SlideShare a Scribd company logo
Madrid, June, 2016ivan.brihuega@uam.es
www.ivanbrihuega.com
Nanoscience and Scanning Probe Microscopy Group
Probing graphene physics at the
atomic scale
UHV-LT-STM
Scanning tunneling microscopy (STM)
Probes nanoscale systems at an atomic level
Resolution: Horizontal (~ 0.1Å), vertical (~ 0.01Å)
Scanning tunneling spectroscopy (STS)
Local electronic structure (LDOS  dI/dV )
Resolución: ~ 1meV (T= 4K)
STM chamber
LHe bath cryostat
Preparation
chamber
Miguel Moreno Ugeda, PhD thesis(2011)
x107
x y
VBIAS
sample sample
tip
Vb
d~10Å
z
Atomic resolution on graphene
MONOLAYER BILAYER
20nm
BL: Triangular “graphite” like
3Å
1-2 ML Graphene on SiC(0001)
ML: “Honeycomb” pattern.
3Å
Vacancy on HOPG
Vacancy on G/Pt(111)
Divacancy
Atomic Hydrogen
Influence of atomic defects
Graphene properties on different surfaces
A.J. Martínez-Galera, et al, Nano Letters 11, 3576 (2011)
a new route to grow graphene on low reactivity metals
Ethylene irradiation
I. Brihuega et al. Phys Rev. Lett. 101, 206802 (2008)
2.5Å
BILAYER
MONOLAYER
2.5Å
P. Mallet et al. Phys. Rev: B 086, 45444, (2012)
Quasiparticle pseudospin
A.J. Martínez-Galera, et al, Scientific Reports 4, 7314 (2014)
Graphene nanopatterning with 2.5 nm precision
Nanopatterning
H. González-Herrero, et al, ACS Nano 10, 5131 (2016)
Tunable transparency
Graphene properties on different surfaces
A.J. Martínez-Galera, et al, Nano Letters 11, 3576 (2011)
a new route to grow graphene on low reactivity metals
Ethylene irradiation
I. Brihuega et al. Phys Rev. Lett. 101, 206802 (2008)
BILAYER
MONOLAYER
P. Mallet et al. Phys. Rev: B 086, 45444, (2012)
Quasiparticle pseudospin
A.J. Martínez-Galera, et al, Scientific Reports 4, 7314 (2014)
Graphene nanopatterning with 2.5 nm precision
Nanopatterning
H. González-Herrero, et al,)
Tunable transparency
Rotating two graphene layers
I. Brihuega, et al. Phys. Rev. Lett. 109, 196802 (2012)
-1,0
-0,8
-0,6
-0,4
-0,2
0,0
0,2
0,4
0,6
0,8
1,0
Energy(eV)
Monolayer
ED
Γ ΓKM
DFT calculations: Félix Yndurain
Monolayer
Rotating two graphene layers: electronic decoupling
Bilayer
Monolayer
-1,0
-0,8
-0,6
-0,4
-0,2
0,0
0,2
0,4
0,6
0,8
1,0
Energy(eV)
Monolayer
Bilayer AB
Γ ΓKM
Rotating two graphene layers: electronic decoupling
ED
DFT calculations: Félix Yndurain
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
Energy(eV)
Monolayer
Bilayer AB
Rotated Bilayer
Rotational disorder:
Electronic decoupling
(for large enough angles)Bilayer
Monolayer
Layers rotated 28º
M. Sprinkle et al. PRL 103, 226803 (2009)
Nearly ideal graphene band
structure ED  EF
Rotating two graphene layers: electronic decoupling
ED
DFT calculations: Félix Yndurain
Γ ΓKM
q = 28º
G/SiC(000-1)
…
1st layer
2nd layer
3rd layer
C
Si
4th layer
0 5 10 15 20 25 30
0
2
4
6
8
10
12
14
MoiréPeriod(nm)
q deg)
Moiré pattern hypothesis
P=a/2*sin(q/2)
Rotating two graphene layers: geometry
Generation of Moiré Patterns:
Periodic potential!
0 5 10 15 20 25 30
0,0
0,2
0,4
0,6
0,8
1,0
vF
(q)/v
0
F
Rotation angle q (°)
Fermi velocity Renormalization
Rotating two graphene layers : tunning Fermi velocity
JMB Lopes dos Santos et al, Phys. Rev Lett. 99, 256802 (2007)
G. Trambly de Laissardière et al. Nano Letters 10, 804 (2010)
R. Bistritzer et al. PNAS 108, 12233 (2011)
...
60 45 4055 50 35 30
Rotation angle q(º)
KK
q
DEvHs
DOS

K
q
KK
K’K’
K’K’
K’K’
vF(q)/v0
F
0 105
q (degrees)
01
10 3 1.4
Moiré period (nm)
Rotating two graphene layers: Van Hove Singularities
Emergence of Van Hove Singularities
Reciprocal space
K
K
K
q= 9.6º
DEvHs
DOS

