SlideShare a Scribd company logo
1 of 50
Download to read offline
โ€ซุฑโ€ฌูŽโ€ซู€ุฏโ€ฌู’โ€ซู‚โ€ฌโ€ซูู€โ€ฌโ€ซู†โ€ฌุŒุŒุŒโ€ซู„ู…ุงโ€ฌโ€ซุงู†ู†ุงโ€ฌ โ€ซู†ุตุฏู‚โ€ฌู’ู’โ€ซู‚โ€ฌูโ€ซู†โ€ฌโ€ซุฑโ€ฌูŽโ€ซุฏโ€ฌ
LECTURE (2)
The Z-Transform
ASCO. Prof. Amr E. Mohamed
Agenda
๏ฑ Difference Equation vs Differential Equati
๏ฑ Z-Transform
๏‚ง Examples
๏‚ง Properties
๏ฑ Inverse Z-Transform
๏‚ง Long Division
๏‚ง Partial Fraction
๏ฑ Solution of Difference Equation
๏ฑ Mapping between s-plane to z-plane
2
Difference Equation vs Differential Equation
๏ฑ A difference equation expresses the change in some variable as a result
of a finite change in the other variable.
๏ฑ A differential equation expresses the change in some variable as a result
of an infinitesimal change in the other variable.
3
Differential Equation
๏ฑ Following figure shows a mass-spring-damper-system. Where y is
position, F is applied force D is damping constant and K is spring
constant.
๏ฑ Rearranging above equation in following form
4
๐น ๐‘ก = ๐‘š ๐‘ฆ ๐‘ก + ๐ท ๐‘ฆ ๐‘ก + ๐พ๐‘ฆ(๐‘ก)
๐‘ฆ ๐‘ก =
1
๐‘š
๐น ๐‘ก โˆ’
๐ท
๐‘š
๐‘ฆ ๐‘ก
๐พ
๐‘š
๐‘ฆ(๐‘ก)
Differential Equation
๏ฑ Rearranging above equation in following form
5
๐‘ฆ ๐‘ก =
1
๐‘š
๐น ๐‘ก โˆ’
๐ท
๐‘š
๐‘ฆ ๐‘ก โˆ’
๐พ
๐‘š
๐‘ฆ(๐‘ก)
๐’…๐’• ๐’…๐’•๐Ÿ
๐’Ž
โˆ’
๐‘ซ
๐’Ž
โˆ’
๐‘ฒ
๐’Ž
๐‘ฆ ๐‘ฆ ๐‘ฆ๐น(๐‘ก)
๏ƒฅ
Difference Equation
6
๐‘ฆ ๐‘˜ + 2 =
1
๐‘š
๐น ๐‘˜ โˆ’
๐ท
๐‘š
๐‘ฆ ๐‘˜ + 1 โˆ’
๐พ
๐‘š
๐‘ฆ(๐‘˜)
๐Ÿ
๐’›
๐Ÿ
๐’›
๐Ÿ
๐’Ž
โˆ’
๐‘ซ
๐’Ž
โˆ’
๐‘ฒ
๐’Ž
๐‘ฆ(๐‘˜ + 2) ๐‘ฆ(๐‘˜)๐น(๐‘˜)
๏ƒฅ
๐‘ฆ(๐‘˜ + 1)
Difference Equations
๏ฑ Difference equations arise in problems where the time is assumed to
have a discrete set of possible values.
๏ฑ Where coefficients ๐‘Ž ๐‘›โˆ’1, ๐‘Ž ๐‘›โˆ’2,โ€ฆ and ๐‘ ๐‘›, ๐‘ ๐‘›โˆ’1,โ€ฆ are constant.
๏ฑ ๐‘ข(๐‘˜) is forcing function
7
๐‘ฆ ๐‘˜ + ๐‘› + ๐‘Ž ๐‘›โˆ’1 ๐‘ฆ ๐‘˜ + ๐‘› โˆ’ 1 + โ‹ฏ + ๐‘Ž1 ๐‘ฆ ๐‘˜ + 1 + ๐‘Ž0 ๐‘ฆ ๐‘˜
= ๐‘ ๐‘› ๐‘ข ๐‘˜ + ๐‘› + ๐‘ ๐‘›โˆ’1 ๐‘ข ๐‘˜ + ๐‘› โˆ’ 1 + โ‹ฏ + ๐‘1 ๐‘ข ๐‘˜ + 1 + ๐‘0 ๐‘ข ๐‘˜
Difference Equations
๏ฑ Example 1: For the given difference equation, determine the (a)
order of the equation. Is the equation (b) linear, (c) time
invariant, or (d) homogeneous?
๐’š ๐’Œ + ๐Ÿ + ๐ŸŽ. ๐Ÿ–๐’š ๐’Œ + ๐Ÿ + ๐ŸŽ. ๐ŸŽ๐Ÿ•๐’š ๐’Œ = ๐’– ๐’Œ
๏ฑ Solution:
a) The equation is second order.
b) All terms enter the equation linearly
c) All the terms if the equation have constant coefficients.
Therefore the equation is therefore LTI.
d) A forcing function appears in the equation, so it is
nonhomogeneous.
8
Z-Transform
๏ฑ Difference equations can be solved using z-transforms which provide a
convenient approach for solving LTI equations.
๏ฑ The z-transform is an important tool in the analysis and design of
discrete-time systems.
๏ฑ It simplifies the solution of discrete-time problems by converting LTI
difference equations to algebraic equations and convolution to
multiplication.
๏ฑ Thus, it plays a role similar to that served by Laplace transforms in
continuous-time problems.
9
Z-transform Definition
๏ฑ Given the causal sequence {x(ktT)}, its z-transform is defined as
๏ฑ The variable zโˆ’1 in the above equation can be regarded as a time delay
operator.
