SlideShare a Scribd company logo
1 of 14
Download to read offline
Modelling Magnetic Fields of MicroTrap
Arrays for Trapping Ultracold Atoms
A. Mouraviev, & W. A. van Wijngaarden
Physics Dept., York University
www.wvanwijngaarden.info.yorku.ca
CUPC 2015
Ultracold Atoms
W.A. van Wijngaarden & B. Lu. Phys. in Can. 60, No. 5 (2004)
Why Study Ultracold Atoms?
- Near absolute zero, weird effects such as superfluidity &
superconductivity occur. (D & J Tilley, Superfluidity & Superconductivity,
U. Sussex Press, 1986)
How Do You Get Bose Einstein Condensation (BEC)?
- Bosons condense into lowest state at ultralow temperatures (K.
Stowe, Intro. Stat. Mech. & Thermo., J. Wiley, Toronto, 1984)
- Macroscopic effects of quantum mechanics evident when de
Broglie wavelength λB ~ distance between atoms
h = Planck’s constant
M = atom’s mass
kB = Boltzmann’s constant
t = 6 ms t = 12t = 10
t = 14 t = 20t = 18t = 16
t = 8
Measurement of Ultracold Temperature
Observe expansion of atom cloud after trap turned off.
How does an Atom Trap Work?
Zeeman Hamiltonian
Zeeman Shift of 87Rb F=2 Hyperfine level
µ = atom’s magnetic moment
B = magnetic field
1
-2
0
mF = 2
-1
B5S1/2 F=2
Atoms in mF = 1, 2 hyperfine levels trapped at minimum magnetic field.
Double Loop Microtrap
B. Jian & WvW, JOSA B 30, No. 2, 238 (2013)
Current I2 = -1.23 I1
Radius R2 = 1.4 R1
B0 = I1/R1x
z
-y
R1
R2
I2
zm
Microtrap Array
B. Jian & W. A. van Wijngaarden, J. Phys. B 47, 215301 (2014)
Cu Block
Heatsink
2 cm
3 mm
Magnetic Field Calculation using Mathematica
-y
S
x
z
I
H
Consider loop in yz plane having radius R & current I. I>0 generates
field in + x direction.
i. Atom Transfer between Microtraps
• Atom transferred from double-
loop microtrap A centered at x =
0 to double-loop microtrap B
centered at x = R1/2.
• Current IA (IB) linearly
decreased (increased) from t = 0
to t = 1.
• Trap profile remains virtually
constant throughout transfer.
-3 -2 -1 0 1 2 3
x / R1
2
1.5
1
0.5
0
|B|/B0
t = 0.75
t = 0
t = 1
t = 0.5
t = 0.25
x
z
-y
R1
R2
IA
z
ii. Addition of Ioffe Coil
2
1.5
1
0.5
0.0
|B| / B0
IIC
x
z
-y
R1
R2 IIC = 9 I1
-1 -0.5 0 0.5 1
x / R1
z/R1
IIC = 0
z/R1
1.0
0.8
0.6
0.4
0.2
0.0
Generate trap having nonzero minimum field to prevent spin flips using Ioffe Coil
having radius RIC = R1/8 centered at (1.4, 0, 0.15) R1.
-1 -0.5 0 0.5 1
x / R1
1.0
0.8
0.6
0.4
0.2
0.0
1.5
1
0.5
0.0 0 0.5 1 1.5
z / R1
-1 -0.5 0 0.5 1
x / R1
3
2
1
0
Bmin = 0.104 Bo
at (0.48, 0, 0.47) R1
-1 -0.5 0 0.5 1
x / R1
z/R1
1.0
0.8
0.6
0.4
0.2
0.0
2
1.5
1
0.5
0.0
|B|/B0
Trap Potential due to Ioffe Coil
Trap depth = 0.48 B0
Bias Field Effect on Trap Position & Depth
x
z
-y
R1
R2
xC
Bzbias
0
0.1
0.2
0.3
0.4
0.5
0
0.2
0.4
0.6
0.8
1
-0.75 -0.5 -0.25 0 0.25 0.5 0.75
TrapDepth/Bo
MicrotrapzPositon/R1
Bzbias / Bo
Conclusions
• Microtraps use much smaller currents than macroscopic traps
• Double-loop microtraps useful to create one or two dimensional
arrays of ultracold atoms. Current can be adjusted or bias field
varied to modify trap position & depth – useful for surface studies.
• Modelled how to transfer atoms between two adjacent double loop
microtraps. Trap profile remains constant during transfer
minimizing atom loss.
• Trap having nonzero magnetic field minimum generated by adding
small Ioffe coil, partially embedded in atom chip, useful to prevent
atom loss due to spin flips.
Applications: Precision Measurements, Frequency Standards, Surface
Sensing, Atom Interferometry, Quantum Information
Processing etc.
Additional Information: www.wvanwijngaarden.info.yorku.ca
Laser Cooling
H. Metcalf & P. v. d. Straten, Laser Cooling & Trapping (Springer,1999)
Analogous to stopping transport truck on highway (atom) by
bouncing beam of ping pong balls (photons) off it.
10-2
10-6
10-4
100
102
104
Kelvins
Mass M
Velocity v h / λ
Photon Momentum
h = Planck’s constant
# photons to stop thermal 87Rb atom = M v / (h / λ) = 50,000 photons
Stopping Time T = 50,000 x τ excited state lifetime = 1.4 msec
Stopping Distance = v τ / 2 = 20 cm
Laser Power to stop 109 atoms/sec = 109 x 50,000 h ν / T ≈ 10 mW
Doppler cooling limit = h Γ transition linewidth /2 k ≈ 100 µK
Analogous to stopping transport truck on highway (atom) by
bouncing beam of ping pong balls (photons) off it.
10-2
10-6
10-4
100
102
104
Kelvins
10-2
10-6
10-4
100
102
104
Kelvins
Mass M
Velocity v h / λ
Photon Momentum
h = Planck’s constant
# photons to stop thermal 87Rb atom = M v / (h / λ) = 50,000 photons
Stopping Time T = 50,000 x τ excited state lifetime = 1.4 msec
Stopping Distance = v τ / 2 = 20 cm
Laser Power to stop 109 atoms/sec = 109 x 50,000 h ν / T ≈ 10 mW
Doppler cooling limit = h Γ transition linewidth /2 k ≈ 100 µK
CUPC Oct 14, 2015

