SlideShare a Scribd company logo
1 of 27
Topological flat bands without magic angles in massive
twisted bilayer graphenes
Srivani Javvaji, Jin-Hua Sun, and Jeil Jung
Quantum Materials Theory Group
Department of Physics, University of Seoul, Seoul 02504, Republic of Korea.
Session B51: Graphene: Electronic Structure and
Interactions : Moire, Correlations, and Topology
[Srivani. et.al., Phys. Rev. B 101, 125411(2020)]
Motivation
Motivation:
Magic angle twisted bilayer graphene and trilayer graphene boron nitride moire superlattices
have shown Mott insulating and signatures of supercondictivity
Oliver E. Buckley Condensed
Matter Physics Prize 2020
 Pablo Jarillo-Herrero
Magic angle twisted bilayer graphene show Mott insulating phases and signatures of
superconductivity
Search for the Flat band systems without the magic angle
Bilayers of Transition Metal Dichalcogenides (TMDC)
Phys. Rev. Lett. 122, 086402;
Twisted bilayer MoS2
arXiv:1908.10399;arXiv:1910.12147;
Massive Dirac model
Twisted bilayer WSe2
G/G
Motivation
Moiré BZ Moiré pattern
HtMBG =
[
ht
θ/2(k) T(r)
T†
(r) hb
−θ/2(k)]
Interlayer coupling term:
T0
=
[
ω1 ω2
ω2 ω3]
, T±
=
[
ω1 ω2e∓i2π/3
ω2e±i2π/3
ω3 ]
Continuum model Hamiltonian perturbed by
stacking-dependent interlayer tunneling
for twisted BLG (tBLG) :
Monolayer Hamiltonian,
2(b)
˜K′
(a)Realspacemoirésuperlattice
2
LM
Energy(eV)
−0.2
−0.1
0
0.1
0.2
(a)(b)
K′
+
θ
2
−
θ
2
˜ΓΓ
˜K
˜K′
˜M˜Γ
˜K′
˜K
˜M
˜K
˜K′
˜Γ
˜Γ
K
ΔK
lM
Moiré bands theory (Bistritzer-MacDonald model)
where,
Bistritzer et al, pnas.1108174108
lM ∼ a/θ
• We include additional diagonal and off-diagonal moire pattern terms to the Bistritzer-MacDonald model
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
Motivation
Continuum model Hamiltonian perturbed by
stacking-dependent interlayer tunneling
for twisted BLG :
Band structures of tBLG
Band width
HtMBG =
[
ht
θ/2(k) T(r)
T†
(r) hb
−θ/2(k)]
Moiré bands theory
Yuan Cao et al,
nature26154
• When the two layers are coupled in tBLG, the electronic structure exhibits, flat bands at certain twist angles
called magic angles.
Motivation
Continuum model Hamiltonian perturbed by
stacking-dependent interlayer tunneling
for twisted BLG :
Pressure(GPa)
(eV)<latexitsha1_base64="qUg8iXI01zUDf6doeaeQGgCgJ1c=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJcxOepMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqExTbFDFlW7HxCBnEhuWWY7tVCMRMcdWPLqd+a0n1IYp+WDHKUaCDCRLGCXWSc2uEjggvXIlqAZz+KskzEkFctR75a9uX9FMoLSUE2M6YZDaaEK0ZZTjtNTNDKaEjsgAO45KItBEk/m1U//MKX0/UdqVtP5c/T0xIcKYsYhdpyB2aJa9mfif18lsch1NmEwzi5IuFiUZ963yZ6/7faaRWj52hFDN3K0+HRJNqHUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDhEZ7hFd485b14797HorXg5TPH8Afe5w+QMY8b</latexit><latexitsha1_base64="qUg8iXI01zUDf6doeaeQGgCgJ1c=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJcxOepMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqExTbFDFlW7HxCBnEhuWWY7tVCMRMcdWPLqd+a0n1IYp+WDHKUaCDCRLGCXWSc2uEjggvXIlqAZz+KskzEkFctR75a9uX9FMoLSUE2M6YZDaaEK0ZZTjtNTNDKaEjsgAO45KItBEk/m1U//MKX0/UdqVtP5c/T0xIcKYsYhdpyB2aJa9mfif18lsch1NmEwzi5IuFiUZ963yZ6/7faaRWj52hFDN3K0+HRJNqHUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDhEZ7hFd485b14797HorXg5TPH8Afe5w+QMY8b</latexit><latexitsha1_base64="qUg8iXI01zUDf6doeaeQGgCgJ1c=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJcxOepMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqExTbFDFlW7HxCBnEhuWWY7tVCMRMcdWPLqd+a0n1IYp+WDHKUaCDCRLGCXWSc2uEjggvXIlqAZz+KskzEkFctR75a9uX9FMoLSUE2M6YZDaaEK0ZZTjtNTNDKaEjsgAO45KItBEk/m1U//MKX0/UdqVtP5c/T0xIcKYsYhdpyB2aJa9mfif18lsch1NmEwzi5IuFiUZ963yZ6/7faaRWj52hFDN3K0+HRJNqHUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDhEZ7hFd485b14797HorXg5TPH8Afe5w+QMY8b</latexit><latexitsha1_base64="qUg8iXI01zUDf6doeaeQGgCgJ1c=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJcxOepMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqExTbFDFlW7HxCBnEhuWWY7tVCMRMcdWPLqd+a0n1IYp+WDHKUaCDCRLGCXWSc2uEjggvXIlqAZz+KskzEkFctR75a9uX9FMoLSUE2M6YZDaaEK0ZZTjtNTNDKaEjsgAO45KItBEk/m1U//MKX0/UdqVtP5c/T0xIcKYsYhdpyB2aJa9mfif18lsch1NmEwzi5IuFiUZ963yZ6/7faaRWj52hFDN3K0+HRJNqHUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDhEZ7hFd485b14797HorXg5TPH8Afe5w+QMY8b</latexit>
(deg)
FIG. 1. (Color online) Colormap of the flatband bandwidth as a
function of twist angle q and interlayer tunneling strength w. We
identify numerically straight lines in the parameter space given by
Eq. (??), where we represent in orange, green and blue the regions in
the phase diagram corresponding to the first, second and third magic
Bheema. et.al.,
Electr.Struc (2019)
HtMBG =
[
ht
θ/2(k) T(r)
T†
(r) hb
−θ/2(k)]
Band gap Δ = 0Moiré bands theory
Band width
Yuan Cao et al,
nature26154
• The blue, green & orange lines in the colormap of ( , ) space represents the the regions corresponding to
first,second and third magic angles at which bandwidth minima are achieved.
θ ω
Motivation
Continuum model Hamiltonian perturbed by
stacking-dependent interlayer tunneling
for twisted BLG : h(θ) = − vk
[
ei(θk−θ)
e−i(θk−θ) ]
Δ
−Δ
HtMBG =
[
ht
θ/2(k) T(r)
T†
(r) hb
−θ/2(k)]
Moiré bands theory
In massive tBLG (MTBG):
Band width
Yuan Cao et al,
nature26154
Motivation
Continuum model Hamiltonian perturbed by
stacking-dependent interlayer tunneling
for twisted BLG :
HtMBG =
[
ht
θ/2(k) T(r)
T†
(r) hb
−θ/2(k)]
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
Moiré bands theory
Band width
h(θ) = − vk
[
ei(θk−θ)
e−i(θk−θ) ]
Δ
−Δ
In massive tBLG (MTBG):
Yuan Cao et al,
nature26154
• Traces of magic angle bandwidth dips of gapless tBLG gradually disappear as the intra-layer gap becomes large.
• They are almost inexistent already for the gaps of the order of 0.2 eV∼
υF −Fermi velocity
2Δ −Intralayer gap
Kθ −Shift between ˜K & ˜K′
ωi −Sublattice resolved interlayer couplings with i = 1,2,3