K K
q
K
K
K’
K’
K’K’
K’
K’
vF(q)/v0
F
0 105
q (degrees)
01
10 3 1.4
Moiré period (nm)
Rotating two graphene layers: Van Hove Singularities
Emergence of Van Hove Singularities
Reciprocal space
SiC(000-1) experimental sample: many rotational domains
Image size: 320x320nm2Moiré period= 4.0 nm (q=3.6°)
1nm
Moiré period= 2.4 nm (q=5.9°)
1nm
P=a/2*sin(q/2)
q = 9.6°5 nm
q = 9.6°
5 nm
0 2 4 6 8 10
0,0
0,5
1,0
1,5
2,0
VHsseparation(eV)
Rotation angle q (°)
3.514 7 2.4 1.7 1.4
Moiré size
-1,2 -0,8 -0,4 0,0 0,4 0,8 1,2
0,0
0,2
0,4
0,6
0,8
1,0
.4°(max)
1.4°(min)
3.5°
6.4°
9.6°
dI/dV(au)
Sample bias (V)
Rotating two graphene layers: Robust Van Hove Singularities
Graphene layers on SiC(000-1)
T=6 K
q = 9.6° q = 6.4°5 nm 5 nm
q = 6.4°
5 nm
0 2 4 6 8 10
0,0
0,5
1,0
1,5
2,0
VHsseparation(eV)
Rotation angle q (°)
3.514 7 2.4 1.7 1.4
Moiré size
-1,2 -0,8 -0,4 0,0 0,4 0,8 1,2
0,0
0,2
0,4
0,6
0,8
1,0
1.4°(max)
1.4°(min)
3.5°
6.4°
9.6°
dI/dV(au)
Sample bias (V)
Rotating two graphene layers: Robust Van Hove Singularities
Graphene layers on SiC(000-1)
T=6 K
q = 9.6° q = 6.4° q = 3.5°5 nm 5 nm 5 nm
q = 3.5°
5 nm
-1,2 -0,8 -0,4 0,0 0,4 0,8 1,2
0,0
0,2
0,4
0,6
0,8
1,0
1.4°(max)
1.4°(min)
3.5°
6.4°
9.6°
dI/dV(au)
Sample bias (V)
0 2 4 6 8 10
0,0
0,5
1,0
1,5
2,0
VHsseparation(eV)
Rotation angle q (°)
3.514 7 2.4 1.7 1.4
Moiré size
Rotating two graphene layers: Robust Van Hove Singularities
Graphene layers on SiC(000-1)
T=6 K
q = 1.4°
5 nm
q = 1.4°
5 nm
-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
0.0
0.2
0.4
0.6
0.8
1.0
1.4°(max)
1.4°(min)
3.5°
6.4°
9.6°
dI/dV(au)
Sample bias (V)
0 2 4 6 8 10
0,0
0,5
1,0
1,5
2,0
VHsseparation(eV)
Rotation angle q (°)
3.514 7 2.4 1.7 1.4
Moiré size
Rotating two graphene layers: Robust van Hove Singularities
q = 9.6° q = 6.4° q = 3.5°5 nm 5 nm 5 nm
Graphene layers on SiC(000-1)
T=6 K
5 nm
0 2 4 6 8 10
0,0
0,5
1,0
1,5
2,0
VHsseparation(eV)
Rotation angle q (°)
3.514 7 2.4 1.7 1.4
Moiré size
-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
0.0
0.2
0.4
0.6
0.8
1.0
1.4°(max)
1.4°(min)
3.5°
6.4°
9.6°
dI/dV(au)
Sample bias (V)
q1-10°
Rotating two graphene layers: Robust van Hove Singularities
q = 1.4°
5 nm
q = 9.6° q = 6.4° q = 3.5°5 nm 5 nm 5 nm
Graphene layers on SiC(000-1)
T=6 K
DEVHs=2ħ·vF·K·sin(q/2)-2tq
K=1.703 Å-1
- Strength of the interlayer interaction =>
- Fermi velocity of a graphene monolayer =>
JMB Lopes dos Santos et al, Phys. Rev Lett. 99, 256802 (2007)
DEVHs=2ħ·vF·K·sin(q/2)-2tq
K=1.703 Å-1
- Strength of the interlayer interaction => tq = 0.108 eV
- Fermi velocity of a graphene monolayer => vF =1.12 106m/s
JMB Lopes dos Santos et al, Phys. Rev Lett. 99, 256802 (2007)
I. Brihuega, P. Mallet, H. González-Herrero, G. Trambly de Laissardière, MM. Ugeda, L. Magaud, JM.
Gómez-Rodríguez, F. Ynduráin, JY. Veuillen. Phys. Rev. Lett. 109, 196802 (2012)
-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
0.0
0.2
0.4
0.6
0.8
1.0
1.4°(max)
1.4°(min)
3.5°
6.4°
9.6°
dI/dV(au)
Sample bias (V)
Rotating two graphene layers : Robust van Hove Singularities
5 nm
q1-10°
0 2 4 6 8 10
0,0
0,5
1,0
1,5
2,0
VHsseparation(eV)
Rotation angle q (°)
3.514 7 2.4 1.7 1.4
Moiré size
Graphene Nanopatterning with 2.5 nm precision
Cluster superlattice on
graphene/Ir(111) moire
250 x 250 nm2
N'Diaye et al. Phys. Rev. Lett. 97, 215501 (2006).
Graphene Nanopatterning with 2.5 nm precision
A.J. Martínez-Galera, I. Brihuega, A. Gutiérrez-Rubio, T. Stauber, J. M. Gómez-Rodríguez, Scientific Reports 4, 7314 (2014
1 2 3
0
5000
10000
15000
20000
Numberofcounts
Conductance (2e
2
/h)
0.0 0.5 1.0
0
1
2
G(2e
2
/h)
Z (nm)
Forward
Backward
+0.1V
+1.0V
+2.2V
2.2V
+3.0V
3.0V
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0
0.2
0.4
0.6
0.8
1.0
ExtractionProbability
Z (nm)
Graphene Nanopatterning with 2.5 nm precision
A.J. Martínez-Galera, I. Brihuega, A. Gutiérrez-Rubio, T. Stauber, J. M. Gómez-Rodríguez, Scientific Reports 4, 7314 (2014)
1 2 3
0
5000
10000
15000
20000
Numberofcounts
Conductance (2e
2
/h)
0.0 0.5 1.0
0
1
2
G(2e
2
/h)
Z (nm)
Forward
Backward
+0.1V
+1.0V
+2.2V
2.2V
+3.0V
3.0V
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0
0.2
0.4
0.6
0.8
1.0
ExtractionProbability
Z (nm)
Ir clusters W clusters
Point defects as a source of
graphene magnetism
Vacancy on HOPG
Vacancy on G/Pt(111)
Divacancy
Atomic Hydrogen
Point defects as a source of
graphene magnetism
Vacancy on HOPG
Vacancy on G/Pt(111)
Divacancy
Atomic Hydrogen
Magnetism in graphene: just remove a pz orbital
Atomic Hydrogen
mT = mπ = 1μB
(1.0 mB)
π
σ
O. Yazyev, Rep. Prog. Phys. 73 056501 (2010)
2D honeycomb lattice of carbon atoms
2.46Å
Wave vector
How can we make graphene magnetic?
Atomic Hydrogen on Monolayer Graphene
Relaxed Atomic structure Calculated spin density
• Magnetic moment = 1μB
• spin density located on the
opposite triangular sublattice.
DFT calculations: M. Moaied, J.J Palacios, Felix Yndurain •Spin Polarized – DFT SIESTA code // (DZP) basis set.
0 1 2 3 4 5
-1
0
1
2
3
Desorptionenergy(eV)
Distance of H atom over graphene (Å)
Adsorption Energy  0.9eV
H chemisorbs on Graphene
-0.4 -0.2 0.0 0.2 0.4
DOS(au)
Energy (eV)
Spin Up
Spin Down
Graphene
mT = mπ = 1μB
(1.0 mB)QL
Simulated STM image (Tersoff-Hamann)
Illustration by Julio
Gómez-Herrero
Experimental
approach
UHV-4K-STM
M. M. Ugeda, Doctoral Thesis, 2011.
Atomic Hydrogen on G/SiC(000-1)
Rotational disorder: Electronic decoupling
(for large enough angles)
Last graphene layer is basically decoupled with ED~EF
-100 -50 0 50 100
0
dI/dV(a.u.)
Voltage (mV)
dI/dV∝LDOS
-200 -100 0 100 200
1
H atom
Graphene
dI/dV(a.u.)
Voltage (mV)
H on G/SiC(000-1) – STS experiments
Spin-split peaks!!
-0.4 -0.2 0.0 0.2 0.4
DOS(au)
Energy (eV)
Spin Up
Spin Down
Graphene
Atomic Hydrogen
mT = mπ = 1μB
 20meV
-100
dI/dV(a.u.)
Experiment
U3
ψ2
)
)
Coulomb splitting
r1
U1
U2r2
r3
A
B
C
H on G/SiC(000-1) – Origin of the spin-split state
-0.4 -0.2 0.0 0.2 0.4
DOS(au)
Energy (eV)
Spin Up
Spin Down
Graphene
Atomic Hydrogen
-100 -50 0 50 100
0
dI/dV(a.u.)
Voltage (mV)
dI/dV∝LDOS
 20meV
Experiment
-100
dI/dV(a.u.)
Experiment
U3
ψ2
)
)
Coulomb splitting
r1
U1
U2r2
r3
A
B
C
-100
dI/dV(a.u.)
Experiment
U3
ψ2
)
)
Coulomb splitting
r1
U1
U2r2
r3
A
B
C
H on G/SiC(000-1) – Origin of the spin-split state
-0.4 -0.2 0.0 0.2 0.4
DOS(au)
Energy (eV)
Spin Up
Spin Down
Graphene
Atomic Hydrogen
-100 -50 0 50 100
0
dI/dV(a.u.)
Voltage (mV)
dI/dV∝LDOS
 20meV
Experiment
U
n↑=1; n=0
20 meV splitting =>
We expect an extended magnetic state
Sublattice localization of the polarized peak
TOPOGRAPHY
DFT
STM
H
-100 -50 0 50 100
LDOS(au)
Voltage (mV)
 atom
Sublattice localization of the polarized peak
TOPOGRAPHY
DFT
STM
+50
0
-50
E[meV]
1.95 V
-0.88 V
LDOS
dI/dV (∝ LDOS) mapping along the profile
H
-100 -50 0 50 100
LDOS(au)
Voltage (mV)
 atom
-100 -50 0 50 100
LDOS(au)
Voltage (mV)
 atom
 atom
+50
0
-50
E[meV]
1.95 V
-0.88 V
LDOS
dI/dV (∝ LDOS) mapping along the profile
-0.4 -0.2 0.0 0.2 0.4
0
PDOS(au)
Energy (eV)
Spin up
Spin Down
Sublattice localization of the polarized peak
TOPOGRAPHY
DFT
STM
H
DFT
 atom
H
Peak height  magnetic moment
+50
0
E[meV]
1.95 V
-0.88 V
LDOS
-50
0 5 10 15
-2.8
-2.4
-2.0
-1.6
Energy[ev]
H-H distance [Å]
AA-Ferromagnetic
Same sublattice
0 5 10 15
-2.8
-2.4
-2.0
-1.6
Energy[ev]
H-H distance [Å]
AA-Ferromagnetic
AB-Non-magnetic
Same sublattice
Different sublattice
Sublattice localization of the polarized peak
H
Non-magnetic
Ferro
Magnetic coupling in graphene sensitive to where
magnetic moments are located in lattice
HH
2.5 3.50
Distance to H [nm]
Manipulating H magnetism
H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M.M. Ugeda, J. Y. Veuillen, F. Ynduráin
and I. Brihuega, Science, 352, 437 (2016)
Manipulating H magnetism
H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M.M. Ugeda, J. Y. Veuillen, F. Ynduráin
and I. Brihuega, Science, 352, 437 (2016)
Manipulating H magnetism
7 H atoms “down”
7 H atoms “up” 7 H atoms “up”
7 H atoms “down”
H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M.M. Ugeda, J. Y. Veuillen, F. Ynduráin
and I. Brihuega, Science, 352, 437 (2016)
Manipulating H magnetism
7 H atoms “down”
7 H atoms “up” 7 H atoms “up”
7 H atoms “down”
x
x
xx
xx
x
H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M.M. Ugeda, J. Y. Veuillen, F. Ynduráin
and I. Brihuega, Science, 352, 437 (2016)
Manipulating H magnetism
7 H atoms “down”
7 H atoms “up”
x
x
xx
xx
x
7 H atoms “down”
H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M.M. Ugeda, J. Y. Veuillen, F. Ynduráin
and I. Brihuega, Science, 352, 437 (2016)
Manipulating H magnetism
7 H atoms “up”
…
7 H atoms “down”
7 H atoms “up”
x
x
xx
xx
x
7 H atoms “down”
H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M.M. Ugeda, J. Y. Veuillen, F. Ynduráin
and I. Brihuega, Science, 352, 437 (2016)
https://www.youtube.com/watch?v=NmPAAo7_xY0
J.M.Gómez-Rodríguez
…and the most important slide
Félix Ynduráin
Paco Guinea
H. González-Herrero
Juanjo Palacios
M. Moaied
www.ivanbrihuega.com
C. Salgado
M. M. Ugeda
J-Y VeuillenP. MalletL. Magaud
Guy Trambly de Laissardière
Atomic H on Doped graphene
-0.4 -0.2
DOS(au)
Ene
-100 -50 0 50 100
dI/dV(a.u.)
Voltage (mV)
Experiment
Theory
Spin up
Spin down
Graphene
H atom
Graphene
~20 meV
U3
ψ2
)
)
Coulomb splitting
r1
U1
U2r2
r3
A
B
C
D
E
Anderson Impurity model
P. W. Anderson, Physical Review 124, 41 (1961)
-100 -50 0 50 100
dI/dV(a.u.)
Voltage (mV)
2D
E↑ E
MAGNETIC
NON-MAGNETIC
pD/U
x=(EF-Ed)/U
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
E↑=Ed+U(n  1/2)
E =Ed+U(n↑  1/2)
STS on neutral graphene
Atomic H on Doped graphene