More Related Content

What's hot

Quantum Tunnelling
Quantum TunnellingQuantum Tunnelling
Quantum TunnellingSoham Thakur
 
[APS2020] Phonon-limited carrier mobilityin semiconductors : importance ofthe...
[APS2020] Phonon-limited carrier mobilityin semiconductors : importance ofthe...[APS2020] Phonon-limited carrier mobilityin semiconductors : importance ofthe...
[APS2020] Phonon-limited carrier mobilityin semiconductors : importance ofthe...Gian-Marco Rignanese
 
Polarization Spectroscopy
Polarization SpectroscopyPolarization Spectroscopy
Polarization SpectroscopyDeepak Rajput
 
Spectroscopy lecture 1
Spectroscopy lecture 1Spectroscopy lecture 1
Spectroscopy lecture 1shahzebkhan181
 
Generation of optical harmonics
Generation of optical harmonicsGeneration of optical harmonics
Generation of optical harmonicsRaphael Bouskila
 
Symmetries and multiferroic properties of novel room-temperature
Symmetries and multiferroic properties of novel room-temperatureSymmetries and multiferroic properties of novel room-temperature
Symmetries and multiferroic properties of novel room-temperatureRolando M. A. Roque-Malherbe
 
C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE Sujitlal Bhakta
 
Lo 3 wave pool
Lo 3   wave poolLo 3   wave pool
Lo 3 wave poolJosh Bray
 
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe  MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe Dierk Raabe
 