δs −Secondary gap (EC2
− EC1
)
δp −Primary gap (EC1
− EV1
)
δM
−Gap (EC2
− EC1
) at ˜M
W −Band width
Terminology :
2Δ = 0.1 eV, ωi = 0(b)
Kθ
∝ υF
˜Γ ˜K ˜K′ ˜Γ˜K′
2
zone
super lattice
˜Γ ˜K′
2Δ = 0.1 eV, ωi ≠ 0
δs
W
δp
δM
˜Γ ˜K ˜K′ ˜Γ˜K′
Energy(eV)Energy(eV)
− 0.2
− 0.1
0
0.1
0.2
− 0.2
− 0.1
0
0.1
0.2
(b) (c)
˜K1
˜K2
˜K3
˜K4
˜K1
˜K2
˜K3
˜K4
˜K1
˜K2
˜K3
˜K4
Δ = 0, ωi = 0 Δ ≠ 0, ωi = 0 Δ ≠ 0, ωi ≠ 0
2Δ = 0 . 1 eV, ωi = 0
˜Γ ˜K ˜K′ ˜Γ˜K′
Energy(eV)
Kθ
∝ υF
2Δ
0.2
0.1
0
-0.1
-0.2
Energy(eV)
2Δ = 0 . 1 eV, ωi ≠ 0
δs
W
δp
δM
˜Γ ˜K ˜K′ ˜Γ˜K′
0.2
0.1
0
-0.1
-0.2
V1
C1
C2
V2
Evolution of flat bands in massive tBG
Schematic showing
the flat band evolution
in MTBG
Actual band structure
of MTBG at θ = 1∘
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
˜K ˜K′ ˜Γ ˜Γ ˜K
0.2
0.1
0
-0.1
-0.2
0.2
0.1
0
-0.1
-0.2
0.3
0.2
0.1
-0.1
-0.2
-0.3
0.4
0.3
-0.3
-0.4
1.4
1.3
1.2
-1.2
-1.3
-1.4
C1
C2
C3
V1
V2
V3
2Δ = 0 eV 2Δ = 0 . 1 eV 2Δ = 0 . 5 eV 2Δ = 1 . 0 eV 2Δ = 3 . 0 eV
Energy(eV)
˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K
Evolution of flat bands in massive tBG
Band structure of
MTBG at θ = 1∘
˜Γ
˜K′
˜K
˜M
˜K
˜K′
˜Γ
˜Γ
Moiré BZ
ωi = 0 . 098 eV
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
• The evolution of electronic structures in MTBG at as a function of bandgap ranging from
shown here
• We observe the enhancement of the flatness in the lower bands along with the enhancement of secondary
isolation gap and primary gap
θ = 1∘
2Δ = 0 to 3 eV
0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5
θ (deg) θ (deg) θ (deg) θ (deg) θ (deg)
0.2
0.15
0.1
0.05
0
0.25
ω(eV)
W (eV)
W ∝
1
Δ
(at constant θ)W ∝ θ (at constant Δ) &
Evolution of flat bands in massive tBG
˜K ˜K′ ˜Γ ˜Γ ˜K
0.2
0.1
0
-0.1
-0.2
0.2
0.1
0
-0.1
-0.2
0.3
0.2
0.1
-0.1
-0.2
-0.3
0.4
0.3
-0.3
-0.4
1.4
1.3
1.2
-1.2
-1.3
-1.4
C1
C2
C3
V1
V2
V3
2Δ = 0 eV 2Δ = 0 . 1 eV 2Δ = 0 . 5 eV 2Δ = 1 . 0 eV 2Δ = 3 . 0 eV
Energy(eV)
˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K
˜Γ
˜K′
˜K
˜M
˜K
˜K′
˜Γ
˜Γ
Moiré BZ
Bandwidth
Band structure of
MTBG at θ = 1∘
ωi = 0 . 098 eV
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
• This colormap shows the bandwidth in the parameter space of ( , ).
• As we increase the bandgap, the magic angle line regions starting to expand to become a continuous region of
bandwidth minima
θ ω
0.2
0.15
0.1
0.05
0
0.25
ω(eV)
0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5
θ (deg) θ (deg) θ (deg) θ (deg) θ (deg)
δS (eV)
Evolution of flat bands in massive tBG
˜K ˜K′ ˜Γ ˜Γ ˜K
0.2
0.1
0
-0.1
-0.2
0.2
0.1
0
-0.1
-0.2
0.3
0.2
0.1
-0.1
-0.2
-0.3
0.4
0.3
-0.3
-0.4
1.4
1.3
1.2
-1.2
-1.3
-1.4
C1
C2
C3
V1
V2
V3
2Δ = 0 eV 2Δ = 0 . 1 eV 2Δ = 0 . 5 eV 2Δ = 1 . 0 eV 2Δ = 3 . 0 eV
Energy(eV)
˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K
˜Γ
˜K′
˜K
˜M
˜K
˜K′
˜Γ
˜Γ
Moiré BZ
0.2
0.15
0.1
0.05
0
0.25
ω(eV)
W (eV)Bandwidth
Secondary
gap
Band structure of
MTBG at θ = 1∘
ωi = 0 . 098 eV
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
• This colormap shows the lower energy band isolation in the parameter space of ( , ), we expect to find isolated
flat bands are more susceptible to coulomb interactions
θ ω
Study of massive twisted Dirac materials
h(θ) = − vk
[
ei(θk−θ)
e−i(θk−θ) ]
Δ
−Δ
Massive Dirac Hamiltonian :
where,
Band structures of TMDC, BN and SiC monolayers at ‘Dirac’ point
can be described by Massive Dirac Hamiltonian
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
Bandwidth(eV)
0.2
0 108642
(deg)θ
0.15
0.1
0.05
0
0.0
0.1
0.2
0.3
60o)
0o)
• Traces of magic angle bandwidth dips of gapless tBLG gradually disappear as the intra-layer gap becomes large.
• They are almost inexistent already for the gaps of the order of 0.2 eV∼
Study of massive twisted Dirac materials
h(θ) = − vk
[
ei(θk−θ)
e−i(θk−θ) ]
Δ
−Δ
Massive Dirac Hamiltonian :
Band structures of TMDC, BN and SiC monolayers at ‘Dirac’ point
can be described by Massive Dirac Hamiltonian
* Di Xiao et al, PRL
108, 196802 (2012)
*
*
*
* * Fencheng Wu et al,
arXiv:1807.03311v1
DFT
(Wannier
Functions)
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
Bandwidth(eV)
0.2
0 108642
(deg)θ
0.15
0.1
0.05
0
0.0
0.1
0.2
0.3
60o)
0o)
Study of massive twisted Dirac materials
Energy(eV)
0.4
0.0
-0.2
-0.82
0.84
0.86
-0.84
-0.86
0.2
-0.4
2.1
2.0
1.9
1.8
-2
-2.1
2.1
2
1.9
-1.8
-1.9
-2
1.14
1.1
1.06
1.02
-0.96
-1
-1.04
˜G/ ˜G TMDC/TMDC BN/BN(0∘
) BN/BN(60∘
) SiC/SiC
Band structure of
MTBGs at θ = 1∘
˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K
2Δ = 0 . 1 eV
Large bandgap systems
2Δ ∼ 1 . 6 eV 2Δ ∼ 4 . 5 eV 2Δ ∼ 2 . 3 eV
Small bandgap system
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
• The evolution of electronic structures in different real systems represented by MTBG Hamiltonian at
• We observe the enhancement of the flatness in the lower bands along with the enhancement of secondary
isolation gap and primary gap
θ = 1∘
Study of massive twisted Dirac materials
1
2
5
3
4
(arb . u.)
× 104
Energy(eV)
0.4
0.0
-0.2
-0.82
0.84
0.86
-0.84
-0.86
0.2
-0.4
2.1
2.0
1.9
1.8
-2
-2.1
2.1
2
1.9
-1.8
-1.9
-2
1.14
1.1
1.06
1.02
-0.96
-1
-1.04
˜G/ ˜G TMDC/TMDC BN/BN(0∘
) BN/BN(60∘
) SiC/SiC
Band structure of
MTBGs at θ = 1∘
˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K
At Valence band van Hove singularity
Ry(nm)
Rx (nm)
0
5
10
-5
-10
0 10-10
Rx (nm)
5
15
25
× 102
1000
1500
2000
(arb . u.)(arb . u.)
0 10-10
0
5
10
-5
-10
Rx (nm)
1
3
9
5
7
(arb . u.)
× 104
0
5
10
-5
-10
0 10-10
Rx (nm)
2
4
8
12
(arb . u.)
× 104
0 10-10
Rx (nm)
0
5
10
-5
-10
0 15-15
0
5
10
-5
-10
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
BA
BA
BA
AA-stacking
AB-stacking
BA-stacking
aM
Rx
Ry
AB-stacking AA-stacking BA-stacking
A B
A′ B′
A B
A′ B′
0∘ alignment: 60∘ alignment:
A B
A′ B′
AB-stacking AA-stacking BA-stacking