-0.4 -0.2
DOS(au)
Ene
-100 -50 0 50 100
dI/dV(a.u.)
Voltage (mV)
Experiment
Theory
Spin up
Spin down
Graphene
H atom
Graphene
~20 meV
U3
ψ2
)
)
Coulomb splitting
r1
U1
U2r2
r3
A
B
C
D
E
Anderson Impurity model
P. W. Anderson, Physical Review 124, 41 (1961)
-100 -50 0 50 100
dI/dV(a.u.)
Voltage (mV)
2D
E↑ E
MAGNETIC
NON-MAGNETIC
pD/U
x=(EF-Ed)/U
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
E↑=Ed+U(n  1/2)
E =Ed+U(n↑  1/2)
Peak splitting vs unit cell size
0.00 0.02 0.04 0.06 0.08
0.00
0.05
0.10
0.15
0.20
Splitting[eV]
1/Distance (Å
-1
)
50 25 17 12.5
Distance (Å)
Fit to1/r
Unit cell size matters!
-50 0 50
0
2
4
dI/dV(a.u.)
Voltage (mV)
2 isolated H atoms on the same
terrace, same tip
e-h symmetry
2 isolated H atoms on the same
terrace, 1 isolated H atom dif terrace
small local doping,same tip
1 isolated H atom dif terrace dif tip
-50 0 50
0
2
4
dI/dV(a.u.)
Voltage (mV)
-0,2 0,0 0,2
DOS(au)
Spin Down Monolayer
Spin Down BL Moire (13º)
Spin Down AB Bilayer(on )
Spin Down AB Bilayer(on )
Spin Up ML
Spin Up BL Moire (13º)
Spin Up AB Bilayer(on )
Spin Up AB Bilayer(on )
0
25
50
75
100
125
AB Bilayer(on )
AB Bilayer(on )
BL Moire (13º) Monolayer
Spinsplitting(meV)
4.4nm
4.4nm
A
B
Influence of stacking
-40 -20 0 20 40
2
4
A
B
dI/dV(a.u.)
Voltage (mV)
H on HOPG – Is magnetism preserved?
System is still magnetic in
multilayer graphene/graphite
DFT calculations: M. Moaied and J.J Palacios
Bilayer Multilayer
-0.5 +0.50.0
E (eV)
-0.5 +0.50.0
E (eV)
-0.5 +0.50.0
E (eV)
-0.5 +0.50.0
E (eV)-60 -40 -20 0 20 40 60
0,5
1,0
1,5
AA dimer (3nm)
dI/dV(a.u.)
Voltage (mV)
4.5nm
-60 -40 -20 0 20 40 60
0.5
1.0
1.5
Single H
AA dimer
dI/dV(a.u.)
Voltage (mV)
H-H distance=0.5nm
H-H distance=3nm
-60 -40 -20 0 20 40 60
0,5
1,0
1,5
Single H
AA dimer0.5nm
AA dimer (3nm)
dI/dV(a.u.)
Voltage (mV)
4.5nm
H-H distance=0.5nm H-H distance=3nm
-60 -40 -20 0 20 40 60
0.5
1.0
1.5
Single H
AA dimer
dI/dV(a.u.)
Voltage (mV)
-300 -200 -100 0 100 200 300
0
2
dI/dV(a.u.)
Voltage (mV)
Atomic H on Doped graphene
H atoms on 3rd graphene layer
ED
kF=0.020nm-1=> ED  -0.14eV 4
3rd graphene layer on SiC(000-1) is n-doped:
K1
E
kx
ky
ED
K1
E
kx
ky
EF =ED
Free-standing graphene
EF 2kF
-400 -200 0 200
dI/dV(a.u.)
Voltage (mV)
ED  -0.14eV
G/SiC(000-1)
SiC
C
1st layer
2nd layer
3rd layer
DFT calculations: F Yndurain
0.8e
-
1.0e
-
0.9e
-
0.1e
-
Spin Up
Spin Down
Non-Magnetic
0.7e
-
0.5e
-
0.3e
-
0.2e
-
0.4e
-
0.6e
-
0.0 0.5 1.0
0.0
0.2
0.4
0.6
0.8
1.0
-0.6 -0.4 -0.2 0.0 0.2 0.4
Non doped
Doped with 1e
-
Energy (eV)
DOS(au)
-0.1 0.0 0.1
0.8e
-
0e
-
1.0e
-
0.9e
-
0.1e
-
DOS(au)
Energy (eV)
Spin Up
Spin Down
Non-Magnetic
0.7e
-
0.5e
-
0.3e
-
0.2e
-
0.4e
-
0.6e
-
-0.5 0.0 0.5
DOS(au)
Energy (eV)
AB dimer
Graphene
Theory
H-H distance=1.15nm
-400 -200 0 200 400
AB Dimer
Graphene
dI/dV(a.u.)
Voltage (mV)
-50 0 50
0
2
4
dI/dV(a.u.)
Voltage (mV)
Atomic H on Doped graphene
-400 -300 -200 -100 0 100 200 300 400
0.0
0.2
0.4
0.6
0.8
1.0
1.2
dI/dV(a.u.)
Voltage (mV)
-200 -100 0 100 200
0,0
0,2
0,4
0,6
0,8
1,0
dI/dV(a.u.)
Voltage (mV)
Single H atom Non-Magnetic Dimer
STM
Kondo…
“This problem has to be solved properly…”
Misha Katsnelson, ICMM, Madrid, 19.09.2014
0 1 2 3 4 5
0
1
2
3
Desorptionenergy(eV)
Distance of H atom over graphene ()
Single H
Atomic H deposition on SiC(000-1) held at RT + 6 minutes at RT => Cool
down to 6K
Atomic H on G/SiC(000-1)
-100 -50 0 50 100
0
2
dI/dV(a.u.)
Voltage (mV)
x
-100 -50 0 50 100
0
2
dI/dV(a.u.)
Voltage (mV)
0 1 2 3 4 5
0
1
2
3
Desorptionenergy(eV)
Distance of H atom over graphene ()
Single H
Atomic H deposition on SiC(000-1) held at RT + 6 minutes at RT => Cool down to 6K
Atomic H on G/SiC(000-1)
-100 -50 0 50 100
0
1
2
dI/dV(a.u.)
Voltage (mV)
x
x
1175.top 1178.top 1184.top 1187.top
Manipulating H magnetism
-200 -100 0 100 200
0.0
0.5
1.0
1.5
2.0
dI/dV(a.u.)
Voltage (mV)
-200 -100 0 100 200
0.0
0.5
1.0
1.5
2.0
dI/dV(a.u.)
Voltage (mV)
H_SiC(000-1)_2013_06_17_RT_HDeposition
-0.10 -0.05 0.00 0.05 0.10
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
E-EF
(eV)
k (Å
-1
)
-0.10 -0.05 0.00 0.05 0.10
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
E-EF
(eV)
k (Å
-1
)
1 2 3
0
5000
10000
15000
20000
Numberofcounts
Conductance (2e
2
/h)
0.0 0.5 1.0
0
1
2
G(2e
2
/h)
Z (nm)
Forward
Backward
+0.1V
+1.0V
+2.2V
2.2V
+3.0V
3.0V
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0
0.2
0.4
0.6
0.8
1.0
ExtractionProbability
Z (nm)a)
b) c) d) e) f)
g) h) i) j) k)
l) m)
Graphene Nanolithography with 2.5 nm precision
A.J. Martínez-Galera, I. Brihuega,
A. Gutiérrez-Rubio, T. Stauber, J.
M. Gómez-Rodríguez
Tunneling on and through graphene: measuring the
local electronic coupling.
BothCu(111)&Graphenecanbeobserved
Same region as above, tip change
G/Cu(111)vsCu(111)
Dispersion relation Pseudospin
-0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8
-0,4
-0,3
-0,2
-0,1
0,0
0,1
0,2
0,3
k (nm
-1
)
Energy(eV)
G/Pt(111)G/SiC(000-1)
Gr/Cu(111)
vF = 1.12x106 m/s
ED = -0.34 eV
kF = 0.48 eV
FT from G/Cu(111)
Point defects
Grapheneproperties
H. González-Herrero, A.J. Martínez-Galera, M.M. Ugeda, F.Craes, D. Fernández-Torre, P. Pou, R. Pérez, J.M. Gómez-Rodríguez and I. Brihuega
1175.top
1171.top
x
1179.top
x
1178.top 1184.top
1173.top
x
1187.top
1191.top
Manipulating H magnetism
H dimer in same sublattice => H dimer in opposite sublattice=> Remove the dimer
Spin polarized peak No peaks at low E
H dimer in opposite sublattice => Remove 1 H atom from dim
No peaks at low E Spin polarized peak
x
0
0.2
0.4
0.6
-0.8 -0.4 0 0.4 0.8
Bottom
Top
dI/dV(arb.units)
Sample bias (V)
0
0.1
0.2
0.3
-1 -0.5 0 0.5 1
dI/dV(arb.units)
Sample bias (V)
0
0.2
0.4
0.6
-0.2 -0.1 0 0.1 0.2
1
1'
2
3
dI/dV(arb.units)
Sample bias (V)
1
1’
2
3
0 2 4 6 8 10
0.0
0.5
1.0
1.5
2.0
VHsseparation(eV)
Rotation angle q (°)
3.514 7 2.4 1.7 1.4
Moiré size
Rotating two graphene layers: only upmost 2 layers
matter
Left
Right
I. Brihuega, P. Mallet, H. González-Herrero, G. Trambly de Laissardière, MM. Ugeda, L. Magaud, JM. Gómez-Rodríguez, F. Ynduráin, and J-Y. Veuillen to appear
1.65 V
0.05 V
LDOS
High
Low
Moiré period 2.66nm (q  5.30°).
Moiré period  11-12nm; q  1.3º-1.2º
0.20.10-0.1-0.2
0.5
0.4
0.3
0.2
0.1
Bias [V]
CH6[V]
0.10-0.1
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
Bias [V]
CH6[V]
Moiré period  11-12nm; q  1.3º-1.2º
2001000-100-200
300
250
200
150
100
50
0
X[mV]
Z[mV]
Average AA
Average AB
H “dimers” on G/SiC(000-1)
H-H distance=0.28nm
AB dimer
H-H distance=0.49nm
AA dimer
0 5 10 15
-2.8
-2.4
-2.0
-1.6
Energy[ev]
H-H distance [Å]
AA-Ferromagnetic
AB-Non-magnetic
Same sublattice
Different sublattice
Experiment
STS
-200 0 200
1
dI/dV(a.u.)
Voltage (mV)
Graphene
Theory (DFT)
STS
-200 0 200
1
dI/dV(a.u.)
Voltage (mV)
Graphene
H “dimers” on G/SiC(000-1)
0 5 10 15
-2.8
-2.4
-2.0
-1.6
Energy[ev]
H-H distance [Å]
AA-Ferromagnetic
AB-Non-magnetic
Same sublattice
Different sublattice
Graphene
STS
-200 0 200
1
dI/dV(a.u.)
Voltage (mV)
AB dimer
-0.5 0.0 0.5
AB Dimer
Graphene
DOS(au)
Energy (eV)
DFT
H-H distance=0.28nm
AB dimer
H-H distance=0.49nm
AA dimer
Experiment Theory (DFT)
-200 0 200
1
dI/dV(a.u.)
Voltage (mV)
STS
AA dimer
STS
-200 0 200
1
dI/dV(a.u.)
Voltage (mV)
AB dimer
H “dimers” on G/SiC(000-1)
0 5 10 15
-2.8
-2.4
-2.0
-1.6
Energy[ev]
H-H distance [Å]
AA-Ferromagnetic
AB-Non-magnetic
Same sublattice
Different sublattice
-0.5 0.0 0.5
AB Dimer
Graphene
DOS(au)
Energy (eV)
DFT
Graphene
AB dimer
H-H distance=0.28nm
AB dimer
H-H distance=0.49nm
AA dimer
Experiment Theory (DFT)
AA Dimer
Spin up
Spin down
-0.5 0.0 0.5
AB Dimer
Graphene
DOS(au)
Energy (eV)
DFT
-200 0 200
1
dI/dV(a.u.)
Voltage (mV)
STS
AA dimer
STS
-200 0 200
1
dI/dV(a.u.)
Voltage (mV)
AB dimer
H “dimers” on G/SiC(000-1)
0 5 10 15
-2.8
-2.4
-2.0
-1.6
Energy[ev]
H-H distance [Å]
AA-Ferromagnetic
AB-Non-magnetic
Same sublattice
Different sublattice
-0.5 0.0 0.5
AB Dimer
Graphene
DOS(au)
Energy (eV)
DFT
Graphene
AB dimer
H-H distance=0.28nm
AB dimer
H-H distance=0.49nm
AA dimer
Experiment Theory (DFT)
AA Dimer
Spin up
Spin down
-0.5 0.0 0.5
AB Dimer
Graphene
DOS(au)
Energy (eV)
DFT
H-H distance=0.57nm
AB dimer
-200 -100 0 100 200
1
2
dI/dV(a.u.)
Voltage (mV)
STS
Same sublattice => peak is polarized
Different sublattices => no peaks
AB dimer
Graphene
-200 -100 0 100 200
0.5
1.0
1.5
2.0
Voltage (mV)
dI/dV(a.u.)
Manipulating H magnetism
A-B dimer
“Magnetism OFF”X
X
Removing single H
-200 -100 0 100 200
0.5
1.0
1.5
2.0
Voltage (mV)
dI/dV(a.u.)
Manipulating H magnetism
Isolated H
“Magnetism ON”
Removing single H
-200 -100 0 100 200
0.5
1.0
1.5
2.0
dI/dV(a.u.)
Voltage (mV)
Manipulating H magnetism
A-A dimer
“Magnetism ON”
Lateral motion
Manipulating H magnetism
A-B dimer
“Magnetism OFF”
-200 -100 0 100 200
0.5
1.0
1.5
2.0
dI/dV(a.u.)
Voltage (mV)
Lateral motion
A-B dimer at 1.15 nm
“Magnetism OFF!”
x
Manipulating H magnetism
H-H distance=1.15nm
x
0 5 10 15
-2.8
-2.4
-2.0
-1.6
Energy[ev]
H-H distance [Å]
AA-Ferromagnetic
AB-Non-magnetic
Same sublattice
Different sublattice
-400 -200 0 200 400
AB Dimer
Graphene
dI/dV(a.u.)
Voltage (mV)
-0.5 0.0 0.5
DOS(au)
Energy (eV)
AB dimer
Graphene
Theory (DFT)
A-B dimer
Manipulating H magnetism
0 5 10 15
-2.8
-2.4
-2.0
-1.6
Energy[ev]
H-H distance [Å]
AA-Ferromagnetic
AB-Non-magnetic
Same sublattice
Different sublattice
-400 -200 0 200 400
AB Dimer
Graphene
dI/dV(a.u.)
Voltage (mV)
-0.5 0.0 0.5
DOS(au)
Energy (eV)
AB dimer
Graphene
Theory (DFT)
Isolated H
“Magnetism ON”
Exchange energy for 2H at 1.5 nm is -35meV
Eex = [(2H in AA with spin 2)-(2H in AA forced to spin 0)]
Isolated H