Indirect DM Search: Current Status and Report
Indirect DM Search: Current Status and ReportIndirect DM Search: Current Status and Report
Indirect DM Search: Current Status and ReportYen-Hsun Lin
 
Useful Energy formulas
Useful Energy formulasUseful Energy formulas
Useful Energy formulasAili Luggymix
 
Nuclear overhouse effect
Nuclear overhouse effectNuclear overhouse effect
Nuclear overhouse effectceutics1315
 

What's hot (20)

Quantum Tunnelling
Quantum TunnellingQuantum Tunnelling
Quantum Tunnelling
 
Tunneling
TunnelingTunneling
Tunneling
 
Turinworkshop 2 Leung
Turinworkshop 2 LeungTurinworkshop 2 Leung
Turinworkshop 2 Leung
 
[APS2020] Phonon-limited carrier mobilityin semiconductors : importance ofthe...
[APS2020] Phonon-limited carrier mobilityin semiconductors : importance ofthe...[APS2020] Phonon-limited carrier mobilityin semiconductors : importance ofthe...
[APS2020] Phonon-limited carrier mobilityin semiconductors : importance ofthe...
 
Polarization Spectroscopy
Polarization SpectroscopyPolarization Spectroscopy
Polarization Spectroscopy
 
The plasmamagnet
The plasmamagnetThe plasmamagnet
The plasmamagnet
 
Spectroscopy lecture 1
Spectroscopy lecture 1Spectroscopy lecture 1
Spectroscopy lecture 1
 
Generation of optical harmonics
Generation of optical harmonicsGeneration of optical harmonics
Generation of optical harmonics
 
muSR at TRIUMF
muSR at TRIUMFmuSR at TRIUMF
muSR at TRIUMF
 
Symmetries and multiferroic properties of novel room-temperature
Symmetries and multiferroic properties of novel room-temperatureSymmetries and multiferroic properties of novel room-temperature
Symmetries and multiferroic properties of novel room-temperature
 
C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE
 
Superconducting Magnet Conceptual Design
Superconducting Magnet Conceptual DesignSuperconducting Magnet Conceptual Design
Superconducting Magnet Conceptual Design
 
Lo 3 wave pool
Lo 3   wave poolLo 3   wave pool
Lo 3 wave pool
 
Ph 101-8
Ph 101-8Ph 101-8
Ph 101-8
 
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe  MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
 
Indirect DM Search: Current Status and Report
Indirect DM Search: Current Status and ReportIndirect DM Search: Current Status and Report
Indirect DM Search: Current Status and Report
 
Neutron EDM and Dressed Spin
Neutron EDM and Dressed SpinNeutron EDM and Dressed Spin
Neutron EDM and Dressed Spin
 
Useful Energy formulas
Useful Energy formulasUseful Energy formulas
Useful Energy formulas
 
Nuclear overhouse effect
Nuclear overhouse effectNuclear overhouse effect
Nuclear overhouse effect
 
Searches for spin-dependent short-range forces
Searches for spin-dependent short-range forcesSearches for spin-dependent short-range forces
Searches for spin-dependent short-range forces
 

Viewers also liked

Nataliavanesa benavidesbenavides 11ctj_man-1p_co1_e6
Nataliavanesa benavidesbenavides 11ctj_man-1p_co1_e6Nataliavanesa benavidesbenavides 11ctj_man-1p_co1_e6
Nataliavanesa benavidesbenavides 11ctj_man-1p_co1_e6Natalia Page
 
Programacionpc estudiocaso01 0105
Programacionpc estudiocaso01 0105Programacionpc estudiocaso01 0105
Programacionpc estudiocaso01 0105Natalia Page
 
Programacionpc estudiocaso01 0105
Programacionpc estudiocaso01 0105Programacionpc estudiocaso01 0105
Programacionpc estudiocaso01 0105Natalia Page
 
Neuropathy Clinical Reprint 2013 Final 03
Neuropathy Clinical Reprint 2013 Final 03Neuropathy Clinical Reprint 2013 Final 03
Neuropathy Clinical Reprint 2013 Final 03Mahmoud IBRAHIM
 