A B
B′ A′
A B
B′ A′
A B
B′ A′
Local Density of
States θ = 1∘
2Δ = 0 . 1 eV
Large bandgap systems
2Δ ∼ 1 . 6 eV 2Δ ∼ 4 . 5 eV 2Δ ∼ 2 . 3 eV
Small bandgap system
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
• The stacking resolved real space representation of the local density of states at the valence band van Hove
singularity (VHS)
• In the all real systems shown above, AA-stacking region gives rise to VHS except in BN/BN(60o)
Existence of strongly correlated states
ω(eV)
δs (eV)
−0.05 0.050
0 2.521 1.50.5
W (eV)
0.05
0.1
0.15
0.2
0.25
0 2.521 1.50.5
0.1 0.2 0.3 0.4
δp (eV)
0 2.521 1.50.5
−0.05 0.050
Ueff /W
5 100
0 2.521 1.50.5
˜G/ ˜G
θ (deg)θ (deg) θ (deg) θ (deg)
The ratio of effective Coulomb potential to Bandwidth Ueff /W
Debye length,
Moiré length, lM ∼ a/θ
Screened Coulomb
potential :
Small bandgap system
2Δ = 0 . 1 eV
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
• The phase diagram colormaps of the bandwidth W, secondary gap δs, primary gap δp, the Ueff/W ratio in
• The threshold value of the Ueff/W = 1 ratio from where Coulomb interactions are expected to be significant is
indicated with a blue line.
˜G/ ˜G
Existence of strongly correlated states
ω(eV)
δs (eV)
−0.05 0.050
0 2.521 1.50.5
W (eV)
0.05
0.1
0.15
0.2
0.25
0 2.521 1.50.5
0.1 0.2 0.3 0.4
δp (eV)
0 2.521 1.50.5
−0.05 0.050
Ueff /W
5 100
0 2.521 1.50.5
˜G/ ˜G
ω(eV)
500 10000
BN/BN(0∘
)
θ (deg)
0 54321
500 10000
TMDC/TMDC
θ (deg)
0 54321
0.05
0.1
0.15
0.2
0.25
500 10000
BN/BN(60∘
)
0 54321
θ (deg)
500 10000
SiC/SiC
0 54321
θ (deg)
The ratio of effective Coulomb potential to Bandwidth Ueff /W
Debye length,
Moiré length, lM ∼ a/θ
Screened Coulomb
potential :
Small bandgap system
2Δ = 0 . 1 eV
Large bandgap systems
1 < 2Δ ≤ 4 . 5 eV
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
• In all the real systems we studied, Ueff/W diagram shows that Coulomb interactions are expected
Analytical expressions for energy at , & -points˜K ˜Γ ˜M
Energy(eV)
δs
W
δp
δM
˜Γ ˜K ˜K′ ˜Γ˜K′
0.2
0.1
0
-0.1
-0.2
V1
C1
C2
V2
2Δ = 0 . 1 eV, ωi ≠ 0
1
2
3
4
5
64′
Kθ
T+
T−
T0
˜K
˜K′
˜Γ
Bistritzer-MacDonald model
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
Analytical expressions for energy at , & -points˜K ˜Γ ˜M
Energy(eV)
δs
W
δp
δM
˜Γ ˜K ˜K′ ˜Γ˜K′
0.2
0.1
0
-0.1
-0.2
V1
C1
C2
V2
2Δ = 0 . 1 eV, ωi ≠ 0
• from 4x4 -Hamiltonian model (green oval)E( ˜M)
Bistritzer-MacDonald model
Kθ
1
2
3
4
5
64′
Kθ
T+
T−
T0
˜K
˜K′
˜Γ
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
Analytical expressions for energy at , & -points˜K ˜Γ ˜M
Energy(eV)
δs
W
δp
δM
˜Γ ˜K ˜K′ ˜Γ˜K′
0.2
0.1
0
-0.1
-0.2
V1
C1
C2
V2
2Δ = 0 . 1 eV, ωi ≠ 0
• from 4x4 -Hamiltonian model (green oval)E( ˜M)
Bistritzer-MacDonald model
Kθ
1
2
3
4
5
64′
Kθ
T+
T−
T0
˜K
˜K′
˜Γ
• from 8x8 -Hamiltonian model (brown circle)E( ˜K)
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
Analytical expressions for energy at , & -points˜K ˜Γ ˜M
Energy(eV)
δs
W
δp
δM
˜Γ ˜K ˜K′ ˜Γ˜K′
0.2
0.1
0
-0.1
-0.2
V1
C1
C2
V2
2Δ = 0 . 1 eV, ωi ≠ 0
• from 4x4 -Hamiltonian model (green oval)E( ˜M)
Bistritzer-MacDonald model
Kθ
1
2
3
4
5
64′
Kθ
T+
T−
T0
˜K
˜K′
˜Γ
• from 8x8 -Hamiltonian model (brown circle)E( ˜K)
• from 12x12 -Hamiltonian model (blue square)E(˜Γ)
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
Analytical expressions for energy at , & -points˜K ˜Γ ˜M
Energy(eV)
2Δ = 0 . 1 eV, ωi ≠ 0
δs
W
δp
δM
˜Γ ˜K ˜K′ ˜Γ˜K′
0.2
0.1
0
-0.1
-0.2
V1
C1
C2
V2
The relationship between system parameters:
W = 0 . 03 eV
Kθ
1
2
3
4
5
64′
Kθ
T+
T−
T0
˜K
˜K′
˜Γ
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
• The well agreement between proposed analytical solutions with Numerical method is shown for different vF & ω
Chern numbers
Chern phase diagram of massive tBG
θ = 1∘
Valence
flat Band
Conduction
flat Band
ω1 = ω3 = 0 . 85ω
AA-stacking
A B
A′ B′
2Δt
2Δb
ωi
• The non-trivial Chern flat band emerges when the terms are different from each
other ( )
ωi
ωi ≠ ω
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
Chern numbers
Chern phase diagram of massive tBG
θ = 1∘
θ = 3∘
Valence
flat Band
Conduction
flat Band
ω1 = ω3 = 0 . 85ω
AA-stacking
A B
A′ B′
2Δt
2Δb
ωi
• The non-trivial Chern flat band emerges when the terms are different from each
other ( )
ωi
ωi ≠ ω
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
Circular dichroism in massive tBLG
A B
A′ B′
0∘alignment:
60∘ alignment:
A B
B′ A′
AA-stacking
Interlayer potential
difference Vg :
2Δ = 0 . 1 eV, θ = 3∘
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
• Schematic illustration of MTBGs for zero and
finite interlayer potential differences(Vg) near 0o &
60o rotational alignments , giving rise to same and
opposite mass signs at the mini valleys
• When Vg = 0, we expect macro-valley K & K’
contrasting circular dichroism near 0o alignment &
suppressed circular dichroism at 60o
˜K & ˜K′
Circular dichroism in massive tBLG
Interlayer potential
difference Vg :
2Δ = 0 . 1 eV, θ = 3∘
Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
A B
A′ B′
0∘alignment:
60∘ alignment:
A B
B′ A′
AA-stacking
• When Vg 0, it is possible to introduce a finite circular dichroism by applying interlayer bias & Fermi level
change that leads to layer & minimally polarization
≠
Summary
• A finite gap in the constituent layers of the MTBGs makes the generation of flat bands
simpler than in TBG
• Band flattening happens for a continuous range of small twist angles
• Our numerical calculations complemented by analytical solutions of the E( ), E( ) and
E( )
• Relationship between the system parameters in MTBG :
• The non-trivial Chern flat band emerges when the terms are different from each
other
• Valley contrasting circular dichroism in MTBG is studied at zero & finite interlayer
potential difference
˜Γ ˜K
˜M
ωi
Thank you !