10
X ๐‘ง = ๐‘ฅ 0 + ๐‘ฅ ๐‘‡ ๐‘งโˆ’1
+ ๐‘ฅ 2๐‘‡ ๐‘งโˆ’2
+ โ‹ฏ + ๐‘ฅ ๐‘˜๐‘‡ ๐‘งโˆ’๐‘˜
๐‘‹ ๐‘ง =
๐‘˜=0
โˆž
๐‘ฅ ๐‘˜๐‘‡ ๐‘งโˆ’๐‘˜
Example
๏ฑ Obtain the Z-transform of the sequence
๏ฑ Solution:
11
x ๐‘˜๐‘‡ = {1, 1, 3, 2, 0, 4, 0, 0, 0, โ€ฆ }
X ๐‘ง = 1 + ๐‘งโˆ’1
+3 ๐‘งโˆ’2
+ 2 ๐‘งโˆ’3
+ 4๐‘งโˆ’5
Laplace Transform and Z-Transform
๏ฑ Given the sampled impulse train of a signal
๐‘ฅโˆ— ๐‘ก = ๐‘ฅ 0 ๐›ฟ ๐‘ก + ๐‘ฅ ๐‘‡ ๐›ฟ ๐‘ก โˆ’ ๐‘‡ + โ‹ฏ + ๐‘ฅ ๐‘˜๐‘‡ ๐›ฟ(๐‘ก โˆ’ ๐‘˜๐‘‡) + โ‹ฏ
๐‘ฅโˆ—
๐‘ก =
๐‘˜=0
โˆž
๐‘ฅ ๐‘˜๐‘‡ ๐›ฟ ๐‘ก โˆ’ ๐‘˜๐‘‡
12
Laplace Transform and Z-Transform
๐‘‹โˆ—
๐‘† = ๐‘ฅ 0 + ๐‘ฅ ๐‘‡ ๐‘’โˆ’๐‘ ๐‘‡
+ ๐‘ฅ 2๐‘‡ ๐‘’โˆ’๐‘ 2๐‘‡
+ โ‹ฏ + ๐‘ฅ ๐‘˜๐‘‡ ๐‘’โˆ’๐‘ ๐‘˜๐‘‡
+ โ‹ฏ
๐‘‹โˆ— ๐‘† =
๐‘˜=0
โˆž
๐‘ฅ ๐‘˜๐‘‡ ๐‘’โˆ’๐‘ ๐‘˜๐‘‡ =
๐‘˜=0
โˆž
๐‘ฅ ๐‘˜๐‘‡ (๐‘’ ๐‘ ๐‘‡)โˆ’๐‘˜ โ†’ (1)
๏ฑ The z-transform is
๐‘‹ ๐‘ง =
๐‘˜=0
โˆž
๐‘ฅ ๐‘˜๐‘‡ ๐‘งโˆ’๐‘˜
โ†’ (2)
๏ฑ Comparing (1) and (2) yields
๐‘ง = ๐‘’ ๐‘ ๐‘‡ where ๐‘‡ is the sample period
13
A Note
๏ฑ In general, given a transfer function in s-domain you cannot just replace
๐‘  by s =
๐‘™๐‘›๐‘ง
๐‘‡
(from ๐‘ง = ๐‘’ ๐‘ ๐‘‡
) to get its z-domain transfer function.
๏ฑ The reason is that ๐‘ง = ๐‘’ ๐‘ ๐‘‡ is true with the sampled signal.
14
Identities Used Repeatedly
๐‘˜=0
โˆž
๐‘Ž ๐‘˜ =
1
1 โˆ’ ๐‘Ž
, ๐‘Ž < 1
๐‘˜=0
๐‘›
๐‘Ž ๐‘˜ =
1 โˆ’ ๐‘Ž ๐‘›+1
1 โˆ’ ๐‘Ž
, ๐‘Ž = 1
๏ฑ Special Cases:
๐‘˜=0
โˆž
๐‘˜๐‘Ž ๐‘˜ =
1
(1 โˆ’ ๐‘Ž)2
, ๐‘Ž < 1
15
z-transform of the Unit impulse
๏ฑ Let x(kT) = ฮด(kT)
๏ฑ Then
16
๏ƒฎ
๏ƒญ
๏ƒฌ ๏€ฝ
๏€ฝ
otherwise0
0kfor1
(kT)๏ค
๏€จ ๏€ฉ ๏› ๏ 1(kT)
00
๏€ฝ๏€ฝ๏€ฝ ๏ƒฅ๏ƒฅ
๏‚ฅ
๏€ฝ
๏€ญ
๏‚ฅ
๏€ฝ
๏€ญ
k
k
k
k
zzkTxzX ๏ค
z-transform of the a Shifted Unit impulse
๏ฑ Let x(kT) = ฮด(kT-qT)
๏ฑ Then
17
๏ƒฎ
๏ƒญ
๏ƒฌ ๏€ฝ
๏€ฝ
otherwise0
qkfor1
qT)-(kT๏ค
๏€จ ๏€ฉ q
k
k
k
k
zzzkTxzX ๏€ญ
๏‚ฅ
๏€ฝ
๏€ญ
๏‚ฅ
๏€ฝ
๏€ญ
๏€ฝ๏€ฝ๏€ฝ ๏ƒฅ๏ƒฅ 00
qT)-(kT)( ๏ค
z-transform of a Unit-Step Function
๏ฑ Let x(kT) = u(kT)
๏ฑ Then
18
๏ƒฎ
๏ƒญ
๏ƒฌ ๏‚ณ
๏€ฝ
0kfor0
0kfor1
(kT)
๏ฐ
u
๏€จ ๏€ฉ
11
1
(kT))( 1
000 ๏€ญ
๏€ฝ
๏€ญ
๏€ฝ๏€ฝ๏€ฝ๏€ฝ ๏€ญ
๏‚ฅ
๏€ฝ
๏€ญ
๏‚ฅ
๏€ฝ
๏€ญ
๏‚ฅ
๏€ฝ
๏€ญ
๏ƒฅ๏ƒฅ๏ƒฅ z
z
z
zzuzkTxzX
k
k
k
k
k
k
z-transform of Sample Exponential
๏ฑ Let x(kT) = ak u(kT)
๏ฑ Then
19
๏ƒฎ
๏ƒญ
๏ƒฌ ๏‚ณ
๏€ฝ
0kfor0
0kfor
(kT)
๏ฐ
k
k a
ua
๏€จ ๏€ฉ ๏ƒฅ๏ƒฅ๏ƒฅ
๏‚ฅ
๏€ฝ
๏€ญ
๏‚ฅ
๏€ฝ
๏€ญ
๏‚ฅ
๏€ฝ
๏€ญ
๏€ฝ๏€ฝ๏€ฝ
000
(kT))(
k
kk
k
kk
k
k
zazuazkTxzX
๏€จ ๏€ฉ
az
z
az
azzX
k
k
๏€ญ
๏€ฝ
๏€ญ
๏€ฝ๏€ฝ ๏€ญ
๏‚ฅ
๏€ฝ
๏€ญ
๏ƒฅ 1
0
1
1
1
)(
z-transform of kaku[k]
๏ฑ Let x(kT) = k ak u(kT)
๏ฑ Then
20
๏ƒฎ
๏ƒญ
๏ƒฌ ๏‚ณ
๏€ฝ