More Related Content

What's hot

Ion trap quantum computation
Ion trap quantum computationIon trap quantum computation
Ion trap quantum computation
Gabriel O'Brien
 
MOSFET, SOI-FET and FIN-FET-ABU SYED KUET
MOSFET, SOI-FET and FIN-FET-ABU SYED KUETMOSFET, SOI-FET and FIN-FET-ABU SYED KUET
MOSFET, SOI-FET and FIN-FET-ABU SYED KUETA. S. M. Jannatul Islam
 
Rectangular Microstrip Antenna Parameter Study with HFSS
Rectangular Microstrip Antenna Parameter Study with HFSSRectangular Microstrip Antenna Parameter Study with HFSS
Rectangular Microstrip Antenna Parameter Study with HFSS
Omkar Rane
 
Band structure
Band structureBand structure
Band structure
nirupam12
 
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic FieldsBrandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
thinfilmsworkshop
 
Waveguide
WaveguideWaveguide
Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene
Mirco Milletari'
 
Short channel effect on FET
Short channel effect on FETShort channel effect on FET
Short channel effect on FET
Mahsa Farqarazi
 
Patch antenna
Patch antennaPatch antenna
Patch antenna
Pei-Che Chang
 
半導體第六章
半導體第六章半導體第六章
半導體第六章5045033
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
Claudio Attaccalite
 
Epitaxial Growth
Epitaxial GrowthEpitaxial Growth
Laser ii 3 ppt
Laser ii 3 pptLaser ii 3 ppt
Laser ii 3 ppt
Bahir Dar university
 
Maxwell equation
Maxwell equationMaxwell equation
Maxwell equationKumar
 
Solid State Physics Assignments
Solid State Physics AssignmentsSolid State Physics Assignments
Solid State Physics Assignments
Deepak Rajput
 
Low_Noise_Amplifier_2_to_4GHz
Low_Noise_Amplifier_2_to_4GHzLow_Noise_Amplifier_2_to_4GHz
Low_Noise_Amplifier_2_to_4GHzSuman Sharma
 
Laser matter interaction
Laser matter interactionLaser matter interaction
Laser matter interaction
UOG PHYSICISTS !!!!!
 
Eca unit i.ppt
Eca unit i.pptEca unit i.ppt
Eca unit i.ppt
Pavan Mukku
 

What's hot (20)

Ion trap quantum computation
Ion trap quantum computationIon trap quantum computation
Ion trap quantum computation
 
Hall Effect
Hall EffectHall Effect
Hall Effect
 
MOSFET, SOI-FET and FIN-FET-ABU SYED KUET
MOSFET, SOI-FET and FIN-FET-ABU SYED KUETMOSFET, SOI-FET and FIN-FET-ABU SYED KUET
MOSFET, SOI-FET and FIN-FET-ABU SYED KUET
 
Rectangular Microstrip Antenna Parameter Study with HFSS
Rectangular Microstrip Antenna Parameter Study with HFSSRectangular Microstrip Antenna Parameter Study with HFSS
Rectangular Microstrip Antenna Parameter Study with HFSS
 
Band structure
Band structureBand structure
Band structure
 
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic FieldsBrandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
 
Photonic Crystals
Photonic CrystalsPhotonic Crystals
Photonic Crystals
 
Waveguide
WaveguideWaveguide
Waveguide
 
Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene
 
Short channel effect on FET
Short channel effect on FETShort channel effect on FET
Short channel effect on FET
 
Patch antenna
Patch antennaPatch antenna
Patch antenna
 
半導體第六章
半導體第六章半導體第六章
半導體第六章
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
Epitaxial Growth
Epitaxial GrowthEpitaxial Growth
Epitaxial Growth
 
Laser ii 3 ppt
Laser ii 3 pptLaser ii 3 ppt
Laser ii 3 ppt
 
Maxwell equation
Maxwell equationMaxwell equation
Maxwell equation
 
Solid State Physics Assignments
Solid State Physics AssignmentsSolid State Physics Assignments
Solid State Physics Assignments
 
Low_Noise_Amplifier_2_to_4GHz
Low_Noise_Amplifier_2_to_4GHzLow_Noise_Amplifier_2_to_4GHz
Low_Noise_Amplifier_2_to_4GHz
 
Laser matter interaction
Laser matter interactionLaser matter interaction
Laser matter interaction
 
Eca unit i.ppt
Eca unit i.pptEca unit i.ppt
Eca unit i.ppt
 

Similar to Iván Brihuega-Probing graphene physics at the atomic scale

FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODSFINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODS
BMRS Meeting
 
Dierk Raabe Darmstadt T U Celebration Colloquium Mechanics Of Crystals
Dierk  Raabe  Darmstadt  T U  Celebration  Colloquium  Mechanics Of  CrystalsDierk  Raabe  Darmstadt  T U  Celebration  Colloquium  Mechanics Of  Crystals
Dierk Raabe Darmstadt T U Celebration Colloquium Mechanics Of CrystalsDierk Raabe
 
Topological flat bands without magic angles in massive twisted bilayer graphe...
Topological flat bands without magic angles in massive twisted bilayer graphe...Topological flat bands without magic angles in massive twisted bilayer graphe...
Topological flat bands without magic angles in massive twisted bilayer graphe...
JAVVAJI SRIVANI
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag
NanoFrontMag-cm
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
nirupam12
 
Francisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene researchFrancisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene research
Fundación Ramón Areces
 
Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+
niba50
 
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe  MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
Dierk Raabe
 
Presentation-Vacuum.pptx
Presentation-Vacuum.pptxPresentation-Vacuum.pptx
Presentation-Vacuum.pptx
VictorKang12
 
Atomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular DichroismAtomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular Dichroism
Riccardo Di Stefano
 
Innelastic Light Scattering in Carbon Nanostructures: from the micro to the n...
Innelastic Light Scattering in Carbon Nanostructures: from the micro to the n...Innelastic Light Scattering in Carbon Nanostructures: from the micro to the n...
Innelastic Light Scattering in Carbon Nanostructures: from the micro to the n...
Sociedade Brasileira de Pesquisa em Materiais
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01laboratoridalbasso
 
2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag
NanoFrontMag-cm
 
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Ryan Kim
 
Seminor ansto-0730
Seminor ansto-0730Seminor ansto-0730
Seminor ansto-0730
Shinichiro Yano
 
poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015Swayandipta Dey
 
Manhpowerpoint
ManhpowerpointManhpowerpoint
Manhpowerpoint
Tiền Mạnh
 
PhD work on Graphene Transistor
PhD work on Graphene TransistorPhD work on Graphene Transistor
PhD work on Graphene Transistor
Southern University and A&M College - Baton Rouge
 
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Fundación Ramón Areces
 

Similar to Iván Brihuega-Probing graphene physics at the atomic scale (20)

FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODSFINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODS
 
Dierk Raabe Darmstadt T U Celebration Colloquium Mechanics Of Crystals
Dierk  Raabe  Darmstadt  T U  Celebration  Colloquium  Mechanics Of  CrystalsDierk  Raabe  Darmstadt  T U  Celebration  Colloquium  Mechanics Of  Crystals
Dierk Raabe Darmstadt T U Celebration Colloquium Mechanics Of Crystals
 
Topological flat bands without magic angles in massive twisted bilayer graphe...
Topological flat bands without magic angles in massive twisted bilayer graphe...Topological flat bands without magic angles in massive twisted bilayer graphe...
Topological flat bands without magic angles in massive twisted bilayer graphe...
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
Francisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene researchFrancisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene research
 
Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+
 
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe  MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
 
Presentation-Vacuum.pptx
Presentation-Vacuum.pptxPresentation-Vacuum.pptx
Presentation-Vacuum.pptx
 
Atomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular DichroismAtomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular Dichroism
 