More Related Content

What's hot

Graphene Field Effect Transistor
Graphene Field Effect TransistorGraphene Field Effect Transistor
Graphene Field Effect TransistorAhmed AlAskalany
 
Graphene presentation 11 March 2014
Graphene presentation 11 March 2014Graphene presentation 11 March 2014
Graphene presentation 11 March 2014Jonathan Fosdick
 
Graphene MOSFET
Graphene MOSFETGraphene MOSFET
Graphene MOSFETPawan Bang
 
The integral & fractional quantum hall effect
The integral & fractional quantum hall effectThe integral & fractional quantum hall effect
The integral & fractional quantum hall effectSUDIPTO DAS
 
Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2Po-Chun Yeh
 
Invisible excitations in hexagonal Boron Nitride
Invisible excitations  in hexagonal Boron NitrideInvisible excitations  in hexagonal Boron Nitride
Invisible excitations in hexagonal Boron NitrideClaudio Attaccalite
 
Characterization Of Layered Structures By X Ray Diffraction Techniques
Characterization Of Layered Structures By X Ray Diffraction TechniquesCharacterization Of Layered Structures By X Ray Diffraction Techniques
Characterization Of Layered Structures By X Ray Diffraction Techniquesicernatescu
 
Lecture 3 gl theory
Lecture 3 gl theoryLecture 3 gl theory
Lecture 3 gl theoryAllenHermann
 
Band structure
Band structureBand structure
Band structurenirupam12
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phaseClaudio Attaccalite
 
Energy band theory of solids
Energy band theory of solidsEnergy band theory of solids
Energy band theory of solidsBarani Tharan
 

What's hot (20)

bloch.pdf
bloch.pdfbloch.pdf
bloch.pdf
 
Graphene Field Effect Transistor
Graphene Field Effect TransistorGraphene Field Effect Transistor
Graphene Field Effect Transistor
 
Graphene ppt
Graphene pptGraphene ppt
Graphene ppt
 
Graphene presentation 11 March 2014
Graphene presentation 11 March 2014Graphene presentation 11 March 2014
Graphene presentation 11 March 2014
 
2 d materials
2 d materials2 d materials
2 d materials
 
Graphene MOSFET
Graphene MOSFETGraphene MOSFET
Graphene MOSFET
 
The integral & fractional quantum hall effect
The integral & fractional quantum hall effectThe integral & fractional quantum hall effect
The integral & fractional quantum hall effect
 
BCS theory
BCS theoryBCS theory
BCS theory
 
Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2
 
Invisible excitations in hexagonal Boron Nitride
Invisible excitations  in hexagonal Boron NitrideInvisible excitations  in hexagonal Boron Nitride
Invisible excitations in hexagonal Boron Nitride
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
Characterization Of Layered Structures By X Ray Diffraction Techniques
Characterization Of Layered Structures By X Ray Diffraction TechniquesCharacterization Of Layered Structures By X Ray Diffraction Techniques
Characterization Of Layered Structures By X Ray Diffraction Techniques
 
Lecture 3 gl theory
Lecture 3 gl theoryLecture 3 gl theory
Lecture 3 gl theory
 
Mte 583 class 18b
Mte 583 class 18bMte 583 class 18b
Mte 583 class 18b
 
carbon nanotubes
 carbon nanotubes   carbon nanotubes
carbon nanotubes
 
Band structure
Band structureBand structure
Band structure
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
Energy band theory of solids
Energy band theory of solidsEnergy band theory of solids
Energy band theory of solids
 
Magnetic materials
Magnetic materialsMagnetic materials
Magnetic materials
 
M2 point defects
M2 point defectsM2 point defects
M2 point defects
 

Similar to Topological flat bands without magic angles in massive twisted bilayer graphenes (APS,March2020)

Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Alexander Decker
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleFundación Ramón Areces
 
Effect of the Thickness of High Tc Superconducting Rectangular Microstrip Pat...
Effect of the Thickness of High Tc Superconducting Rectangular Microstrip Pat...Effect of the Thickness of High Tc Superconducting Rectangular Microstrip Pat...
Effect of the Thickness of High Tc Superconducting Rectangular Microstrip Pat...IJECEIAES
 
Temperature characteristics of fiber optic gyroscope sensing coils
Temperature characteristics of fiber  optic gyroscope sensing coilsTemperature characteristics of fiber  optic gyroscope sensing coils
Temperature characteristics of fiber optic gyroscope sensing coilsKurbatov Roman
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...SEENET-MTP
 
Gravitational Collider Physics
Gravitational Collider PhysicsGravitational Collider Physics
Gravitational Collider PhysicsDanielBaumann11
 
Dipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdfDipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdfHeiddyPaolaQuirozGai
 
DETERIORATION OF SHORT CHANNEL EFFECTS IN DUAL HALO BASED TRIPLE MATERIAL SUR...
DETERIORATION OF SHORT CHANNEL EFFECTS IN DUAL HALO BASED TRIPLE MATERIAL SUR...DETERIORATION OF SHORT CHANNEL EFFECTS IN DUAL HALO BASED TRIPLE MATERIAL SUR...
DETERIORATION OF SHORT CHANNEL EFFECTS IN DUAL HALO BASED TRIPLE MATERIAL SUR...ijistjournal
 
Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+niba50
 
Molecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram codeMolecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram codeTakeshi Nishimatsu
 
The International Journal of Engineering and Science
The International Journal of Engineering and ScienceThe International Journal of Engineering and Science
The International Journal of Engineering and Sciencetheijes
 
Spectroscopic methods 2018 Part 1 uv vis TM complexes
Spectroscopic methods 2018 Part 1 uv vis TM complexesSpectroscopic methods 2018 Part 1 uv vis TM complexes
Spectroscopic methods 2018 Part 1 uv vis TM complexesChris Sonntag
 
Theoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWOTheoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWOPei-Che Chang
 

Similar to Topological flat bands without magic angles in massive twisted bilayer graphenes (APS,March2020) (20)

Nucleating Nematic Droplets
Nucleating Nematic DropletsNucleating Nematic Droplets
Nucleating Nematic Droplets
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scale
 
Effect of the Thickness of High Tc Superconducting Rectangular Microstrip Pat...
Effect of the Thickness of High Tc Superconducting Rectangular Microstrip Pat...Effect of the Thickness of High Tc Superconducting Rectangular Microstrip Pat...
Effect of the Thickness of High Tc Superconducting Rectangular Microstrip Pat...
 
Temperature characteristics of fiber optic gyroscope sensing coils
Temperature characteristics of fiber  optic gyroscope sensing coilsTemperature characteristics of fiber  optic gyroscope sensing coils
Temperature characteristics of fiber optic gyroscope sensing coils
 
Elecnem
ElecnemElecnem
Elecnem
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Band theory
Band theoryBand theory
Band theory
 
Gravitational Collider Physics
Gravitational Collider PhysicsGravitational Collider Physics
Gravitational Collider Physics
 
Dipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdfDipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdf
 
DETERIORATION OF SHORT CHANNEL EFFECTS IN DUAL HALO BASED TRIPLE MATERIAL SUR...
DETERIORATION OF SHORT CHANNEL EFFECTS IN DUAL HALO BASED TRIPLE MATERIAL SUR...DETERIORATION OF SHORT CHANNEL EFFECTS IN DUAL HALO BASED TRIPLE MATERIAL SUR...
DETERIORATION OF SHORT CHANNEL EFFECTS IN DUAL HALO BASED TRIPLE MATERIAL SUR...
 
Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+
 
Molecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram codeMolecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram code
 
Da32633636
Da32633636Da32633636
Da32633636
 
Da32633636
Da32633636Da32633636
Da32633636
 
The International Journal of Engineering and Science
The International Journal of Engineering and ScienceThe International Journal of Engineering and Science
The International Journal of Engineering and Science
 
Paper
PaperPaper
Paper
 
Spectroscopic methods 2018 Part 1 uv vis TM complexes
Spectroscopic methods 2018 Part 1 uv vis TM complexesSpectroscopic methods 2018 Part 1 uv vis TM complexes
Spectroscopic methods 2018 Part 1 uv vis TM complexes
 
Theoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWOTheoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWO
 
SFB953.symposium
SFB953.symposiumSFB953.symposium
SFB953.symposium
 

Recently uploaded

Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...
Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...
Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...Krijn Poppe
 
Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...
Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...
Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...NETWAYS
 
OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...
OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...
OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...NETWAYS
 
The Ten Facts About People With Autism Presentation
The Ten Facts About People With Autism PresentationThe Ten Facts About People With Autism Presentation
The Ten Facts About People With Autism PresentationNathan Young
 
miladyskindiseases-200705210221 2.!!pptx
miladyskindiseases-200705210221 2.!!pptxmiladyskindiseases-200705210221 2.!!pptx
miladyskindiseases-200705210221 2.!!pptxCarrieButtitta
 
James Joyce, Dubliners and Ulysses.ppt !
James Joyce, Dubliners and Ulysses.ppt !James Joyce, Dubliners and Ulysses.ppt !
James Joyce, Dubliners and Ulysses.ppt !risocarla2016
 
call girls in delhi malviya nagar @9811711561@
call girls in delhi malviya nagar @9811711561@call girls in delhi malviya nagar @9811711561@
call girls in delhi malviya nagar @9811711561@vikas rana
 
PHYSICS PROJECT BY MSC - NANOTECHNOLOGY
PHYSICS PROJECT BY MSC  - NANOTECHNOLOGYPHYSICS PROJECT BY MSC  - NANOTECHNOLOGY
PHYSICS PROJECT BY MSC - NANOTECHNOLOGYpruthirajnayak525
 
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...NETWAYS
 
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...Salam Al-Karadaghi
 
Event 4 Introduction to Open Source.pptx
Event 4 Introduction to Open Source.pptxEvent 4 Introduction to Open Source.pptx
Event 4 Introduction to Open Source.pptxaryanv1753
 
Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
OSCamp Kubernetes 2024 | SRE Challenges in Monolith to Microservices Shift at...
OSCamp Kubernetes 2024 | SRE Challenges in Monolith to Microservices Shift at...OSCamp Kubernetes 2024 | SRE Challenges in Monolith to Microservices Shift at...
OSCamp Kubernetes 2024 | SRE Challenges in Monolith to Microservices Shift at...NETWAYS
 
Anne Frank A Beacon of Hope amidst darkness ppt.pptx
Anne Frank A Beacon of Hope amidst darkness ppt.pptxAnne Frank A Beacon of Hope amidst darkness ppt.pptx
Anne Frank A Beacon of Hope amidst darkness ppt.pptxnoorehahmad
 
NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)
NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)
NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)Basil Achie
 
Gaps, Issues and Challenges in the Implementation of Mother Tongue Based-Mult...
Gaps, Issues and Challenges in the Implementation of Mother Tongue Based-Mult...Gaps, Issues and Challenges in the Implementation of Mother Tongue Based-Mult...
Gaps, Issues and Challenges in the Implementation of Mother Tongue Based-Mult...marjmae69
 
Genshin Impact PPT Template by EaTemp.pptx
Genshin Impact PPT Template by EaTemp.pptxGenshin Impact PPT Template by EaTemp.pptx
Genshin Impact PPT Template by EaTemp.pptxJohnree4
 
Dutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
Dutch Power - 26 maart 2024 - Henk Kras - Circular PlasticsDutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
Dutch Power - 26 maart 2024 - Henk Kras - Circular PlasticsDutch Power
 
Work Remotely with Confluence ACE 2.pptx
Work Remotely with Confluence ACE 2.pptxWork Remotely with Confluence ACE 2.pptx
Work Remotely with Confluence ACE 2.pptxmavinoikein
 
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdfOpen Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdfhenrik385807
 

Recently uploaded (20)

Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...
Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...
Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...
 
Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...
Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...
Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...
 
OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...
OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...
OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...
 
The Ten Facts About People With Autism Presentation
The Ten Facts About People With Autism PresentationThe Ten Facts About People With Autism Presentation
The Ten Facts About People With Autism Presentation
 
miladyskindiseases-200705210221 2.!!pptx
miladyskindiseases-200705210221 2.!!pptxmiladyskindiseases-200705210221 2.!!pptx
miladyskindiseases-200705210221 2.!!pptx
 
James Joyce, Dubliners and Ulysses.ppt !
James Joyce, Dubliners and Ulysses.ppt !James Joyce, Dubliners and Ulysses.ppt !
James Joyce, Dubliners and Ulysses.ppt !
 
call girls in delhi malviya nagar @9811711561@
call girls in delhi malviya nagar @9811711561@call girls in delhi malviya nagar @9811711561@
call girls in delhi malviya nagar @9811711561@
 
PHYSICS PROJECT BY MSC - NANOTECHNOLOGY
PHYSICS PROJECT BY MSC  - NANOTECHNOLOGYPHYSICS PROJECT BY MSC  - NANOTECHNOLOGY
PHYSICS PROJECT BY MSC - NANOTECHNOLOGY
 
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
 
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
 
Event 4 Introduction to Open Source.pptx
Event 4 Introduction to Open Source.pptxEvent 4 Introduction to Open Source.pptx
Event 4 Introduction to Open Source.pptx
 
Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝
 
OSCamp Kubernetes 2024 | SRE Challenges in Monolith to Microservices Shift at...
OSCamp Kubernetes 2024 | SRE Challenges in Monolith to Microservices Shift at...OSCamp Kubernetes 2024 | SRE Challenges in Monolith to Microservices Shift at...
OSCamp Kubernetes 2024 | SRE Challenges in Monolith to Microservices Shift at...
 
Anne Frank A Beacon of Hope amidst darkness ppt.pptx
Anne Frank A Beacon of Hope amidst darkness ppt.pptxAnne Frank A Beacon of Hope amidst darkness ppt.pptx
Anne Frank A Beacon of Hope amidst darkness ppt.pptx
 
NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)
NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)
NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)
 
Gaps, Issues and Challenges in the Implementation of Mother Tongue Based-Mult...
Gaps, Issues and Challenges in the Implementation of Mother Tongue Based-Mult...Gaps, Issues and Challenges in the Implementation of Mother Tongue Based-Mult...
Gaps, Issues and Challenges in the Implementation of Mother Tongue Based-Mult...
 
Genshin Impact PPT Template by EaTemp.pptx
Genshin Impact PPT Template by EaTemp.pptxGenshin Impact PPT Template by EaTemp.pptx
Genshin Impact PPT Template by EaTemp.pptx
 
Dutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
Dutch Power - 26 maart 2024 - Henk Kras - Circular PlasticsDutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
Dutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
 
Work Remotely with Confluence ACE 2.pptx
Work Remotely with Confluence ACE 2.pptxWork Remotely with Confluence ACE 2.pptx
Work Remotely with Confluence ACE 2.pptx
 
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdfOpen Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
 

Topological flat bands without magic angles in massive twisted bilayer graphenes (APS,March2020)

