3) Unknown: -r’A   A 2 B A kP P r '        A B A 4atm 1 X P 1 2 3 X        A A A 2atm 1 X P 1 2 3 X     6 443K 3 mol k 1.663 10 kgcat min atm                                     A A 3 2 A A A 6 2a 4a mol 1.663 10 kgcat min at tm 1 X 1 2 3 tm 1 X 1 2 3 X X m r '                              3 6 3 A A 3 3 A 1 X mol r' 1.663 10 32atm kgcat min atm 1 2 3 X A + 2B → C Elementary rxn, feed is a stoichiometric mixture Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction P0= 6 atm; T = 443K & u0 = 50 dm3/min How many kg of catalyst is required to achieve XA = 0.8? 3 mol k 53 at 300K with E=80 kJ/mol, elementary rxn kg cat min atm   
  • 23. L7b-24 Copyright © 2014, Prof. M. L. Kraft (mlkraft@illinois.edu). All rights reserved. How many kg of catalyst is required to achieve XA = 0.8? 3 mol k 53 at 300K with E=80 kJ/mol, elementary rxn kg cat min atm                                            3 3 3 6 3 3 3 1 0.8 mol 1.663 10 32atm k dm 50 gcat min atm 1 2 3 0.8 mol 0.055 d W 8 mi 0. m n                              3 6 3 A A 3 3 A 1 X mol r' 1.663 10 32atm kgcat min atm 1 2 3 X   A0 0 A A C X W r ' u CA0 =0.055 mol/dm3 7 W 5.24 10 kg cat    A + 2B → C Elementary rxn, feed is a stoichiometric mixture Fluidized CSTR, isothermal, isobaric, ideal, gas-phase reaction P0= 6 atm; T = 443K & u0 = 50 dm3/min