CUPC Oct 14, 2015
CUPC Oct 14, 2015CUPC Oct 14, 2015
CUPC Oct 14, 2015
 
Innelastic Light Scattering in Carbon Nanostructures: from the micro to the n...
Innelastic Light Scattering in Carbon Nanostructures: from the micro to the n...Innelastic Light Scattering in Carbon Nanostructures: from the micro to the n...
Innelastic Light Scattering in Carbon Nanostructures: from the micro to the n...
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01
 
2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag
 
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
 
Seminor ansto-0730
Seminor ansto-0730Seminor ansto-0730
Seminor ansto-0730
 
poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015
 
Manhpowerpoint
ManhpowerpointManhpowerpoint
Manhpowerpoint
 
PhD work on Graphene Transistor
PhD work on Graphene TransistorPhD work on Graphene Transistor
PhD work on Graphene Transistor
 
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
 

More from Fundación Ramón Areces

Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...
Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...
Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...
Fundación Ramón Areces
 
Dominique L. Monnet Director del programa ARHAI (Antimicrobial Resistance an...
Dominique L. Monnet  Director del programa ARHAI (Antimicrobial Resistance an...Dominique L. Monnet  Director del programa ARHAI (Antimicrobial Resistance an...
Dominique L. Monnet Director del programa ARHAI (Antimicrobial Resistance an...
Fundación Ramón Areces
 
Antonio Cabrales -University College of London.
Antonio Cabrales -University College of London. Antonio Cabrales -University College of London.
Antonio Cabrales -University College of London.
Fundación Ramón Areces
 
Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...
Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...
Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...
Fundación Ramón Areces
 
Jonathan D. Ostry - Fondo Monetario Internacional (FMI).
Jonathan D. Ostry - Fondo Monetario Internacional (FMI). Jonathan D. Ostry - Fondo Monetario Internacional (FMI).
Jonathan D. Ostry - Fondo Monetario Internacional (FMI).
Fundación Ramón Areces
 
Martín Uribe - Universidad de Columbia.
Martín Uribe - Universidad de Columbia.Martín Uribe - Universidad de Columbia.
Martín Uribe - Universidad de Columbia.
Fundación Ramón Areces
 
Thomas S. Robertson - The Wharton School.
Thomas S. Robertson - The Wharton School. Thomas S. Robertson - The Wharton School.
Thomas S. Robertson - The Wharton School.
Fundación Ramón Areces
 
Diana Robertson - The Wharton School.
Diana Robertson - The Wharton School. Diana Robertson - The Wharton School.
Diana Robertson - The Wharton School.
Fundación Ramón Areces
 
Juan Carlos López-Gutiérrez - Unidad de Anomalías Vasculares, Hospital Unive...
Juan Carlos López-Gutiérrez  - Unidad de Anomalías Vasculares, Hospital Unive...Juan Carlos López-Gutiérrez  - Unidad de Anomalías Vasculares, Hospital Unive...
Juan Carlos López-Gutiérrez - Unidad de Anomalías Vasculares, Hospital Unive...
Fundación Ramón Areces
 
Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM). I...
Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM).  I...Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM).  I...
Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM). I...
Fundación Ramón Areces
 
Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...
Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...
Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...
Fundación Ramón Areces
 
Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research.
Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research. Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research.
Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research.
Fundación Ramón Areces
 
Diego Valero - Presidente del Grupo Novaster.
Diego Valero - Presidente del Grupo Novaster. Diego Valero - Presidente del Grupo Novaster.
Diego Valero - Presidente del Grupo Novaster.
Fundación Ramón Areces
 
Mercedes Ayuso - Universitat de Barcelona.
Mercedes Ayuso -  Universitat de Barcelona. Mercedes Ayuso -  Universitat de Barcelona.
Mercedes Ayuso - Universitat de Barcelona.
Fundación Ramón Areces
 
Nicholas Barr - Profesor de Economía Pública, London School of Economics.
Nicholas Barr - Profesor de Economía Pública, London School of Economics. Nicholas Barr - Profesor de Economía Pública, London School of Economics.
Nicholas Barr - Profesor de Economía Pública, London School of Economics.
Fundación Ramón Areces
 
Julia Campa - The Open University.
Julia Campa - The Open University. Julia Campa - The Open University.
Julia Campa - The Open University.
Fundación Ramón Areces
 
Juan Manuel Sarasua - Comunicador y periodista científico.
Juan Manuel Sarasua - Comunicador y periodista científico. Juan Manuel Sarasua - Comunicador y periodista científico.
Juan Manuel Sarasua - Comunicador y periodista científico.
Fundación Ramón Areces
 
Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...
Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...
Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...
Fundación Ramón Areces
 
Frederic Lluis - Investigador principal en KU Leuven.
Frederic Lluis - Investigador principal en KU Leuven. Frederic Lluis - Investigador principal en KU Leuven.
Frederic Lluis - Investigador principal en KU Leuven.
Fundación Ramón Areces
 
Víctor R. de la Rosa - Investigador en Universiteit Gent (UGent) y fundador d...
Víctor R. de la Rosa - Investigador en Universiteit Gent (UGent) y fundador d...Víctor R. de la Rosa - Investigador en Universiteit Gent (UGent) y fundador d...
Víctor R. de la Rosa - Investigador en Universiteit Gent (UGent) y fundador d...
Fundación Ramón Areces
 

More from Fundación Ramón Areces (20)

Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...
Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...
Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...
 
Dominique L. Monnet Director del programa ARHAI (Antimicrobial Resistance an...
Dominique L. Monnet  Director del programa ARHAI (Antimicrobial Resistance an...Dominique L. Monnet  Director del programa ARHAI (Antimicrobial Resistance an...
Dominique L. Monnet Director del programa ARHAI (Antimicrobial Resistance an...
 
Antonio Cabrales -University College of London.
Antonio Cabrales -University College of London. Antonio Cabrales -University College of London.
Antonio Cabrales -University College of London.
 
Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...
Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...
Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...
 
Jonathan D. Ostry - Fondo Monetario Internacional (FMI).
Jonathan D. Ostry - Fondo Monetario Internacional (FMI). Jonathan D. Ostry - Fondo Monetario Internacional (FMI).
Jonathan D. Ostry - Fondo Monetario Internacional (FMI).
 
Martín Uribe - Universidad de Columbia.
Martín Uribe - Universidad de Columbia.Martín Uribe - Universidad de Columbia.
Martín Uribe - Universidad de Columbia.
 
Thomas S. Robertson - The Wharton School.
Thomas S. Robertson - The Wharton School. Thomas S. Robertson - The Wharton School.
Thomas S. Robertson - The Wharton School.
 
Diana Robertson - The Wharton School.
Diana Robertson - The Wharton School. Diana Robertson - The Wharton School.
Diana Robertson - The Wharton School.
 
Juan Carlos López-Gutiérrez - Unidad de Anomalías Vasculares, Hospital Unive...
Juan Carlos López-Gutiérrez  - Unidad de Anomalías Vasculares, Hospital Unive...Juan Carlos López-Gutiérrez  - Unidad de Anomalías Vasculares, Hospital Unive...
Juan Carlos López-Gutiérrez - Unidad de Anomalías Vasculares, Hospital Unive...
 
Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM). I...
Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM).  I...Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM).  I...
Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM). I...
 
Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...
Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...
Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...
 
Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research.
Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research. Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research.
Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research.
 
Diego Valero - Presidente del Grupo Novaster.
Diego Valero - Presidente del Grupo Novaster. Diego Valero - Presidente del Grupo Novaster.
Diego Valero - Presidente del Grupo Novaster.
 
Mercedes Ayuso - Universitat de Barcelona.
Mercedes Ayuso -  Universitat de Barcelona. Mercedes Ayuso -  Universitat de Barcelona.
Mercedes Ayuso - Universitat de Barcelona.
 
Nicholas Barr - Profesor de Economía Pública, London School of Economics.
Nicholas Barr - Profesor de Economía Pública, London School of Economics. Nicholas Barr - Profesor de Economía Pública, London School of Economics.
Nicholas Barr - Profesor de Economía Pública, London School of Economics.
 
Julia Campa - The Open University.
Julia Campa - The Open University. Julia Campa - The Open University.
Julia Campa - The Open University.
 
Juan Manuel Sarasua - Comunicador y periodista científico.
Juan Manuel Sarasua - Comunicador y periodista científico. Juan Manuel Sarasua - Comunicador y periodista científico.
Juan Manuel Sarasua - Comunicador y periodista científico.
 
Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...
Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...
Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...
 
Frederic Lluis - Investigador principal en KU Leuven.
Frederic Lluis - Investigador principal en KU Leuven. Frederic Lluis - Investigador principal en KU Leuven.
Frederic Lluis - Investigador principal en KU Leuven.
 
Víctor R. de la Rosa - Investigador en Universiteit Gent (UGent) y fundador d...
Víctor R. de la Rosa - Investigador en Universiteit Gent (UGent) y fundador d...Víctor R. de la Rosa - Investigador en Universiteit Gent (UGent) y fundador d...
Víctor R. de la Rosa - Investigador en Universiteit Gent (UGent) y fundador d...
 

Recently uploaded

Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
Elizabeth Buie - Older adults: Are we really designing for our future selves?
Elizabeth Buie - Older adults: Are we really designing for our future selves?Elizabeth Buie - Older adults: Are we really designing for our future selves?
Elizabeth Buie - Older adults: Are we really designing for our future selves?
Nexer Digital
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024
Pierluigi Pugliese
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.
ViralQR
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
Quantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIsQuantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIs
Vlad Stirbu
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 

Recently uploaded (20)

Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
Elizabeth Buie - Older adults: Are we really designing for our future selves?
Elizabeth Buie - Older adults: Are we really designing for our future selves?Elizabeth Buie - Older adults: Are we really designing for our future selves?
Elizabeth Buie - Older adults: Are we really designing for our future selves?
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
Quantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIsQuantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIs
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 