CURRICULUM VITAE 30-12-2016
CURRICULUM VITAE 30-12-2016CURRICULUM VITAE 30-12-2016
CURRICULUM VITAE 30-12-2016Pramod Mishra
 
PARADISE Powerpoint Presentation
PARADISE Powerpoint PresentationPARADISE Powerpoint Presentation
PARADISE Powerpoint PresentationArmend Sulo
 
Liseuses et livres numériques
Liseuses et livres numériquesLiseuses et livres numériques
Liseuses et livres numériquesbibriom
 
Dados tabulares: A Maneira Pythônica
Dados tabulares: A Maneira PythônicaDados tabulares: A Maneira Pythônica
Dados tabulares: A Maneira PythônicaÁlvaro Justen
 
JAMack 07-2016 Resume
JAMack 07-2016 ResumeJAMack 07-2016 Resume
JAMack 07-2016 ResumeJamie Mack
 
Exposé sur le chômage au maroc
Exposé sur le chômage au maroc Exposé sur le chômage au maroc
Exposé sur le chômage au maroc cours fsjes
 

Viewers also liked (16)

Nataliavanesa benavidesbenavides 11ctj_man-1p_co1_e6
Nataliavanesa benavidesbenavides 11ctj_man-1p_co1_e6Nataliavanesa benavidesbenavides 11ctj_man-1p_co1_e6
Nataliavanesa benavidesbenavides 11ctj_man-1p_co1_e6
 
Programacionpc estudiocaso01 0105
Programacionpc estudiocaso01 0105Programacionpc estudiocaso01 0105
Programacionpc estudiocaso01 0105
 
Programacionpc estudiocaso01 0105
Programacionpc estudiocaso01 0105Programacionpc estudiocaso01 0105
Programacionpc estudiocaso01 0105
 
Neuropathy Clinical Reprint 2013 Final 03
Neuropathy Clinical Reprint 2013 Final 03Neuropathy Clinical Reprint 2013 Final 03
Neuropathy Clinical Reprint 2013 Final 03
 
Fo communiqué de presse
Fo communiqué de presseFo communiqué de presse
Fo communiqué de presse
 
CURRICULUM VITAE 30-12-2016
CURRICULUM VITAE 30-12-2016CURRICULUM VITAE 30-12-2016
CURRICULUM VITAE 30-12-2016
 
Testimonials
TestimonialsTestimonials
Testimonials
 
PARADISE Powerpoint Presentation
PARADISE Powerpoint PresentationPARADISE Powerpoint Presentation
PARADISE Powerpoint Presentation
 
Liseuses et livres numériques
Liseuses et livres numériquesLiseuses et livres numériques
Liseuses et livres numériques
 
La población
La poblaciónLa población
La población
 
Estructura del cloroplasto, quimiosmiosis, células musculares
Estructura del cloroplasto, quimiosmiosis, células muscularesEstructura del cloroplasto, quimiosmiosis, células musculares
Estructura del cloroplasto, quimiosmiosis, células musculares
 
Dados tabulares: A Maneira Pythônica
Dados tabulares: A Maneira PythônicaDados tabulares: A Maneira Pythônica
Dados tabulares: A Maneira Pythônica
 
Cloroplastos
CloroplastosCloroplastos
Cloroplastos
 
JAMack 07-2016 Resume
JAMack 07-2016 ResumeJAMack 07-2016 Resume
JAMack 07-2016 Resume
 
La Rose des Vents
La Rose des VentsLa Rose des Vents
La Rose des Vents
 
Exposé sur le chômage au maroc
Exposé sur le chômage au maroc Exposé sur le chômage au maroc
Exposé sur le chômage au maroc
 

Similar to CUPC Oct 14, 2015

Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticlesupvita pandey
 
03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdfHassanSoboh
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleFundación Ramón Areces
 
Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018Toma Susi
 
Simpkins strong vibrational coupling - aps mar 2020
Simpkins   strong vibrational coupling - aps mar 2020Simpkins   strong vibrational coupling - aps mar 2020
Simpkins strong vibrational coupling - aps mar 2020BlakeSimpkins
 