0kfor0
0kfor
(kT)
๏ฐ
k
k ka
uka
๏€จ ๏€ฉ ๏ƒฅ๏ƒฅ๏ƒฅ
๏‚ฅ
๏€ฝ
๏€ญ
๏‚ฅ
๏€ฝ
๏€ญ
๏‚ฅ
๏€ฝ
๏€ญ
๏€ฝ๏€ฝ๏€ฝ
000
k(kT))(
k
kk
k
kk
k
k
zazukazkTxzX
๏€จ ๏€ฉ 221
0
1
)()1(
1
)(k
az
z
az
azzX
k
k
๏€ญ
๏€ฝ
๏€ญ
๏€ฝ๏€ฝ ๏€ญ
๏‚ฅ
๏€ฝ
๏€ญ
๏ƒฅ
z-transform of Sinusoids
๏ฑ Let x(kT) = (cos ฮฉkT) u(kT)
๏ฑ Then
๏ฑ Similarly it can be shown:
21
๏ƒฎ
๏ƒญ
๏ƒฌ ๏‚ณ๏—
๏€ฝ๏—
0kfor0
0kfor)cos(
(n))cos(
๏ฐ
kT
un
2
)k(cos
kTjkTj
ee
T
๏—๏€ญ๏—
๏€ซ
๏€ฝ๏—๏‘
)}()({
2
1
u(k)})k({cos kTuekTueZT kTjkTj ๏—๏€ญ๏—
๏€ซ๏€ฝ๏—๏š
๏ƒบ๏ƒป
๏ƒน
๏ƒช๏ƒซ
๏ƒฉ
๏€ญ
๏€ซ
๏€ญ
๏€ฝ๏—๏š ๏—๏€ญ๏— TjTj
ez
z
ez
z
kTkT
2
1
)}u()({cos
1)(cos2
)(cos
)(cos21
)(cos1
)}u()({cos 2
2
21
1
๏€ซ๏—๏€ญ
๏—๏€ญ
๏€ฝ
๏€ซ๏—๏€ญ
๏—๏€ญ
๏€ฝ๏—๏š ๏€ญ๏€ญ
๏€ญ
Tzz
Tzz
zTz
Tz
kTkT
1)(cos2
)(s
)(cos21
)(s
)}u()({sin 221
1
๏€ซ๏—๏€ญ
๏—
๏€ฝ
๏€ซ๏—๏€ญ
๏—
๏€ฝ๏—๏š ๏€ญ๏€ญ
๏€ญ
Tzz
Tinz
zTz
Tinz
kTkT
22
Signal, ๐ฑ(๐’Œ๐‘ป) Z-Transform, ๐—(๐ณ) Z-Transform, ๐—(๐ณ) ROC
1 ๐›…(๐’Œ๐‘ป) 1 1 all Z
2 ๐›…(๐’Œ๐‘ป โˆ’ ๐’’) ๐ณโˆ’๐’’ ๐ณโˆ’๐’’ ๐ณ โ‰  ๐ŸŽ
3 ๐ฎ(๐’Œ๐‘ป)
๐Ÿ
๐Ÿ โˆ’ ๐’›โˆ’๐Ÿ
๐ณ
๐ณ โˆ’ ๐Ÿ
๐ณ > ๐Ÿ
4 ๐š ๐’Œ
๐ฎ(๐ค๐“)
๐Ÿ
๐Ÿ โˆ’ ๐’‚๐’›โˆ’๐Ÿ
๐ณ
๐ณ โˆ’ ๐š
๐ณ > ๐š
5 ๐’Œ ๐ฎ(๐ค๐“)
๐Ÿ
(๐Ÿ โˆ’ ๐’›โˆ’๐Ÿ) ๐Ÿ
๐ณ
(๐ณ โˆ’ ๐Ÿ) ๐Ÿ
๐ณ > ๐Ÿ
6 ๐’Œ ๐š ๐’Œ ๐ฎ(๐ค๐“)
๐š๐’›โˆ’๐Ÿ
(๐Ÿ โˆ’ ๐š๐’›โˆ’๐Ÿ) ๐Ÿ
๐š๐ณ
(๐ณ โˆ’ ๐š) ๐Ÿ
๐ณ > ๐š
7 ๐œ๐จ๐ฌ(๐›š ๐ŸŽ ๐ค๐“)
๐Ÿ โˆ’ ๐’›โˆ’๐Ÿ
๐œ๐จ๐ฌ(๐›š ๐ŸŽ)
๐Ÿ โˆ’ ๐Ÿ๐’›โˆ’๐Ÿ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐’›โˆ’๐Ÿ
๐ณ ๐Ÿ
โˆ’ ๐ณ๐œ๐จ๐ฌ(๐›š ๐ŸŽ)
๐ณ ๐Ÿ โˆ’ ๐Ÿ๐ณ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐Ÿ
๐ณ > ๐Ÿ
8 ๐ฌ๐ข๐ง(๐›š ๐ŸŽ ๐ค๐“)
๐’›โˆ’๐Ÿ
๐ฌ๐ข๐ง(๐›š ๐ŸŽ)
๐Ÿ โˆ’ ๐Ÿ๐’›โˆ’๐Ÿ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐’›โˆ’๐Ÿ
๐ณ ๐ฌ๐ข๐ง(๐›š ๐ŸŽ)
๐ณ ๐Ÿ โˆ’ ๐Ÿ๐ณ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐Ÿ
๐ณ > ๐Ÿ
9 ๐ซ ๐’Œ
๐œ๐จ๐ฌ(๐›š ๐ŸŽ ๐ค๐“)
๐Ÿ โˆ’ ๐ซ ๐’›โˆ’๐Ÿ
๐œ๐จ๐ฌ(๐›š ๐ŸŽ)
๐Ÿ โˆ’ ๐Ÿ๐ซ ๐’›โˆ’๐Ÿ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐ซ ๐Ÿ ๐’›โˆ’๐Ÿ
๐ณ ๐Ÿ
โˆ’ ๐’“ ๐ณ ๐œ๐จ๐ฌ(๐›š ๐ŸŽ)
๐ณ ๐Ÿ โˆ’ ๐Ÿ๐’“ ๐ณ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐ซ ๐Ÿ
๐ณ > ๐ซ
10 ๐ซ ๐’Œ
๐ฌ๐ข๐ง(๐›š ๐ŸŽ ๐ค๐“)
๐’“ ๐’›โˆ’๐Ÿ ๐ฌ๐ข๐ง(๐›š ๐ŸŽ)
๐Ÿ โˆ’ ๐Ÿ๐ซ ๐’›โˆ’๐Ÿ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐ซ ๐Ÿ ๐’›โˆ’๐Ÿ
๐’“ ๐ณ ๐ฌ๐ข๐ง(๐›š ๐ŸŽ)
๐ณ ๐Ÿ โˆ’ ๐Ÿ๐’“ ๐ณ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐ซ ๐Ÿ
๐ณ > ๐ซ
Z-Transform Properties
23
24
Z-Transform Properties: Linearity
๏ฑ Notation
๏ฑ Linearity
๏ฑ Example:
๏€จ ๏€ฉ ๏€จ ๏€ฉzXkTxzXkTx ZZ
2211 )(&)( ๏‚พ๏‚ฎ๏‚ฌ๏‚พ๏‚ฎ๏‚ฌ
๏€จ ๏€ฉ ๏€จ ๏€ฉzXbzXakTxbkTxa Z