Iván Brihuega-Probing graphene physics at the atomic scale

  • 1. Madrid, June, 2016ivan.brihuega@uam.es www.ivanbrihuega.com Nanoscience and Scanning Probe Microscopy Group Probing graphene physics at the atomic scale
  • 2. UHV-LT-STM Scanning tunneling microscopy (STM) Probes nanoscale systems at an atomic level Resolution: Horizontal (~ 0.1Å), vertical (~ 0.01Å) Scanning tunneling spectroscopy (STS) Local electronic structure (LDOS  dI/dV ) Resolución: ~ 1meV (T= 4K) STM chamber LHe bath cryostat Preparation chamber Miguel Moreno Ugeda, PhD thesis(2011) x107 x y VBIAS sample sample tip Vb d~10Å z
  • 3. Atomic resolution on graphene MONOLAYER BILAYER 20nm BL: Triangular “graphite” like 3Å 1-2 ML Graphene on SiC(0001) ML: “Honeycomb” pattern. 3Å
  • 4. Vacancy on HOPG Vacancy on G/Pt(111) Divacancy Atomic Hydrogen Influence of atomic defects
  • 5. Graphene properties on different surfaces A.J. Martínez-Galera, et al, Nano Letters 11, 3576 (2011) a new route to grow graphene on low reactivity metals Ethylene irradiation I. Brihuega et al. Phys Rev. Lett. 101, 206802 (2008) 2.5Å BILAYER MONOLAYER 2.5Å P. Mallet et al. Phys. Rev: B 086, 45444, (2012) Quasiparticle pseudospin A.J. Martínez-Galera, et al, Scientific Reports 4, 7314 (2014) Graphene nanopatterning with 2.5 nm precision Nanopatterning H. González-Herrero, et al, ACS Nano 10, 5131 (2016) Tunable transparency
  • 6. Graphene properties on different surfaces A.J. Martínez-Galera, et al, Nano Letters 11, 3576 (2011) a new route to grow graphene on low reactivity metals Ethylene irradiation I. Brihuega et al. Phys Rev. Lett. 101, 206802 (2008) BILAYER MONOLAYER P. Mallet et al. Phys. Rev: B 086, 45444, (2012) Quasiparticle pseudospin A.J. Martínez-Galera, et al, Scientific Reports 4, 7314 (2014) Graphene nanopatterning with 2.5 nm precision Nanopatterning H. González-Herrero, et al,) Tunable transparency Rotating two graphene layers I. Brihuega, et al. Phys. Rev. Lett. 109, 196802 (2012)
  • 7. -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 Energy(eV) Monolayer ED Γ ΓKM DFT calculations: Félix Yndurain Monolayer Rotating two graphene layers: electronic decoupling
  • 8. Bilayer Monolayer -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 Energy(eV) Monolayer Bilayer AB Γ ΓKM Rotating two graphene layers: electronic decoupling ED DFT calculations: Félix Yndurain
  • 9. -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Energy(eV) Monolayer Bilayer AB Rotated Bilayer Rotational disorder: Electronic decoupling (for large enough angles)Bilayer Monolayer Layers rotated 28º M. Sprinkle et al. PRL 103, 226803 (2009) Nearly ideal graphene band structure ED  EF Rotating two graphene layers: electronic decoupling ED DFT calculations: Félix Yndurain Γ ΓKM q = 28º G/SiC(000-1) … 1st layer 2nd layer 3rd layer C Si 4th layer
  • 10. 0 5 10 15 20 25 30 0 2 4 6 8 10 12 14 MoiréPeriod(nm) q deg) Moiré pattern hypothesis P=a/2*sin(q/2) Rotating two graphene layers: geometry Generation of Moiré Patterns: Periodic potential!
  • 11. 0 5 10 15 20 25 30 0,0 0,2 0,4 0,6 0,8 1,0 vF (q)/v 0 F Rotation angle q (°) Fermi velocity Renormalization Rotating two graphene layers : tunning Fermi velocity JMB Lopes dos Santos et al, Phys. Rev Lett. 99, 256802 (2007) G. Trambly de Laissardière et al. Nano Letters 10, 804 (2010) R. Bistritzer et al. PNAS 108, 12233 (2011) ... 60 45 4055 50 35 30 Rotation angle q(º)
  • 12. KK q DEvHs DOS  K q KK K’K’ K’K’ K’K’ vF(q)/v0 F 0 105 q (degrees) 01 10 3 1.4 Moiré period (nm) Rotating two graphene layers: Van Hove Singularities Emergence of Van Hove Singularities Reciprocal space K
  • 13. K K q= 9.6º DEvHs DOS  K K q K K K’ K’ K’K’ K’ K’ vF(q)/v0 F 0 105 q (degrees) 01 10 3 1.4 Moiré period (nm) Rotating two graphene layers: Van Hove Singularities Emergence of Van Hove Singularities Reciprocal space
  • 14.
  • 15. SiC(000-1) experimental sample: many rotational domains Image size: 320x320nm2Moiré period= 4.0 nm (q=3.6°) 1nm Moiré period= 2.4 nm (q=5.9°) 1nm P=a/2*sin(q/2)
  • 16. q = 9.6°5 nm q = 9.6° 5 nm 0 2 4 6 8 10 0,0 0,5 1,0 1,5 2,0 VHsseparation(eV) Rotation angle q (°) 3.514 7 2.4 1.7 1.4 Moiré size -1,2 -0,8 -0,4 0,0 0,4 0,8 1,2 0,0 0,2 0,4 0,6 0,8 1,0 .4°(max) 1.4°(min) 3.5° 6.4° 9.6° dI/dV(au) Sample bias (V) Rotating two graphene layers: Robust Van Hove Singularities Graphene layers on SiC(000-1) T=6 K
  • 17. q = 9.6° q = 6.4°5 nm 5 nm q = 6.4° 5 nm 0 2 4 6 8 10 0,0 0,5 1,0 1,5 2,0 VHsseparation(eV) Rotation angle q (°) 3.514 7 2.4 1.7 1.4 Moiré size -1,2 -0,8 -0,4 0,0 0,4 0,8 1,2 0,0 0,2 0,4 0,6 0,8 1,0 1.4°(max) 1.4°(min) 3.5° 6.4° 9.6° dI/dV(au) Sample bias (V) Rotating two graphene layers: Robust Van Hove Singularities Graphene layers on SiC(000-1) T=6 K
  • 18. q = 9.6° q = 6.4° q = 3.5°5 nm 5 nm 5 nm q = 3.5° 5 nm -1,2 -0,8 -0,4 0,0 0,4 0,8 1,2 0,0 0,2 0,4 0,6 0,8 1,0 1.4°(max) 1.4°(min) 3.5° 6.4° 9.6° dI/dV(au) Sample bias (V) 0 2 4 6 8 10 0,0 0,5 1,0 1,5 2,0 VHsseparation(eV) Rotation angle q (°) 3.514 7 2.4 1.7 1.4 Moiré size Rotating two graphene layers: Robust Van Hove Singularities Graphene layers on SiC(000-1) T=6 K
  • 19. q = 1.4° 5 nm q = 1.4° 5 nm -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.4°(max) 1.4°(min) 3.5° 6.4° 9.6° dI/dV(au) Sample bias (V) 0 2 4 6 8 10 0,0 0,5 1,0 1,5 2,0 VHsseparation(eV) Rotation angle q (°) 3.514 7 2.4 1.7 1.4 Moiré size Rotating two graphene layers: Robust van Hove Singularities q = 9.6° q = 6.4° q = 3.5°5 nm 5 nm 5 nm Graphene layers on SiC(000-1) T=6 K
  • 20. 5 nm 0 2 4 6 8 10 0,0 0,5 1,0 1,5 2,0 VHsseparation(eV) Rotation angle q (°) 3.514 7 2.4 1.7 1.4 Moiré size -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.4°(max) 1.4°(min) 3.5° 6.4° 9.6° dI/dV(au) Sample bias (V) q1-10° Rotating two graphene layers: Robust van Hove Singularities q = 1.4° 5 nm q = 9.6° q = 6.4° q = 3.5°5 nm 5 nm 5 nm Graphene layers on SiC(000-1) T=6 K
  • 21. DEVHs=2ħ·vF·K·sin(q/2)-2tq K=1.703 Å-1 - Strength of the interlayer interaction => - Fermi velocity of a graphene monolayer => JMB Lopes dos Santos et al, Phys. Rev Lett. 99, 256802 (2007) DEVHs=2ħ·vF·K·sin(q/2)-2tq K=1.703 Å-1 - Strength of the interlayer interaction => tq = 0.108 eV - Fermi velocity of a graphene monolayer => vF =1.12 106m/s JMB Lopes dos Santos et al, Phys. Rev Lett. 99, 256802 (2007) I. Brihuega, P. Mallet, H. González-Herrero, G. Trambly de Laissardière, MM. Ugeda, L. Magaud, JM. Gómez-Rodríguez, F. Ynduráin, JY. Veuillen. Phys. Rev. Lett. 109, 196802 (2012) -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.4°(max) 1.4°(min) 3.5° 6.4° 9.6° dI/dV(au) Sample bias (V) Rotating two graphene layers : Robust van Hove Singularities 5 nm q1-10° 0 2 4 6 8 10 0,0 0,5 1,0 1,5 2,0 VHsseparation(eV) Rotation angle q (°) 3.514 7 2.4 1.7 1.4 Moiré size
  • 22. Graphene Nanopatterning with 2.5 nm precision Cluster superlattice on graphene/Ir(111) moire 250 x 250 nm2 N'Diaye et al. Phys. Rev. Lett. 97, 215501 (2006).
  • 23. Graphene Nanopatterning with 2.5 nm precision A.J. Martínez-Galera, I. Brihuega, A. Gutiérrez-Rubio, T. Stauber, J. M. Gómez-Rodríguez, Scientific Reports 4, 7314 (2014 1 2 3 0 5000 10000 15000 20000 Numberofcounts Conductance (2e 2 /h) 0.0 0.5 1.0 0 1 2 G(2e 2 /h) Z (nm) Forward Backward +0.1V +1.0V +2.2V 2.2V +3.0V 3.0V 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.2 0.4 0.6 0.8 1.0 ExtractionProbability Z (nm)
  • 24. Graphene Nanopatterning with 2.5 nm precision A.J. Martínez-Galera, I. Brihuega, A. Gutiérrez-Rubio, T. Stauber, J. M. Gómez-Rodríguez, Scientific Reports 4, 7314 (2014) 1 2 3 0 5000 10000 15000 20000 Numberofcounts Conductance (2e 2 /h) 0.0 0.5 1.0 0 1 2 G(2e 2 /h) Z (nm) Forward Backward +0.1V +1.0V +2.2V 2.2V +3.0V 3.0V 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.2 0.4 0.6 0.8 1.0 ExtractionProbability Z (nm) Ir clusters W clusters