  • 1. Topological flat bands without magic angles in massive twisted bilayer graphenes Srivani Javvaji, Jin-Hua Sun, and Jeil Jung Quantum Materials Theory Group Department of Physics, University of Seoul, Seoul 02504, Republic of Korea. Session B51: Graphene: Electronic Structure and Interactions : Moire, Correlations, and Topology [Srivani. et.al., Phys. Rev. B 101, 125411(2020)]
  • 2. Motivation Motivation: Magic angle twisted bilayer graphene and trilayer graphene boron nitride moire superlattices have shown Mott insulating and signatures of supercondictivity Oliver E. Buckley Condensed Matter Physics Prize 2020  Pablo Jarillo-Herrero Magic angle twisted bilayer graphene show Mott insulating phases and signatures of superconductivity Search for the Flat band systems without the magic angle Bilayers of Transition Metal Dichalcogenides (TMDC) Phys. Rev. Lett. 122, 086402; Twisted bilayer MoS2 arXiv:1908.10399;arXiv:1910.12147; Massive Dirac model Twisted bilayer WSe2 G/G
  • 3. Motivation Moiré BZ Moiré pattern HtMBG = [ ht θ/2(k) T(r) T† (r) hb −θ/2(k)] Interlayer coupling term: T0 = [ ω1 ω2 ω2 ω3] , T± = [ ω1 ω2e∓i2π/3 ω2e±i2π/3 ω3 ] Continuum model Hamiltonian perturbed by stacking-dependent interlayer tunneling for twisted BLG (tBLG) : Monolayer Hamiltonian, 2(b) ˜K′ (a)Realspacemoirésuperlattice 2 LM Energy(eV) −0.2 −0.1 0 0.1 0.2 (a)(b) K′ + θ 2 − θ 2 ˜ΓΓ ˜K ˜K′ ˜M˜Γ ˜K′ ˜K ˜M ˜K ˜K′ ˜Γ ˜Γ K ΔK lM Moiré bands theory (Bistritzer-MacDonald model) where, Bistritzer et al, pnas.1108174108 lM ∼ a/θ • We include additional diagonal and off-diagonal moire pattern terms to the Bistritzer-MacDonald model Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
  • 4. Motivation Continuum model Hamiltonian perturbed by stacking-dependent interlayer tunneling for twisted BLG : Band structures of tBLG Band width HtMBG = [ ht θ/2(k) T(r) T† (r) hb −θ/2(k)] Moiré bands theory Yuan Cao et al, nature26154 • When the two layers are coupled in tBLG, the electronic structure exhibits, flat bands at certain twist angles called magic angles.
  • 5. Motivation Continuum model Hamiltonian perturbed by stacking-dependent interlayer tunneling for twisted BLG : Pressure(GPa) (eV)<latexitsha1_base64="qUg8iXI01zUDf6doeaeQGgCgJ1c=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJcxOepMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqExTbFDFlW7HxCBnEhuWWY7tVCMRMcdWPLqd+a0n1IYp+WDHKUaCDCRLGCXWSc2uEjggvXIlqAZz+KskzEkFctR75a9uX9FMoLSUE2M6YZDaaEK0ZZTjtNTNDKaEjsgAO45KItBEk/m1U//MKX0/UdqVtP5c/T0xIcKYsYhdpyB2aJa9mfif18lsch1NmEwzi5IuFiUZ963yZ6/7faaRWj52hFDN3K0+HRJNqHUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDhEZ7hFd485b14797HorXg5TPH8Afe5w+QMY8b</latexit><latexitsha1_base64="qUg8iXI01zUDf6doeaeQGgCgJ1c=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJcxOepMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqExTbFDFlW7HxCBnEhuWWY7tVCMRMcdWPLqd+a0n1IYp+WDHKUaCDCRLGCXWSc2uEjggvXIlqAZz+KskzEkFctR75a9uX9FMoLSUE2M6YZDaaEK0ZZTjtNTNDKaEjsgAO45KItBEk/m1U//MKX0/UdqVtP5c/T0xIcKYsYhdpyB2aJa9mfif18lsch1NmEwzi5IuFiUZ963yZ6/7faaRWj52hFDN3K0+HRJNqHUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDhEZ7hFd485b14797HorXg5TPH8Afe5w+QMY8b</latexit><latexitsha1_base64="qUg8iXI01zUDf6doeaeQGgCgJ1c=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJcxOepMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqExTbFDFlW7HxCBnEhuWWY7tVCMRMcdWPLqd+a0n1IYp+WDHKUaCDCRLGCXWSc2uEjggvXIlqAZz+KskzEkFctR75a9uX9FMoLSUE2M6YZDaaEK0ZZTjtNTNDKaEjsgAO45KItBEk/m1U//MKX0/UdqVtP5c/T0xIcKYsYhdpyB2aJa9mfif18lsch1NmEwzi5IuFiUZ963yZ6/7faaRWj52hFDN3K0+HRJNqHUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDhEZ7hFd485b14797HorXg5TPH8Afe5w+QMY8b</latexit><latexitsha1_base64="qUg8iXI01zUDf6doeaeQGgCgJ1c=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoMegF48RzAOSJcxOepMx81hmZoUQ8g9ePCji1f/x5t84SfagiQUNRVU33V1xypmxQfDtFdbWNza3itulnd29/YPy4VHTqExTbFDFlW7HxCBnEhuWWY7tVCMRMcdWPLqd+a0n1IYp+WDHKUaCDCRLGCXWSc2uEjggvXIlqAZz+KskzEkFctR75a9uX9FMoLSUE2M6YZDaaEK0ZZTjtNTNDKaEjsgAO45KItBEk/m1U//MKX0/UdqVtP5c/T0xIcKYsYhdpyB2aJa9mfif18lsch1NmEwzi5IuFiUZ963yZ6/7faaRWj52hFDN3K0+HRJNqHUBlVwI4fLLq6R5UQ2Danh/Wand5HEU4QRO4RxCuIIa3EEdGkDhEZ7hFd485b14797HorXg5TPH8Afe5w+QMY8b</latexit> (deg) FIG. 1. (Color online) Colormap of the flatband bandwidth as a function of twist angle q and interlayer tunneling strength w. We identify numerically straight lines in the parameter space given by Eq. (??), where we represent in orange, green and blue the regions in the phase diagram corresponding to the first, second and third magic Bheema. et.al., Electr.Struc (2019) HtMBG = [ ht θ/2(k) T(r) T† (r) hb −θ/2(k)] Band gap Δ = 0Moiré bands theory Band width Yuan Cao et al, nature26154 • The blue, green & orange lines in the colormap of ( , ) space represents the the regions corresponding to first,second and third magic angles at which bandwidth minima are achieved. θ ω
  • 6. Motivation Continuum model Hamiltonian perturbed by stacking-dependent interlayer tunneling for twisted BLG : h(θ) = − vk [ ei(θk−θ) e−i(θk−θ) ] Δ −Δ HtMBG = [ ht θ/2(k) T(r) T† (r) hb −θ/2(k)] Moiré bands theory In massive tBLG (MTBG): Band width Yuan Cao et al, nature26154
  • 7. Motivation Continuum model Hamiltonian perturbed by stacking-dependent interlayer tunneling for twisted BLG : HtMBG = [ ht θ/2(k) T(r) T† (r) hb −θ/2(k)] Srivani.et.al.Phys. Rev. B 101, 125411 (2020) Moiré bands theory Band width h(θ) = − vk [ ei(θk−θ) e−i(θk−θ) ] Δ −Δ In massive tBLG (MTBG): Yuan Cao et al, nature26154 • Traces of magic angle bandwidth dips of gapless tBLG gradually disappear as the intra-layer gap becomes large. • They are almost inexistent already for the gaps of the order of 0.2 eV∼