2121 )()( ๏€ซ๏‚พ๏‚ฎ๏‚ฌ๏€ซ
)(u3a-)(4)( k
kTkTukTx ๏€ฝ
๏€จ ๏€ฉ
)1)(1(
)43(1
1
3
1
4
11
1
11 ๏€ญ๏€ญ
๏€ญ
๏€ญ๏€ญ
๏€ญ๏€ญ
๏€ญ๏€ญ
๏€ฝ
๏€ญ
๏€ญ
๏€ญ
๏€ฝ
azz
za
azz
zX
Z-Transform Properties: Time Right Shifting (Time Delay)
๏ฑ Use the time delay property of the Laplace Transform
๏ฑ Then
๏ฑ Example:
25
๏€จ ๏€ฉzXznTkTx nZ ๏€ญ
๏‚พ๏‚ฎ๏‚ฌ๏€ญ )(
๏€จ ๏€ฉSXeTtx TSZ
d
๏€ญ
๏‚พ๏‚ฎ๏‚ฌ๏€ญ )(
))3(()2.0()( )3(
TkukTx Tk
๏€ญ๏€ฝ ๏€ญ
1
3
2.01
1
)( ๏€ญ
๏€ญ
๏€ญ
๏€ฝ
z
zZX
Z-Transform Properties: Time Left Shifting (Time Advance)
๏ฑ Example:
26
๏€จ ๏€ฉ ])([)(
1
0
๏ƒฅ
๏€ญ
๏€ฝ
๏€ญ
๏€ญ๏‚พ๏‚ฎ๏‚ฌ๏€ซ
n
k
knZ
zkTxzXznTkTx
))2(()2.0()( )2(
TkukTx Tk
๏€ซ๏€ฝ ๏€ซ
])(
2.01
1
[)(
1
0
1
2
๏ƒฅ๏€ฝ
๏€ญ
๏€ญ
๏€ญ
๏€ญ
๏€ฝ
k
k
zkTx
z
zZX
1
1
1
2
2.01
04.0
)]2.01(
2.01
1
[)( ๏€ญ
๏€ญ
๏€ญ
๏€ญ
๏€ฝ๏€ซ๏€ญ
๏€ญ
๏€ฝ
z
z
z
zZX
Z-Transform Properties: Multiplication by Exponential
27
๏€จ ๏€ฉazXkTxa Zk
/)( ๏‚พ๏‚ฎ๏‚ฌ
๏ฑ Example:
Z-Transform Properties: Complex Differentiation
28
๏€จ ๏€ฉ
dz
zdX
zkTxk Z
๏€ญ๏‚พ๏‚ฎ๏‚ฌ)(
๏€จ ๏€ฉzX
dz
d
zkTxk
m
Zm
๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ๏‚พ๏‚ฎ๏‚ฌ)(
Z-Transform Properties: Convolution
๏ฑ Convolution in time domain is multiplication in z-domain
๏ฑ Example: Letโ€™s calculate the convolution of
๏ฑ Multiplications of z-transforms is
29
๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉzXzXkTxkTx Z
2121 ๏‚พ๏‚ฎ๏‚ฌ๏€ช
๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉkTukTkTuakTx kT
๏€ฝ๏€ฝ 21 xand
๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ
๏€จ ๏€ฉ๏€จ ๏€ฉ1121
11
1
๏€ญ๏€ญ
๏€ญ๏€ญ
๏€ฝ๏€ฝ
zaz
zXzXzY
๏€จ ๏€ฉ ๏€จ ๏€ฉzXkTxzXkTx ZZ
2211 )(&)( ๏‚พ๏‚ฎ๏‚ฌ๏‚พ๏‚ฎ๏‚ฌ
Z-Transform Properties: Initial and Final Value Theorems
๏ฑ Initial Value Theorem:
๏‚ง The value of x(n) as k โ†’ 0 is given by:
๏ฑ Final Value Theorem:
๏‚ง The value of x(n) as k โ†’ ๏‚ฅ is given by:
30
๏€จ ๏€ฉ )(limlim)0(
0
zXkTxx
zk ๏‚ฅ๏‚ฎ๏‚ฎ
๏€ฝ๏€ฝ
๏€จ ๏€ฉ )]()1[(limlim)(
1
zXzkTxx
zk
๏€ญ๏€ฝ๏€ฝ๏‚ฅ
๏‚ฎ๏‚ฅ๏‚ฎ
The inverse Z-Transform
31
32
The Inverse Z-Transform
๏ฑ Formal inverse z-transform is based on a Cauchy integral
๏ฑ Less formal ways sufficient most of the time
1) Direct or Long Division Method
2) Partial fraction expansion and Look-up Table
3) Inversion Integral Method (Residue-theorem)
๏€จ ๏€ฉ ๏€จ ๏€ฉ๏› ๏ ๏€จ ๏€ฉ dzzzX
j
zXZkTx k
C
11
2
1 ๏€ญ๏€ญ
๏ƒฒ๏€ฝ๏€ฝ
๏ฐ
33
Inverse Z-Transform: Power Series Expansion
๏ฑ Using Long Division to expand X(z) as a series
๏ฑ Write the inverse transform as the sequence
๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏ƒฅ
๏‚ฅ
๏€ฝ
๏€ญ๏€ญ๏€ญ
๏€ฝ๏€ซ๏€ซ๏€ซ๏€ฝ
0
21
...20
k
k
zkTxzTxzTxxzX
๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ...},2,,0{ TxTxxkTx ๏€ฝ
34
Inverse Z-Transform: Power Series Expansion
๏ฑ Example
๏€จ ๏€ฉ ๏€จ ๏€ฉ๏€จ ๏€ฉ
321
111
2
1
2
1
1
11
2
1
1
๏€ญ๏€ญ๏€ญ
๏€ญ๏€ญ๏€ญ
๏€ซ๏€ญ๏€ญ๏€ฝ
๏€ญ๏€ซ๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ๏€ฝ
zzz
zzzzX
๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉTkTTkTTkTkTkTx 3
2
1
2
2
1
๏€ญ๏€ซ๏€ญ๏€ญ๏€ญ๏€ญ๏€ฝ ๏ค๏ค๏ค๏ค
๏€จ ๏€ฉ
๏ƒฏ
๏ƒฏ
๏ƒฏ
๏ƒฎ
๏ƒฏ
๏ƒฏ
๏ƒฏ
๏ƒญ
๏ƒฌ
๏€ฝ
๏€ฝ๏€ญ
๏€ฝ
๏€ญ
๏€ฝ
๏€ฝ
Otherwise
k
k
k
k
kTx
0
3
2
1
21
1
2
1
01
Inverse Z-Transform: Power Series Expansion
๏ฑ Example: Find x(n) for n = 0, 1, 2, 3, 4, when X(z) is given by:
๏ฑ Solution:
๏‚ง First, rewrite X(z) as a ratio of polynomial in ๐‘งโˆ’1
, as follows:
๏‚ง Dividing the numerator by the denominator, we have:
35
๏€จ ๏€ฉ
๏€จ ๏€ฉ๏€จ ๏€ฉ2.01
510
๏€ญ๏€ญ
๏€ซ
๏€ฝ
zz
z
zX
๏€จ ๏€ฉ 21
21
2.02.11
510
๏€ญ๏€ญ
๏€ญ๏€ญ
๏€ซ๏€ญ
๏€ซ
๏€ฝ
zz
zz
zX
4321
68.184.181710 ๏€ญ๏€ญ๏€ญ๏€ญ
๏€ซ๏€ซ๏€ซ zzzz
21
2.02.11 ๏€ญ๏€ญ
๏€ซ๏€ญ zz 21
510 ๏€ญ๏€ญ
๏€ซ zz
32
217 ๏€ญ๏€ญ
๏€ญ zz
432
4.34.2017 ๏€ญ๏€ญ๏€ญ
๏€ซ๏€ญ zzz
43
4.34.18 ๏€ญ๏€ญ
๏€ญ zz
543
68.308.224.18 ๏€ญ๏€ญ๏€ญ
๏€ซ๏€ญ zzz
54
68.368.18 ๏€ญ๏€ญ
๏€ญ zz
654
736.3416.2268.18 ๏€ญ๏€ญ๏€ญ
๏€ซ๏€ญ zzz
321
21210 ๏€ญ๏€ญ๏€ญ
๏€ซ๏€ญ zzz Therefore,
โ€ข x(0) = 0,
โ€ข x(1) = 10,
โ€ข x(2) = 17,
โ€ข x(3) = 18.4
โ€ข x(4) = 18.68
Inverse Z-Transform: Partial Fraction Expansion
๏ฑ Assume that a given z-transform can be expressed as
๏ฑ Apply partial fractional expansion
๏ฑ First term exist only if M>N
๏‚ง Br is obtained by long division
๏ฑ Second term represents all first order poles
๏ฑ Third term represents an order s pole
๏‚ง There will be a similar term for every high-order pole
๏ฑ Each term can be inverse transformed by inspection
36
๏€จ ๏€ฉ
๏ƒฅ
๏ƒฅ
๏€ฝ
๏€ญ
๏€ฝ
๏€ญ
๏€ฝ N
0k
k
k
M
0k
k
k
za
zb
zX
๏€จ ๏€ฉ
๏€จ ๏€ฉ๏ƒฅ๏ƒฅ๏ƒฅ ๏€ฝ
๏€ญ
๏‚น๏€ฝ
๏€ญ
๏€ญ
๏€ฝ
๏€ญ
๏€ญ
๏€ซ
๏€ญ
๏€ซ๏€ฝ
s
1m
m1
i
m
N
ik,1k
1
k
k
NM
0r
r
r
zd1
C
zd1
A
zBzX
Inverse Z-Transform: Partial Fraction Expansion
๏ฑ Coefficients are given as
๏ฑ Easier to understand with examples
37
๏€จ ๏€ฉ
๏€จ ๏€ฉ๏ƒฅ๏ƒฅ๏ƒฅ ๏€ฝ
๏€ญ
๏‚น๏€ฝ
๏€ญ
๏€ญ
๏€ฝ
๏€ญ
๏€ญ
๏€ซ
๏€ญ
๏€ซ๏€ฝ
s
m
m
i
m
N
ikk k
k
NM
r
r
r
zd
C
zd
A
zBzX
1
1
,1
1
0 11
๏€จ ๏€ฉ ๏€จ ๏€ฉ kdzkk zXzdA ๏€ฝ
๏€ญ
๏€ญ๏€ฝ 1
1
๏€จ ๏€ฉ ๏€จ ๏€ฉ
๏€จ ๏€ฉ ๏€จ ๏€ฉ๏› ๏ 1
1
1
!