  • 25. Point defects as a source of graphene magnetism Vacancy on HOPG Vacancy on G/Pt(111) Divacancy Atomic Hydrogen
  • 26. Point defects as a source of graphene magnetism Vacancy on HOPG Vacancy on G/Pt(111) Divacancy Atomic Hydrogen
  • 27. Magnetism in graphene: just remove a pz orbital Atomic Hydrogen mT = mπ = 1μB (1.0 mB) π σ O. Yazyev, Rep. Prog. Phys. 73 056501 (2010) 2D honeycomb lattice of carbon atoms 2.46Å Wave vector How can we make graphene magnetic?
  • 28. Atomic Hydrogen on Monolayer Graphene Relaxed Atomic structure Calculated spin density • Magnetic moment = 1μB • spin density located on the opposite triangular sublattice. DFT calculations: M. Moaied, J.J Palacios, Felix Yndurain •Spin Polarized – DFT SIESTA code // (DZP) basis set. 0 1 2 3 4 5 -1 0 1 2 3 Desorptionenergy(eV) Distance of H atom over graphene (Å) Adsorption Energy  0.9eV H chemisorbs on Graphene -0.4 -0.2 0.0 0.2 0.4 DOS(au) Energy (eV) Spin Up Spin Down Graphene mT = mπ = 1μB (1.0 mB)QL Simulated STM image (Tersoff-Hamann)
  • 30. Atomic Hydrogen on G/SiC(000-1) Rotational disorder: Electronic decoupling (for large enough angles) Last graphene layer is basically decoupled with ED~EF
  • 31. -100 -50 0 50 100 0 dI/dV(a.u.) Voltage (mV) dI/dV∝LDOS -200 -100 0 100 200 1 H atom Graphene dI/dV(a.u.) Voltage (mV) H on G/SiC(000-1) – STS experiments Spin-split peaks!! -0.4 -0.2 0.0 0.2 0.4 DOS(au) Energy (eV) Spin Up Spin Down Graphene Atomic Hydrogen mT = mπ = 1μB  20meV
  • 32. -100 dI/dV(a.u.) Experiment U3 ψ2 ) ) Coulomb splitting r1 U1 U2r2 r3 A B C H on G/SiC(000-1) – Origin of the spin-split state -0.4 -0.2 0.0 0.2 0.4 DOS(au) Energy (eV) Spin Up Spin Down Graphene Atomic Hydrogen -100 -50 0 50 100 0 dI/dV(a.u.) Voltage (mV) dI/dV∝LDOS  20meV Experiment
  • 33. -100 dI/dV(a.u.) Experiment U3 ψ2 ) ) Coulomb splitting r1 U1 U2r2 r3 A B C -100 dI/dV(a.u.) Experiment U3 ψ2 ) ) Coulomb splitting r1 U1 U2r2 r3 A B C H on G/SiC(000-1) – Origin of the spin-split state -0.4 -0.2 0.0 0.2 0.4 DOS(au) Energy (eV) Spin Up Spin Down Graphene Atomic Hydrogen -100 -50 0 50 100 0 dI/dV(a.u.) Voltage (mV) dI/dV∝LDOS  20meV Experiment U n↑=1; n=0 20 meV splitting => We expect an extended magnetic state
  • 34. Sublattice localization of the polarized peak TOPOGRAPHY DFT STM H
  • 35. -100 -50 0 50 100 LDOS(au) Voltage (mV)  atom Sublattice localization of the polarized peak TOPOGRAPHY DFT STM +50 0 -50 E[meV] 1.95 V -0.88 V LDOS dI/dV (∝ LDOS) mapping along the profile H
  • 36. -100 -50 0 50 100 LDOS(au) Voltage (mV)  atom -100 -50 0 50 100 LDOS(au) Voltage (mV)  atom  atom +50 0 -50 E[meV] 1.95 V -0.88 V LDOS dI/dV (∝ LDOS) mapping along the profile -0.4 -0.2 0.0 0.2 0.4 0 PDOS(au) Energy (eV) Spin up Spin Down Sublattice localization of the polarized peak TOPOGRAPHY DFT STM H DFT  atom H Peak height  magnetic moment
  • 37. +50 0 E[meV] 1.95 V -0.88 V LDOS -50 0 5 10 15 -2.8 -2.4 -2.0 -1.6 Energy[ev] H-H distance [Å] AA-Ferromagnetic Same sublattice 0 5 10 15 -2.8 -2.4 -2.0 -1.6 Energy[ev] H-H distance [Å] AA-Ferromagnetic AB-Non-magnetic Same sublattice Different sublattice Sublattice localization of the polarized peak H Non-magnetic Ferro Magnetic coupling in graphene sensitive to where magnetic moments are located in lattice HH 2.5 3.50 Distance to H [nm]
  • 38. Manipulating H magnetism H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M.M. Ugeda, J. Y. Veuillen, F. Ynduráin and I. Brihuega, Science, 352, 437 (2016)
  • 39. Manipulating H magnetism H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M.M. Ugeda, J. Y. Veuillen, F. Ynduráin and I. Brihuega, Science, 352, 437 (2016)
  • 40. Manipulating H magnetism 7 H atoms “down” 7 H atoms “up” 7 H atoms “up” 7 H atoms “down” H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M.M. Ugeda, J. Y. Veuillen, F. Ynduráin and I. Brihuega, Science, 352, 437 (2016)
  • 41. Manipulating H magnetism 7 H atoms “down” 7 H atoms “up” 7 H atoms “up” 7 H atoms “down” x x xx xx x H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M.M. Ugeda, J. Y. Veuillen, F. Ynduráin and I. Brihuega, Science, 352, 437 (2016)
  • 42. Manipulating H magnetism 7 H atoms “down” 7 H atoms “up” x x xx xx x 7 H atoms “down” H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M.M. Ugeda, J. Y. Veuillen, F. Ynduráin and I. Brihuega, Science, 352, 437 (2016)
  • 43. Manipulating H magnetism 7 H atoms “up” … 7 H atoms “down” 7 H atoms “up” x x xx xx x 7 H atoms “down” H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M.M. Ugeda, J. Y. Veuillen, F. Ynduráin and I. Brihuega, Science, 352, 437 (2016) https://www.youtube.com/watch?v=NmPAAo7_xY0
  • 44. J.M.Gómez-Rodríguez …and the most important slide Félix Ynduráin Paco Guinea H. González-Herrero Juanjo Palacios M. Moaied www.ivanbrihuega.com C. Salgado M. M. Ugeda J-Y VeuillenP. MalletL. Magaud Guy Trambly de Laissardière
  • 45. Atomic H on Doped graphene -0.4 -0.2 DOS(au) Ene -100 -50 0 50 100 dI/dV(a.u.) Voltage (mV) Experiment Theory Spin up Spin down Graphene H atom Graphene ~20 meV U3 ψ2 ) ) Coulomb splitting r1 U1 U2r2 r3 A B C D E Anderson Impurity model P. W. Anderson, Physical Review 124, 41 (1961) -100 -50 0 50 100 dI/dV(a.u.) Voltage (mV) 2D E↑ E MAGNETIC NON-MAGNETIC pD/U x=(EF-Ed)/U 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 E↑=Ed+U(n  1/2) E =Ed+U(n↑  1/2) STS on neutral graphene
  • 46. Atomic H on Doped graphene -0.4 -0.2 DOS(au) Ene -100 -50 0 50 100 dI/dV(a.u.) Voltage (mV) Experiment Theory Spin up Spin down Graphene H atom Graphene ~20 meV U3 ψ2 ) ) Coulomb splitting r1 U1 U2r2 r3 A B C D E Anderson Impurity model P. W. Anderson, Physical Review 124, 41 (1961) -100 -50 0 50 100 dI/dV(a.u.) Voltage (mV) 2D E↑ E MAGNETIC NON-MAGNETIC pD/U x=(EF-Ed)/U 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 E↑=Ed+U(n  1/2) E =Ed+U(n↑  1/2)
  • 47. Peak splitting vs unit cell size 0.00 0.02 0.04 0.06 0.08 0.00 0.05 0.10 0.15 0.20 Splitting[eV] 1/Distance (Å -1 ) 50 25 17 12.5 Distance (Å) Fit to1/r Unit cell size matters!
  • 48. -50 0 50 0 2 4 dI/dV(a.u.) Voltage (mV) 2 isolated H atoms on the same terrace, same tip e-h symmetry 2 isolated H atoms on the same terrace, 1 isolated H atom dif terrace small local doping,same tip 1 isolated H atom dif terrace dif tip -50 0 50 0 2 4 dI/dV(a.u.) Voltage (mV)
  • 49. -0,2 0,0 0,2 DOS(au) Spin Down Monolayer Spin Down BL Moire (13º) Spin Down AB Bilayer(on ) Spin Down AB Bilayer(on ) Spin Up ML Spin Up BL Moire (13º) Spin Up AB Bilayer(on ) Spin Up AB Bilayer(on ) 0 25 50 75 100 125 AB Bilayer(on ) AB Bilayer(on ) BL Moire (13º) Monolayer Spinsplitting(meV) 4.4nm 4.4nm A B Influence of stacking -40 -20 0 20 40 2 4 A B dI/dV(a.u.) Voltage (mV)
  • 50. H on HOPG – Is magnetism preserved? System is still magnetic in multilayer graphene/graphite DFT calculations: M. Moaied and J.J Palacios Bilayer Multilayer
  • 51. -0.5 +0.50.0 E (eV) -0.5 +0.50.0 E (eV) -0.5 +0.50.0 E (eV) -0.5 +0.50.0 E (eV)-60 -40 -20 0 20 40 60 0,5 1,0 1,5 AA dimer (3nm) dI/dV(a.u.) Voltage (mV) 4.5nm -60 -40 -20 0 20 40 60 0.5 1.0 1.5 Single H AA dimer dI/dV(a.u.) Voltage (mV) H-H distance=0.5nm H-H distance=3nm
  • 52. -60 -40 -20 0 20 40 60 0,5 1,0 1,5 Single H AA dimer0.5nm AA dimer (3nm) dI/dV(a.u.) Voltage (mV) 4.5nm H-H distance=0.5nm H-H distance=3nm -60 -40 -20 0 20 40 60 0.5 1.0 1.5 Single H AA dimer dI/dV(a.u.) Voltage (mV)