  • 8. υF −Fermi velocity 2Δ −Intralayer gap Kθ −Shift between ˜K & ˜K′ ωi −Sublattice resolved interlayer couplings with i = 1,2,3 δs −Secondary gap (EC2 − EC1 ) δp −Primary gap (EC1 − EV1 ) δM −Gap (EC2 − EC1 ) at ˜M W −Band width Terminology : 2Δ = 0.1 eV, ωi = 0(b) Kθ ∝ υF ˜Γ ˜K ˜K′ ˜Γ˜K′ 2 zone super lattice ˜Γ ˜K′ 2Δ = 0.1 eV, ωi ≠ 0 δs W δp δM ˜Γ ˜K ˜K′ ˜Γ˜K′ Energy(eV)Energy(eV) − 0.2 − 0.1 0 0.1 0.2 − 0.2 − 0.1 0 0.1 0.2 (b) (c) ˜K1 ˜K2 ˜K3 ˜K4 ˜K1 ˜K2 ˜K3 ˜K4 ˜K1 ˜K2 ˜K3 ˜K4 Δ = 0, ωi = 0 Δ ≠ 0, ωi = 0 Δ ≠ 0, ωi ≠ 0 2Δ = 0 . 1 eV, ωi = 0 ˜Γ ˜K ˜K′ ˜Γ˜K′ Energy(eV) Kθ ∝ υF 2Δ 0.2 0.1 0 -0.1 -0.2 Energy(eV) 2Δ = 0 . 1 eV, ωi ≠ 0 δs W δp δM ˜Γ ˜K ˜K′ ˜Γ˜K′ 0.2 0.1 0 -0.1 -0.2 V1 C1 C2 V2 Evolution of flat bands in massive tBG Schematic showing the flat band evolution in MTBG Actual band structure of MTBG at θ = 1∘ Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
  • 9. ˜K ˜K′ ˜Γ ˜Γ ˜K 0.2 0.1 0 -0.1 -0.2 0.2 0.1 0 -0.1 -0.2 0.3 0.2 0.1 -0.1 -0.2 -0.3 0.4 0.3 -0.3 -0.4 1.4 1.3 1.2 -1.2 -1.3 -1.4 C1 C2 C3 V1 V2 V3 2Δ = 0 eV 2Δ = 0 . 1 eV 2Δ = 0 . 5 eV 2Δ = 1 . 0 eV 2Δ = 3 . 0 eV Energy(eV) ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K Evolution of flat bands in massive tBG Band structure of MTBG at θ = 1∘ ˜Γ ˜K′ ˜K ˜M ˜K ˜K′ ˜Γ ˜Γ Moiré BZ ωi = 0 . 098 eV Srivani.et.al.Phys. Rev. B 101, 125411 (2020) • The evolution of electronic structures in MTBG at as a function of bandgap ranging from shown here • We observe the enhancement of the flatness in the lower bands along with the enhancement of secondary isolation gap and primary gap θ = 1∘ 2Δ = 0 to 3 eV
  • 10. 0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 θ (deg) θ (deg) θ (deg) θ (deg) θ (deg) 0.2 0.15 0.1 0.05 0 0.25 ω(eV) W (eV) W ∝ 1 Δ (at constant θ)W ∝ θ (at constant Δ) & Evolution of flat bands in massive tBG ˜K ˜K′ ˜Γ ˜Γ ˜K 0.2 0.1 0 -0.1 -0.2 0.2 0.1 0 -0.1 -0.2 0.3 0.2 0.1 -0.1 -0.2 -0.3 0.4 0.3 -0.3 -0.4 1.4 1.3 1.2 -1.2 -1.3 -1.4 C1 C2 C3 V1 V2 V3 2Δ = 0 eV 2Δ = 0 . 1 eV 2Δ = 0 . 5 eV 2Δ = 1 . 0 eV 2Δ = 3 . 0 eV Energy(eV) ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜Γ ˜K′ ˜K ˜M ˜K ˜K′ ˜Γ ˜Γ Moiré BZ Bandwidth Band structure of MTBG at θ = 1∘ ωi = 0 . 098 eV Srivani.et.al.Phys. Rev. B 101, 125411 (2020) • This colormap shows the bandwidth in the parameter space of ( , ). • As we increase the bandgap, the magic angle line regions starting to expand to become a continuous region of bandwidth minima θ ω
  • 11. 0.2 0.15 0.1 0.05 0 0.25 ω(eV) 0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 θ (deg) θ (deg) θ (deg) θ (deg) θ (deg) δS (eV) Evolution of flat bands in massive tBG ˜K ˜K′ ˜Γ ˜Γ ˜K 0.2 0.1 0 -0.1 -0.2 0.2 0.1 0 -0.1 -0.2 0.3 0.2 0.1 -0.1 -0.2 -0.3 0.4 0.3 -0.3 -0.4 1.4 1.3 1.2 -1.2 -1.3 -1.4 C1 C2 C3 V1 V2 V3 2Δ = 0 eV 2Δ = 0 . 1 eV 2Δ = 0 . 5 eV 2Δ = 1 . 0 eV 2Δ = 3 . 0 eV Energy(eV) ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜Γ ˜K′ ˜K ˜M ˜K ˜K′ ˜Γ ˜Γ Moiré BZ 0.2 0.15 0.1 0.05 0 0.25 ω(eV) W (eV)Bandwidth Secondary gap Band structure of MTBG at θ = 1∘ ωi = 0 . 098 eV Srivani.et.al.Phys. Rev. B 101, 125411 (2020) • This colormap shows the lower energy band isolation in the parameter space of ( , ), we expect to find isolated flat bands are more susceptible to coulomb interactions θ ω
  • 12. Study of massive twisted Dirac materials h(θ) = − vk [ ei(θk−θ) e−i(θk−θ) ] Δ −Δ Massive Dirac Hamiltonian : where, Band structures of TMDC, BN and SiC monolayers at ‘Dirac’ point can be described by Massive Dirac Hamiltonian Srivani.et.al.Phys. Rev. B 101, 125411 (2020) Bandwidth(eV) 0.2 0 108642 (deg)θ 0.15 0.1 0.05 0 0.0 0.1 0.2 0.3 60o) 0o) • Traces of magic angle bandwidth dips of gapless tBLG gradually disappear as the intra-layer gap becomes large. • They are almost inexistent already for the gaps of the order of 0.2 eV∼
  • 13. Study of massive twisted Dirac materials h(θ) = − vk [ ei(θk−θ) e−i(θk−θ) ] Δ −Δ Massive Dirac Hamiltonian : Band structures of TMDC, BN and SiC monolayers at ‘Dirac’ point can be described by Massive Dirac Hamiltonian * Di Xiao et al, PRL 108, 196802 (2012) * * * * * Fencheng Wu et al, arXiv:1807.03311v1 DFT (Wannier Functions) Srivani.et.al.Phys. Rev. B 101, 125411 (2020) Bandwidth(eV) 0.2 0 108642 (deg)θ 0.15 0.1 0.05 0 0.0 0.1 0.2 0.3 60o) 0o)
  • 14. Study of massive twisted Dirac materials Energy(eV) 0.4 0.0 -0.2 -0.82 0.84 0.86 -0.84 -0.86 0.2 -0.4 2.1 2.0 1.9 1.8 -2 -2.1 2.1 2 1.9 -1.8 -1.9 -2 1.14 1.1 1.06 1.02 -0.96 -1 -1.04 ˜G/ ˜G TMDC/TMDC BN/BN(0∘ ) BN/BN(60∘ ) SiC/SiC Band structure of MTBGs at θ = 1∘ ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K 2Δ = 0 . 1 eV Large bandgap systems 2Δ ∼ 1 . 6 eV 2Δ ∼ 4 . 5 eV 2Δ ∼ 2 . 3 eV Small bandgap system Srivani.et.al.Phys. Rev. B 101, 125411 (2020) • The evolution of electronic structures in different real systems represented by MTBG Hamiltonian at • We observe the enhancement of the flatness in the lower bands along with the enhancement of secondary isolation gap and primary gap θ = 1∘
  • 15. Study of massive twisted Dirac materials 1 2 5 3 4 (arb . u.) × 104 Energy(eV) 0.4 0.0 -0.2 -0.82 0.84 0.86 -0.84 -0.86 0.2 -0.4 2.1 2.0 1.9 1.8 -2 -2.1 2.1 2 1.9 -1.8 -1.9 -2 1.14 1.1 1.06 1.02 -0.96 -1 -1.04 ˜G/ ˜G TMDC/TMDC BN/BN(0∘ ) BN/BN(60∘ ) SiC/SiC Band structure of MTBGs at θ = 1∘ ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K ˜K ˜K′ ˜Γ ˜Γ ˜K At Valence band van Hove singularity Ry(nm) Rx (nm) 0 5 10 -5 -10 0 10-10 Rx (nm) 5 15 25 × 102 1000 1500 2000 (arb . u.)(arb . u.) 0 10-10 0 5 10 -5 -10 Rx (nm) 1 3 9 5 7 (arb . u.) × 104 0 5 10 -5 -10 0 10-10 Rx (nm) 2 4 8 12 (arb . u.) × 104 0 10-10 Rx (nm) 0 5 10 -5 -10 0 15-15 0 5 10 -5 -10 AA AA AA AA AA AA AA AA AA AA AA AA BA BA BA AA-stacking AB-stacking BA-stacking aM Rx Ry AB-stacking AA-stacking BA-stacking A B A′ B′ A B A′ B′ 0∘ alignment: 60∘ alignment: A B A′ B′ AB-stacking AA-stacking BA-stacking A B B′ A′ A B B′ A′ A B B′ A′ Local Density of States θ = 1∘ 2Δ = 0 . 1 eV Large bandgap systems 2Δ ∼ 1 . 6 eV 2Δ ∼ 4 . 5 eV 2Δ ∼ 2 . 3 eV Small bandgap system Srivani.et.al.Phys. Rev. B 101, 125411 (2020) • The stacking resolved real space representation of the local density of states at the valence band van Hove singularity (VHS) • In the all real systems shown above, AA-stacking region gives rise to VHS except in BN/BN(60o)