1
๏€ญ
๏€ฝ
๏€ญ
๏€ญ
๏€ญ
๏€ญ
๏ƒพ
๏ƒฝ
๏ƒผ
๏ƒฎ
๏ƒญ
๏ƒฌ
๏€ญ
๏€ญ๏€ญ
๏€ฝ
idw
s
ims
ms
ms
i
m wXwd
dw
d
dms
C
Example:
๏ฑ Find x(kT) if X(z) is given by:
๏ฑ Solution: We first expand X(z)/z into partial fractions as follows :
๏ฑ Then we obtain
๏ฑ then
38
๏€จ ๏€ฉ
๏€จ ๏€ฉ๏€จ ๏€ฉ2.01
10
๏€ญ๏€ญ
๏€ฝ
zz
z
zX
๏€จ ๏€ฉ
๏€จ ๏€ฉ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ2.0
5.12
1
5.12
2.01
10
๏€ญ
๏€ญ
๏€ญ
๏€ฝ
๏€ญ๏€ญ
๏€ฝ
zzzzz
zX
๏€จ ๏€ฉ ๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ
๏€ญ
๏€ญ
๏€ฝ
2.01
5.12
z
z
z
z
zX
๏€จ ๏€ฉ )()2.0(5.12)(5.12 kTukTukTx k
๏€ญ๏€ฝ
๏€จ ๏€ฉ )(11
kTZ ๏ค๏€ฝ๏€ญ
๏€จ ๏€ฉkTu
z
z
Z ๏€ฝ๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ
๏€ญ
1
1
๏€จ ๏€ฉkTua
az
z
Z n
๏€ฝ๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ
๏€ญ1
Another Solution
๏ฑ In this example, if X(z), rather than X(z)/z, is expanded into partial
fractions, then we obtain:
๏ฑ However, by use of the shifting theorem we find :
๏ฑ Then
39
๏€จ ๏€ฉ
๏€จ ๏€ฉ๏€จ ๏€ฉ 2.0
5.2
1
5.12
2.01
10
๏€ญ
๏€ญ
๏€ญ
๏€ฝ
๏€ญ๏€ญ
๏€ฝ
zzzz
z
zX
๏€จ ๏€ฉ ๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ
๏€ญ
๏€ญ
๏€ฝ ๏€ญ๏€ญ
2.0
5.2
1
5.12 11
z
z
z
z
z
zzX
๏€จ ๏€ฉ )(2.015.12)()2.0(
2.0
5.2
)(5.12)(
)()2.0(5.2)(5.12)( 1
TkTuTkTuTkTukTx
TkTuTkTukTx
kk
k
๏€ญ๏€ญ๏€ฝ๏€ญ๏€ญ๏€ญ๏€ฝ
๏€ญ๏€ญ๏€ญ๏€ฝ ๏€ญ
๏€จ ๏€ฉ
๏€จ ๏€ฉ
๏€จ ๏€ฉ
๏€จ ๏€ฉ
๏€จ ๏€ฉ
..
..
48.124
4.123
122
101
00
๏€ฝ
๏€ฝ
๏€ฝ
๏€ฝ
๏€ฝ
x
x
x
x
x
๏€จ ๏€ฉ๏› ๏ ๏€จ ๏€ฉ๏› ๏TnkTxzXzZ o
no
๏€ญ๏€ฝ๏€ญ๏€ญ1
Example:
๏ฑ Find x(kT) if X(z) is given by:
๏ฑ Solution: Expand X(z)/z into partial fraction as follows:
๏ฑ Then:
๏ฑ By referring to tables we find that x(kT) is given by:
๏ฑ and therefore,
๏ฑ x(0) = 0 -1 +3 = 2
๏ฑ x(1) = 18 โ€“ 2 + 3= 19
40
๏€จ ๏€ฉ
๏€จ ๏€ฉ ๏€จ ๏€ฉ12
2
2
3
๏€ญ๏€ญ
๏€ซ
๏€ฝ
zz
zz
zX
๏€จ ๏€ฉ
๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ 1
3
2
1
2
9
12
12
22
2
๏€ญ
๏€ซ
๏€ญ
๏€ญ
๏€ญ
๏€ฝ
๏€ญ๏€ญ
๏€ซ
๏€ฝ
zzzzz
z
z
zX
๏€จ ๏€ฉ
๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ1
3
22
9
2
๏€ญ
๏€ซ
๏€ญ
๏€ญ
๏€ญ
๏€ฝ
z
z
z
z
z
z
zX
๏€จ ๏€ฉ )(3)()2()()2(5.4 kTukTukTrkTx kk
๏€ซ๏€ญ๏€ฝ
๏€จ ๏€ฉkTuk
k
kk
kTr ๏€ฝ
๏ƒฎ
๏ƒญ
๏ƒฌ ๏‚ณ
๏€ฝ
00
0
)(
๏ฐ
๏€จ ๏€ฉ
๏€จ ๏€ฉkTr
z
z
Z ๏€ฝ๏ƒบ
๏ƒป
๏ƒน
๏ƒช
๏ƒซ
๏ƒฉ
๏€ญ
๏€ญ
2
1
1
๏€จ ๏€ฉ
๏€จ ๏€ฉkTra
az
az
Z k
๏€ฝ๏ƒบ
๏ƒป
๏ƒน
๏ƒช
๏ƒซ
๏ƒฉ
๏€ญ
๏€ญ
2
1
Solution of Difference Equations
41
Transfer Function Representation
๏ฑ First โ€“ Order Case
๏‚ง Let ๐’š(๐’Œ๐‘ป) + ๐’‚๐’š(๐’Œ๐‘ป โˆ’ ๐‘ป) = ๐’ƒ๐’™(๐’Œ๐‘ป)
๏‚ง Then take the z-transform to get:
โ€ข ๐’€(๐’›) + ๐’‚ ๐’›
โˆ’ ๐Ÿ ๐’€(๐’›) = ๐’ƒ ๐‘ฟ(๐’›)
๏‚ง Simplifying:
โ€ข ๐’€(๐’›) (๐Ÿ + ๐’‚๐’›
โˆ’ ๐Ÿ) = ๐’ƒ ๐‘ฟ(๐’›)
โ€ข ๐’€(๐’›) = (๐’ƒ ๐‘ฟ(๐’›))/ (๐Ÿ + ๐’‚๐’›
โˆ’ ๐Ÿ)
๏‚ง And we have the transfer function H(z):
โ€ข ๐’€(๐’›) = ๐‘ฏ(๐’›) ๐‘ฟ(๐’›)
โ€ข so ๏ƒจ ๐‘ฏ(๐’›) =
๐’ƒ ๐’›
๐’› + ๐’‚
๏‚ง By inverse z-transform: ๐’š ๐’Œ๐‘ป = ๐’ƒ โˆ’๐’‚ ๐’Œ
๐’–(๐’Œ๐‘ป) 42
Mapping between s-plane to z-plane
43
Mapping between s-plane to z-plane
๏ฑ Where ๐‘  = ๐œŽ + ๐‘—๐œ” for real number ๐œŽ and real number ๐œ”.