Arndt matter wave interferometry
Arndt matter wave interferometry Arndt matter wave interferometry
Arndt matter wave interferometry Vorname Nachname
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"Chad Orzel
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopynirupam12
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013oriolespinal
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notesRohan Jain
 
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma Tahmid Abtahi
 
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario MartínezICREA
 
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...thinfilmsworkshop
 
Introduction to the phenomenology of HiTc superconductors.
Introduction to  the phenomenology of HiTc superconductors.Introduction to  the phenomenology of HiTc superconductors.
Introduction to the phenomenology of HiTc superconductors.ABDERRAHMANE REGGAD
 
Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Philippe Bouyer
 

Similar to CUPC Oct 14, 2015 (20)

Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticles
 
03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scale
 
Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018
 
Simpkins strong vibrational coupling - aps mar 2020
Simpkins   strong vibrational coupling - aps mar 2020Simpkins   strong vibrational coupling - aps mar 2020
Simpkins strong vibrational coupling - aps mar 2020
 
Slough nov99
Slough nov99Slough nov99
Slough nov99
 
Arndt matter wave interferometry
Arndt matter wave interferometry Arndt matter wave interferometry
Arndt matter wave interferometry
 
Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11
 
PET Cyclotron
PET Cyclotron PET Cyclotron
PET Cyclotron
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"
 
Anschp38
Anschp38Anschp38
Anschp38
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notes
 
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
 
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
 
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
 
IPS Buoy
IPS BuoyIPS Buoy
IPS Buoy
 
Introduction to the phenomenology of HiTc superconductors.
Introduction to  the phenomenology of HiTc superconductors.Introduction to  the phenomenology of HiTc superconductors.
Introduction to the phenomenology of HiTc superconductors.
 
Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...
 