  • 16. Existence of strongly correlated states ω(eV) δs (eV) −0.05 0.050 0 2.521 1.50.5 W (eV) 0.05 0.1 0.15 0.2 0.25 0 2.521 1.50.5 0.1 0.2 0.3 0.4 δp (eV) 0 2.521 1.50.5 −0.05 0.050 Ueff /W 5 100 0 2.521 1.50.5 ˜G/ ˜G θ (deg)θ (deg) θ (deg) θ (deg) The ratio of effective Coulomb potential to Bandwidth Ueff /W Debye length, Moiré length, lM ∼ a/θ Screened Coulomb potential : Small bandgap system 2Δ = 0 . 1 eV Srivani.et.al.Phys. Rev. B 101, 125411 (2020) • The phase diagram colormaps of the bandwidth W, secondary gap δs, primary gap δp, the Ueff/W ratio in • The threshold value of the Ueff/W = 1 ratio from where Coulomb interactions are expected to be significant is indicated with a blue line. ˜G/ ˜G
  • 17. Existence of strongly correlated states ω(eV) δs (eV) −0.05 0.050 0 2.521 1.50.5 W (eV) 0.05 0.1 0.15 0.2 0.25 0 2.521 1.50.5 0.1 0.2 0.3 0.4 δp (eV) 0 2.521 1.50.5 −0.05 0.050 Ueff /W 5 100 0 2.521 1.50.5 ˜G/ ˜G ω(eV) 500 10000 BN/BN(0∘ ) θ (deg) 0 54321 500 10000 TMDC/TMDC θ (deg) 0 54321 0.05 0.1 0.15 0.2 0.25 500 10000 BN/BN(60∘ ) 0 54321 θ (deg) 500 10000 SiC/SiC 0 54321 θ (deg) The ratio of effective Coulomb potential to Bandwidth Ueff /W Debye length, Moiré length, lM ∼ a/θ Screened Coulomb potential : Small bandgap system 2Δ = 0 . 1 eV Large bandgap systems 1 < 2Δ ≤ 4 . 5 eV Srivani.et.al.Phys. Rev. B 101, 125411 (2020) • In all the real systems we studied, Ueff/W diagram shows that Coulomb interactions are expected
  • 18. Analytical expressions for energy at , & -points˜K ˜Γ ˜M Energy(eV) δs W δp δM ˜Γ ˜K ˜K′ ˜Γ˜K′ 0.2 0.1 0 -0.1 -0.2 V1 C1 C2 V2 2Δ = 0 . 1 eV, ωi ≠ 0 1 2 3 4 5 64′ Kθ T+ T− T0 ˜K ˜K′ ˜Γ Bistritzer-MacDonald model Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
  • 19. Analytical expressions for energy at , & -points˜K ˜Γ ˜M Energy(eV) δs W δp δM ˜Γ ˜K ˜K′ ˜Γ˜K′ 0.2 0.1 0 -0.1 -0.2 V1 C1 C2 V2 2Δ = 0 . 1 eV, ωi ≠ 0 • from 4x4 -Hamiltonian model (green oval)E( ˜M) Bistritzer-MacDonald model Kθ 1 2 3 4 5 64′ Kθ T+ T− T0 ˜K ˜K′ ˜Γ Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
  • 20. Analytical expressions for energy at , & -points˜K ˜Γ ˜M Energy(eV) δs W δp δM ˜Γ ˜K ˜K′ ˜Γ˜K′ 0.2 0.1 0 -0.1 -0.2 V1 C1 C2 V2 2Δ = 0 . 1 eV, ωi ≠ 0 • from 4x4 -Hamiltonian model (green oval)E( ˜M) Bistritzer-MacDonald model Kθ 1 2 3 4 5 64′ Kθ T+ T− T0 ˜K ˜K′ ˜Γ • from 8x8 -Hamiltonian model (brown circle)E( ˜K) Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
  • 21. Analytical expressions for energy at , & -points˜K ˜Γ ˜M Energy(eV) δs W δp δM ˜Γ ˜K ˜K′ ˜Γ˜K′ 0.2 0.1 0 -0.1 -0.2 V1 C1 C2 V2 2Δ = 0 . 1 eV, ωi ≠ 0 • from 4x4 -Hamiltonian model (green oval)E( ˜M) Bistritzer-MacDonald model Kθ 1 2 3 4 5 64′ Kθ T+ T− T0 ˜K ˜K′ ˜Γ • from 8x8 -Hamiltonian model (brown circle)E( ˜K) • from 12x12 -Hamiltonian model (blue square)E(˜Γ) Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
  • 22. Analytical expressions for energy at , & -points˜K ˜Γ ˜M Energy(eV) 2Δ = 0 . 1 eV, ωi ≠ 0 δs W δp δM ˜Γ ˜K ˜K′ ˜Γ˜K′ 0.2 0.1 0 -0.1 -0.2 V1 C1 C2 V2 The relationship between system parameters: W = 0 . 03 eV Kθ 1 2 3 4 5 64′ Kθ T+ T− T0 ˜K ˜K′ ˜Γ Srivani.et.al.Phys. Rev. B 101, 125411 (2020) • The well agreement between proposed analytical solutions with Numerical method is shown for different vF & ω
  • 23. Chern numbers Chern phase diagram of massive tBG θ = 1∘ Valence flat Band Conduction flat Band ω1 = ω3 = 0 . 85ω AA-stacking A B A′ B′ 2Δt 2Δb ωi • The non-trivial Chern flat band emerges when the terms are different from each other ( ) ωi ωi ≠ ω Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
  • 24. Chern numbers Chern phase diagram of massive tBG θ = 1∘ θ = 3∘ Valence flat Band Conduction flat Band ω1 = ω3 = 0 . 85ω AA-stacking A B A′ B′ 2Δt 2Δb ωi • The non-trivial Chern flat band emerges when the terms are different from each other ( ) ωi ωi ≠ ω Srivani.et.al.Phys. Rev. B 101, 125411 (2020)
  • 25. Circular dichroism in massive tBLG A B A′ B′ 0∘alignment: 60∘ alignment: A B B′ A′ AA-stacking Interlayer potential difference Vg : 2Δ = 0 . 1 eV, θ = 3∘ Srivani.et.al.Phys. Rev. B 101, 125411 (2020) • Schematic illustration of MTBGs for zero and finite interlayer potential differences(Vg) near 0o & 60o rotational alignments , giving rise to same and opposite mass signs at the mini valleys • When Vg = 0, we expect macro-valley K & K’ contrasting circular dichroism near 0o alignment & suppressed circular dichroism at 60o ˜K & ˜K′
  • 26. Circular dichroism in massive tBLG Interlayer potential difference Vg : 2Δ = 0 . 1 eV, θ = 3∘ Srivani.et.al.Phys. Rev. B 101, 125411 (2020) A B A′ B′ 0∘alignment: 60∘ alignment: A B B′ A′ AA-stacking • When Vg 0, it is possible to introduce a finite circular dichroism by applying interlayer bias & Fermi level change that leads to layer & minimally polarization ≠
  • 27. Summary • A finite gap in the constituent layers of the MTBGs makes the generation of flat bands simpler than in TBG • Band flattening happens for a continuous range of small twist angles • Our numerical calculations complemented by analytical solutions of the E( ), E( ) and E( ) • Relationship between the system parameters in MTBG : • The non-trivial Chern flat band emerges when the terms are different from each other • Valley contrasting circular dichroism in MTBG is studied at zero & finite interlayer potential difference ˜Γ ˜K ˜M ωi Thank you !