๏ฑ Then ๐‘ง in polar coordinates is given by
44
๐‘ง = ๐‘’(๐œŽ+๐‘—๐œ”)๐‘‡
๐‘ง = ๐‘’ ๐œŽ๐‘‡
๐‘’ ๐‘—๐œ”๐‘‡
โˆ ๐‘ง = ๐œ”๐‘‡๐‘ง = ๐‘’ ๐œŽ๐‘‡
๐‘ง = ๐‘’ ๐‘ ๐‘‡
Mapping between s-plane to z-plane
๏ฑ We will discuss following cases to map given points on s-plane to z-
plane.
๏‚ง Case-1: Real pole in s-plane (๐‘  = ๐œŽ) [on the left hand-side]
๏‚ง Case-2: Imaginary Pole in s-plane (๐‘  = ๐‘—๐œ”)
๏‚ง Case-3: Complex Poles (๐‘  = ๐œŽ + ๐‘—๐œ”)
45๐‘  โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’ ๐‘ง โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’
Mapping between s-plane to z-plane
๏ฑ Case-1: Real pole in s-plane (๐‘  = ๐œŽ)
๏ฑ When ๐‘  = 0
๏ฑ When ๐‘  = โˆ’โˆž
46
โˆ ๐‘ง = ๐œ”๐‘‡๐‘ง = ๐‘’ ๐œŽ ๐‘‡
๐‘ง = ๐‘’0๐‘‡ = 1 โˆ ๐‘ง = 0๐‘‡ = 0
๐‘  = 0
๐‘  โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’ ๐‘ง โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’
1
๐‘ง = ๐‘’โˆ’โˆž๐‘‡ = 1 โˆ ๐‘ง = 0๐‘‡ = 0
Mapping between s-plane to z-plane
๏ฑ Case-2: Imaginary pole in s-plane (๐‘  = ยฑ๐‘—๐œ”)
๏ฑ When ๐’” = ๐’‹๐Ž
47
โˆ ๐‘ง = ๐œ”๐‘‡๐‘ง = ๐‘’ ๐œŽ๐‘‡
๐’› = ๐’† ๐ŸŽ๐‘ป = ๐Ÿ โˆ ๐’› = ๐Ž๐‘ป
๐‘  = ๐‘—๐œ”
๐‘  โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’ ๐‘ง โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’
1
โˆ’1
โˆ’1
1
๐œ”๐‘‡
Mapping between s-plane to z-plane
๏ฑ Case-3: Complex pole in s-plane (๐‘  = ๐œŽ ยฑ ๐‘—๐œ”)
๏ฑ When ๐’” = ๐ˆ ยฑ ๐’‹๐Ž
48
โˆ ๐‘ง = ๐œ”๐‘‡๐‘ง = ๐‘’ ๐œŽ๐‘‡
๐’› = ๐’† ๐ˆ๐‘ป โˆ ๐’› = ๐Ž๐‘ป
๐‘  = ๐œŽ + ๐‘—๐œ”
๐‘  โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’ ๐‘ง โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’
1
โˆ’1
โˆ’1
1
๐œ”๐‘‡
๐‘  = ๐œŽ โˆ’ ๐‘—๐œ”
Mapping Regions of the s-plane onto the z-plane
49
50

More Related Content

What's hot

LTI System, Basic Types of Digital signals, Basic Operations, Causality, Stab...
LTI System, Basic Types of Digital signals, Basic Operations, Causality, Stab...LTI System, Basic Types of Digital signals, Basic Operations, Causality, Stab...
LTI System, Basic Types of Digital signals, Basic Operations, Causality, Stab...Waqas Afzal
ย 
Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier TransformAbhishek Choksi
ย 
Z transform
Z transformZ transform
Z transformcoolfriend01
ย 
Properties of Fourier transform
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transformMuhammed Afsal Villan
ย 
DSP_FOEHU - MATLAB 03 - The z-Transform
DSP_FOEHU - MATLAB 03 - The z-TransformDSP_FOEHU - MATLAB 03 - The z-Transform
DSP_FOEHU - MATLAB 03 - The z-TransformAmr E. Mohamed
ย 
Dcs lec01 - introduction to discrete-time control systems
Dcs   lec01 - introduction to discrete-time control systemsDcs   lec01 - introduction to discrete-time control systems
Dcs lec01 - introduction to discrete-time control systemsAmr E. Mohamed
ย 
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and SystemsDSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and SystemsAmr E. Mohamed
ย 
Z transform ROC eng.Math
Z transform ROC eng.MathZ transform ROC eng.Math
Z transform ROC eng.MathAdhana Hary Wibowo
ย 
Z Transform
Z TransformZ Transform
Z TransformDarshan Bhatt
ย 
IIR filter realization using direct form I & II
IIR filter realization using direct form I & IIIIR filter realization using direct form I & II
IIR filter realization using direct form I & IISarang Joshi
ย 
Z transforms and their applications
Z transforms and their applicationsZ transforms and their applications
Z transforms and their applicationsRam Kumar K R
ย 
Applications of Z transform
Applications of Z transformApplications of Z transform
Applications of Z transformAakankshaR
ย 
Modern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control SystemModern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control SystemAmr E. Mohamed
ย 
Z trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlabZ trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlabHasnain Yaseen
ย 
Modern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI SystemsModern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI SystemsAmr E. Mohamed
ย 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transformtaha25
ย 
state diagrams of flip flops
 state diagrams of flip flops state diagrams of flip flops
state diagrams of flip flopsUnsa Shakir
ย 
digital control Chapter 2 slide
digital control Chapter 2 slidedigital control Chapter 2 slide
digital control Chapter 2 slideasyrafjpk
ย 

What's hot (20)

LTI System, Basic Types of Digital signals, Basic Operations, Causality, Stab...
LTI System, Basic Types of Digital signals, Basic Operations, Causality, Stab...LTI System, Basic Types of Digital signals, Basic Operations, Causality, Stab...
LTI System, Basic Types of Digital signals, Basic Operations, Causality, Stab...