CUPC Oct 14, 2015

  • 1. Modelling Magnetic Fields of MicroTrap Arrays for Trapping Ultracold Atoms A. Mouraviev, & W. A. van Wijngaarden Physics Dept., York University www.wvanwijngaarden.info.yorku.ca CUPC 2015
  • 2. Ultracold Atoms W.A. van Wijngaarden & B. Lu. Phys. in Can. 60, No. 5 (2004) Why Study Ultracold Atoms? - Near absolute zero, weird effects such as superfluidity & superconductivity occur. (D & J Tilley, Superfluidity & Superconductivity, U. Sussex Press, 1986) How Do You Get Bose Einstein Condensation (BEC)? - Bosons condense into lowest state at ultralow temperatures (K. Stowe, Intro. Stat. Mech. & Thermo., J. Wiley, Toronto, 1984) - Macroscopic effects of quantum mechanics evident when de Broglie wavelength λB ~ distance between atoms h = Planck’s constant M = atom’s mass kB = Boltzmann’s constant
  • 3. t = 6 ms t = 12t = 10 t = 14 t = 20t = 18t = 16 t = 8 Measurement of Ultracold Temperature Observe expansion of atom cloud after trap turned off.
  • 4. How does an Atom Trap Work? Zeeman Hamiltonian Zeeman Shift of 87Rb F=2 Hyperfine level µ = atom’s magnetic moment B = magnetic field 1 -2 0 mF = 2 -1 B5S1/2 F=2 Atoms in mF = 1, 2 hyperfine levels trapped at minimum magnetic field.
  • 5. Double Loop Microtrap B. Jian & WvW, JOSA B 30, No. 2, 238 (2013) Current I2 = -1.23 I1 Radius R2 = 1.4 R1 B0 = I1/R1x z -y R1 R2 I2 zm
  • 6. Microtrap Array B. Jian & W. A. van Wijngaarden, J. Phys. B 47, 215301 (2014) Cu Block Heatsink 2 cm 3 mm
  • 7. Magnetic Field Calculation using Mathematica -y S x z I H Consider loop in yz plane having radius R & current I. I>0 generates field in + x direction.
  • 8. i. Atom Transfer between Microtraps • Atom transferred from double- loop microtrap A centered at x = 0 to double-loop microtrap B centered at x = R1/2. • Current IA (IB) linearly decreased (increased) from t = 0 to t = 1. • Trap profile remains virtually constant throughout transfer. -3 -2 -1 0 1 2 3 x / R1 2 1.5 1 0.5 0 |B|/B0 t = 0.75 t = 0 t = 1 t = 0.5 t = 0.25 x z -y R1 R2 IA z
  • 9. ii. Addition of Ioffe Coil 2 1.5 1 0.5 0.0 |B| / B0 IIC x z -y R1 R2 IIC = 9 I1 -1 -0.5 0 0.5 1 x / R1 z/R1 IIC = 0 z/R1 1.0 0.8 0.6 0.4 0.2 0.0 Generate trap having nonzero minimum field to prevent spin flips using Ioffe Coil having radius RIC = R1/8 centered at (1.4, 0, 0.15) R1. -1 -0.5 0 0.5 1 x / R1 1.0 0.8 0.6 0.4 0.2 0.0
  • 10. 1.5 1 0.5 0.0 0 0.5 1 1.5 z / R1 -1 -0.5 0 0.5 1 x / R1 3 2 1 0 Bmin = 0.104 Bo at (0.48, 0, 0.47) R1 -1 -0.5 0 0.5 1 x / R1 z/R1 1.0 0.8 0.6 0.4 0.2 0.0 2 1.5 1 0.5 0.0 |B|/B0 Trap Potential due to Ioffe Coil Trap depth = 0.48 B0
  • 11. Bias Field Effect on Trap Position & Depth x z -y R1 R2 xC Bzbias 0 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 TrapDepth/Bo MicrotrapzPositon/R1 Bzbias / Bo
  • 12. Conclusions • Microtraps use much smaller currents than macroscopic traps • Double-loop microtraps useful to create one or two dimensional arrays of ultracold atoms. Current can be adjusted or bias field varied to modify trap position & depth – useful for surface studies. • Modelled how to transfer atoms between two adjacent double loop microtraps. Trap profile remains constant during transfer minimizing atom loss. • Trap having nonzero magnetic field minimum generated by adding small Ioffe coil, partially embedded in atom chip, useful to prevent atom loss due to spin flips. Applications: Precision Measurements, Frequency Standards, Surface Sensing, Atom Interferometry, Quantum Information Processing etc. Additional Information: www.wvanwijngaarden.info.yorku.ca
  • 13. Laser Cooling H. Metcalf & P. v. d. Straten, Laser Cooling & Trapping (Springer,1999) Analogous to stopping transport truck on highway (atom) by bouncing beam of ping pong balls (photons) off it. 10-2 10-6 10-4 100 102 104 Kelvins Mass M Velocity v h / λ Photon Momentum h = Planck’s constant # photons to stop thermal 87Rb atom = M v / (h / λ) = 50,000 photons Stopping Time T = 50,000 x τ excited state lifetime = 1.4 msec Stopping Distance = v τ / 2 = 20 cm Laser Power to stop 109 atoms/sec = 109 x 50,000 h ν / T ≈ 10 mW Doppler cooling limit = h Γ transition linewidth /2 k ≈ 100 µK Analogous to stopping transport truck on highway (atom) by bouncing beam of ping pong balls (photons) off it. 10-2 10-6 10-4 100 102 104 Kelvins 10-2 10-6 10-4 100 102 104 Kelvins Mass M Velocity v h / λ Photon Momentum h = Planck’s constant # photons to stop thermal 87Rb atom = M v / (h / λ) = 50,000 photons Stopping Time T = 50,000 x τ excited state lifetime = 1.4 msec Stopping Distance = v τ / 2 = 20 cm Laser Power to stop 109 atoms/sec = 109 x 50,000 h ν / T ≈ 10 mW Doppler cooling limit = h Γ transition linewidth /2 k ≈ 100 µK