  • 53. -300 -200 -100 0 100 200 300 0 2 dI/dV(a.u.) Voltage (mV) Atomic H on Doped graphene H atoms on 3rd graphene layer ED kF=0.020nm-1=> ED  -0.14eV 4 3rd graphene layer on SiC(000-1) is n-doped: K1 E kx ky ED K1 E kx ky EF =ED Free-standing graphene EF 2kF -400 -200 0 200 dI/dV(a.u.) Voltage (mV) ED  -0.14eV G/SiC(000-1) SiC C 1st layer 2nd layer 3rd layer DFT calculations: F Yndurain 0.8e - 1.0e - 0.9e - 0.1e - Spin Up Spin Down Non-Magnetic 0.7e - 0.5e - 0.3e - 0.2e - 0.4e - 0.6e - 0.0 0.5 1.0 0.0 0.2 0.4 0.6 0.8 1.0
  • 54. -0.6 -0.4 -0.2 0.0 0.2 0.4 Non doped Doped with 1e - Energy (eV) DOS(au) -0.1 0.0 0.1 0.8e - 0e - 1.0e - 0.9e - 0.1e - DOS(au) Energy (eV) Spin Up Spin Down Non-Magnetic 0.7e - 0.5e - 0.3e - 0.2e - 0.4e - 0.6e - -0.5 0.0 0.5 DOS(au) Energy (eV) AB dimer Graphene Theory H-H distance=1.15nm -400 -200 0 200 400 AB Dimer Graphene dI/dV(a.u.) Voltage (mV) -50 0 50 0 2 4 dI/dV(a.u.) Voltage (mV) Atomic H on Doped graphene -400 -300 -200 -100 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 1.2 dI/dV(a.u.) Voltage (mV) -200 -100 0 100 200 0,0 0,2 0,4 0,6 0,8 1,0 dI/dV(a.u.) Voltage (mV) Single H atom Non-Magnetic Dimer STM
  • 55. Kondo… “This problem has to be solved properly…” Misha Katsnelson, ICMM, Madrid, 19.09.2014
  • 56. 0 1 2 3 4 5 0 1 2 3 Desorptionenergy(eV) Distance of H atom over graphene () Single H Atomic H deposition on SiC(000-1) held at RT + 6 minutes at RT => Cool down to 6K Atomic H on G/SiC(000-1) -100 -50 0 50 100 0 2 dI/dV(a.u.) Voltage (mV) x
  • 57. -100 -50 0 50 100 0 2 dI/dV(a.u.) Voltage (mV) 0 1 2 3 4 5 0 1 2 3 Desorptionenergy(eV) Distance of H atom over graphene () Single H Atomic H deposition on SiC(000-1) held at RT + 6 minutes at RT => Cool down to 6K Atomic H on G/SiC(000-1) -100 -50 0 50 100 0 1 2 dI/dV(a.u.) Voltage (mV) x x
  • 58. 1175.top 1178.top 1184.top 1187.top Manipulating H magnetism -200 -100 0 100 200 0.0 0.5 1.0 1.5 2.0 dI/dV(a.u.) Voltage (mV) -200 -100 0 100 200 0.0 0.5 1.0 1.5 2.0 dI/dV(a.u.) Voltage (mV) H_SiC(000-1)_2013_06_17_RT_HDeposition
  • 59. -0.10 -0.05 0.00 0.05 0.10 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 E-EF (eV) k (Å -1 ) -0.10 -0.05 0.00 0.05 0.10 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 E-EF (eV) k (Å -1 ) 1 2 3 0 5000 10000 15000 20000 Numberofcounts Conductance (2e 2 /h) 0.0 0.5 1.0 0 1 2 G(2e 2 /h) Z (nm) Forward Backward +0.1V +1.0V +2.2V 2.2V +3.0V 3.0V 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.2 0.4 0.6 0.8 1.0 ExtractionProbability Z (nm)a) b) c) d) e) f) g) h) i) j) k) l) m) Graphene Nanolithography with 2.5 nm precision A.J. Martínez-Galera, I. Brihuega, A. Gutiérrez-Rubio, T. Stauber, J. M. Gómez-Rodríguez
  • 60. Tunneling on and through graphene: measuring the local electronic coupling. BothCu(111)&Graphenecanbeobserved Same region as above, tip change G/Cu(111)vsCu(111) Dispersion relation Pseudospin -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 -0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 k (nm -1 ) Energy(eV) G/Pt(111)G/SiC(000-1) Gr/Cu(111) vF = 1.12x106 m/s ED = -0.34 eV kF = 0.48 eV FT from G/Cu(111) Point defects Grapheneproperties H. González-Herrero, A.J. Martínez-Galera, M.M. Ugeda, F.Craes, D. Fernández-Torre, P. Pou, R. Pérez, J.M. Gómez-Rodríguez and I. Brihuega
  • 61. 1175.top 1171.top x 1179.top x 1178.top 1184.top 1173.top x 1187.top 1191.top Manipulating H magnetism H dimer in same sublattice => H dimer in opposite sublattice=> Remove the dimer Spin polarized peak No peaks at low E H dimer in opposite sublattice => Remove 1 H atom from dim No peaks at low E Spin polarized peak x
  • 62. 0 0.2 0.4 0.6 -0.8 -0.4 0 0.4 0.8 Bottom Top dI/dV(arb.units) Sample bias (V) 0 0.1 0.2 0.3 -1 -0.5 0 0.5 1 dI/dV(arb.units) Sample bias (V) 0 0.2 0.4 0.6 -0.2 -0.1 0 0.1 0.2 1 1' 2 3 dI/dV(arb.units) Sample bias (V) 1 1’ 2 3 0 2 4 6 8 10 0.0 0.5 1.0 1.5 2.0 VHsseparation(eV) Rotation angle q (°) 3.514 7 2.4 1.7 1.4 Moiré size Rotating two graphene layers: only upmost 2 layers matter Left Right I. Brihuega, P. Mallet, H. González-Herrero, G. Trambly de Laissardière, MM. Ugeda, L. Magaud, JM. Gómez-Rodríguez, F. Ynduráin, and J-Y. Veuillen to appear
  • 63. 1.65 V 0.05 V LDOS High Low Moiré period 2.66nm (q  5.30°).
  • 64. Moiré period  11-12nm; q  1.3º-1.2º
  • 65. 0.20.10-0.1-0.2 0.5 0.4 0.3 0.2 0.1 Bias [V] CH6[V] 0.10-0.1 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 Bias [V] CH6[V] Moiré period  11-12nm; q  1.3º-1.2º 2001000-100-200 300 250 200 150 100 50 0 X[mV] Z[mV] Average AA Average AB
  • 66. H “dimers” on G/SiC(000-1) H-H distance=0.28nm AB dimer H-H distance=0.49nm AA dimer 0 5 10 15 -2.8 -2.4 -2.0 -1.6 Energy[ev] H-H distance [Å] AA-Ferromagnetic AB-Non-magnetic Same sublattice Different sublattice Experiment STS -200 0 200 1 dI/dV(a.u.) Voltage (mV) Graphene Theory (DFT)
  • 67. STS -200 0 200 1 dI/dV(a.u.) Voltage (mV) Graphene H “dimers” on G/SiC(000-1) 0 5 10 15 -2.8 -2.4 -2.0 -1.6 Energy[ev] H-H distance [Å] AA-Ferromagnetic AB-Non-magnetic Same sublattice Different sublattice Graphene STS -200 0 200 1 dI/dV(a.u.) Voltage (mV) AB dimer -0.5 0.0 0.5 AB Dimer Graphene DOS(au) Energy (eV) DFT H-H distance=0.28nm AB dimer H-H distance=0.49nm AA dimer Experiment Theory (DFT)
  • 68. -200 0 200 1 dI/dV(a.u.) Voltage (mV) STS AA dimer STS -200 0 200 1 dI/dV(a.u.) Voltage (mV) AB dimer H “dimers” on G/SiC(000-1) 0 5 10 15 -2.8 -2.4 -2.0 -1.6 Energy[ev] H-H distance [Å] AA-Ferromagnetic AB-Non-magnetic Same sublattice Different sublattice -0.5 0.0 0.5 AB Dimer Graphene DOS(au) Energy (eV) DFT Graphene AB dimer H-H distance=0.28nm AB dimer H-H distance=0.49nm AA dimer Experiment Theory (DFT) AA Dimer Spin up Spin down -0.5 0.0 0.5 AB Dimer Graphene DOS(au) Energy (eV) DFT
  • 69. -200 0 200 1 dI/dV(a.u.) Voltage (mV) STS AA dimer STS -200 0 200 1 dI/dV(a.u.) Voltage (mV) AB dimer H “dimers” on G/SiC(000-1) 0 5 10 15 -2.8 -2.4 -2.0 -1.6 Energy[ev] H-H distance [Å] AA-Ferromagnetic AB-Non-magnetic Same sublattice Different sublattice -0.5 0.0 0.5 AB Dimer Graphene DOS(au) Energy (eV) DFT Graphene AB dimer H-H distance=0.28nm AB dimer H-H distance=0.49nm AA dimer Experiment Theory (DFT) AA Dimer Spin up Spin down -0.5 0.0 0.5 AB Dimer Graphene DOS(au) Energy (eV) DFT H-H distance=0.57nm AB dimer -200 -100 0 100 200 1 2 dI/dV(a.u.) Voltage (mV) STS Same sublattice => peak is polarized Different sublattices => no peaks AB dimer Graphene
  • 70. -200 -100 0 100 200 0.5 1.0 1.5 2.0 Voltage (mV) dI/dV(a.u.) Manipulating H magnetism A-B dimer “Magnetism OFF”X X Removing single H
  • 71. -200 -100 0 100 200 0.5 1.0 1.5 2.0 Voltage (mV) dI/dV(a.u.) Manipulating H magnetism Isolated H “Magnetism ON” Removing single H
  • 72. -200 -100 0 100 200 0.5 1.0 1.5 2.0 dI/dV(a.u.) Voltage (mV) Manipulating H magnetism A-A dimer “Magnetism ON” Lateral motion
  • 73. Manipulating H magnetism A-B dimer “Magnetism OFF” -200 -100 0 100 200 0.5 1.0 1.5 2.0 dI/dV(a.u.) Voltage (mV) Lateral motion
  • 74. A-B dimer at 1.15 nm “Magnetism OFF!” x Manipulating H magnetism H-H distance=1.15nm x 0 5 10 15 -2.8 -2.4 -2.0 -1.6 Energy[ev] H-H distance [Å] AA-Ferromagnetic AB-Non-magnetic Same sublattice Different sublattice -400 -200 0 200 400 AB Dimer Graphene dI/dV(a.u.) Voltage (mV) -0.5 0.0 0.5 DOS(au) Energy (eV) AB dimer Graphene Theory (DFT) A-B dimer
  • 75. Manipulating H magnetism 0 5 10 15 -2.8 -2.4 -2.0 -1.6 Energy[ev] H-H distance [Å] AA-Ferromagnetic AB-Non-magnetic Same sublattice Different sublattice -400 -200 0 200 400 AB Dimer Graphene dI/dV(a.u.) Voltage (mV) -0.5 0.0 0.5 DOS(au) Energy (eV) AB dimer Graphene Theory (DFT) Isolated H “Magnetism ON” Exchange energy for 2H at 1.5 nm is -35meV Eex = [(2H in AA with spin 2)-(2H in AA forced to spin 0)] Isolated H