ย 
Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier Transform
ย 
Z transform
Z transformZ transform
Z transform
ย 
Z TRRANSFORM
Z  TRRANSFORMZ  TRRANSFORM
Z TRRANSFORM
ย 
Properties of Fourier transform
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transform
ย 
DSP_FOEHU - MATLAB 03 - The z-Transform
DSP_FOEHU - MATLAB 03 - The z-TransformDSP_FOEHU - MATLAB 03 - The z-Transform
DSP_FOEHU - MATLAB 03 - The z-Transform
ย 
Dcs lec01 - introduction to discrete-time control systems
Dcs   lec01 - introduction to discrete-time control systemsDcs   lec01 - introduction to discrete-time control systems
Dcs lec01 - introduction to discrete-time control systems
ย 
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and SystemsDSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
ย 
Z transform ROC eng.Math
Z transform ROC eng.MathZ transform ROC eng.Math
Z transform ROC eng.Math
ย 
Z Transform
Z TransformZ Transform
Z Transform
ย 
IIR filter realization using direct form I & II
IIR filter realization using direct form I & IIIIR filter realization using direct form I & II
IIR filter realization using direct form I & II
ย 
Z transforms and their applications
Z transforms and their applicationsZ transforms and their applications
Z transforms and their applications
ย 
Applications of Z transform
Applications of Z transformApplications of Z transform
Applications of Z transform
ย 
Modern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control SystemModern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control System
ย 
convolution
convolutionconvolution
convolution
ย 
Z trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlabZ trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlab
ย 
Modern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI SystemsModern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI Systems
ย 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
ย 
state diagrams of flip flops
 state diagrams of flip flops state diagrams of flip flops
state diagrams of flip flops
ย 
digital control Chapter 2 slide
digital control Chapter 2 slidedigital control Chapter 2 slide
digital control Chapter 2 slide
ย 

Similar to Dcs lec02 - z-transform

Frequency Analysis using Z Transform.pptx
Frequency Analysis  using Z Transform.pptxFrequency Analysis  using Z Transform.pptx
Frequency Analysis using Z Transform.pptxDrPVIngole
ย 
Z transform and Properties of Z Transform
Z transform and Properties of Z TransformZ transform and Properties of Z Transform
Z transform and Properties of Z TransformAnujKumar734472
ย 
lec z-transform.ppt
lec z-transform.pptlec z-transform.ppt
lec z-transform.pptMohammadRefai6
ย 
State Space Realizations_new.pptx
State Space Realizations_new.pptxState Space Realizations_new.pptx
State Space Realizations_new.pptxMohdNajibAliMokhtar
ย 
ep ppt of it .pptx
ep ppt of it .pptxep ppt of it .pptx
ep ppt of it .pptxbsabjdsv
ย 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxHebaEng
ย 
linear transfermation.pptx
linear transfermation.pptxlinear transfermation.pptx
linear transfermation.pptxUmme habiba
ย 
chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentslipsa91
ย 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformNimithaSoman
ย 
final poster
final posterfinal poster
final posterNeal Woo
ย 
Z transform
Z transformZ transform
Z transformnirav34
ย 
residue
residueresidue
residueRob Arnold
ย 
It 05104 digsig_1
It 05104 digsig_1It 05104 digsig_1
It 05104 digsig_1goutamkrsahoo
ย 
lec07_DFT.pdf
lec07_DFT.pdflec07_DFT.pdf
lec07_DFT.pdfshannlevia123
ย 

Similar to Dcs lec02 - z-transform (20)

Frequency Analysis using Z Transform.pptx
Frequency Analysis  using Z Transform.pptxFrequency Analysis  using Z Transform.pptx
Frequency Analysis using Z Transform.pptx
ย 
Z transform and Properties of Z Transform
Z transform and Properties of Z TransformZ transform and Properties of Z Transform
Z transform and Properties of Z Transform
ย 
lec z-transform.ppt
lec z-transform.pptlec z-transform.ppt
lec z-transform.ppt
ย 
ch3-4
ch3-4ch3-4
ch3-4
ย 
State Space Realizations_new.pptx
State Space Realizations_new.pptxState Space Realizations_new.pptx
State Space Realizations_new.pptx
ย 
ep ppt of it .pptx
ep ppt of it .pptxep ppt of it .pptx
ep ppt of it .pptx
ย 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
ย 
21 2 ztransform
21 2 ztransform21 2 ztransform
21 2 ztransform
ย 
Krishna
KrishnaKrishna
Krishna
ย 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
ย 
linear transfermation.pptx
linear transfermation.pptxlinear transfermation.pptx
linear transfermation.pptx
ย 
chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for students
ย 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
ย 
final poster
final posterfinal poster
final poster
ย 
Z transform
Z transformZ transform
Z transform
ย 
residue
residueresidue
residue
ย 
Discrete control
Discrete controlDiscrete control
Discrete control
ย 
It 05104 digsig_1
It 05104 digsig_1It 05104 digsig_1
It 05104 digsig_1
ย 
lec07_DFT.pdf
lec07_DFT.pdflec07_DFT.pdf
lec07_DFT.pdf
ย 
21 5 ztransform
21 5 ztransform21 5 ztransform
21 5 ztransform
ย 

More from Amr E. Mohamed

Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingAmr E. Mohamed
ย 
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsDDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsAmr E. Mohamed
ย 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignAmr E. Mohamed
ย 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignAmr E. Mohamed
ย 
SE2018_Lec 17_ Coding
SE2018_Lec 17_ CodingSE2018_Lec 17_ Coding
SE2018_Lec 17_ CodingAmr E. Mohamed
ย 
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsSE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsAmr E. Mohamed
ย 
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)Amr E. Mohamed
ย 
SE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsSE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsAmr E. Mohamed
ย 
Selenium - Introduction
Selenium - IntroductionSelenium - Introduction
Selenium - IntroductionAmr E. Mohamed
ย 
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)Amr E. Mohamed
ย 
SE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingSE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingAmr E. Mohamed
ย 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformAmr E. Mohamed
ย 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersAmr E. Mohamed
ย 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformAmr E. Mohamed
ย 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsAmr E. Mohamed
ย 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsAmr E. Mohamed
ย 
SE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignSE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignAmr E. Mohamed
ย 
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingDSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingAmr E. Mohamed
ย 
DSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesAmr E. Mohamed
ย 
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptxSE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptxAmr E. Mohamed
ย 

More from Amr E. Mohamed (20)

Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
ย 
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsDDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
ย 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
ย 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
ย 
SE2018_Lec 17_ Coding
SE2018_Lec 17_ CodingSE2018_Lec 17_ Coding
SE2018_Lec 17_ Coding
ย 
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsSE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-Tools
ย 
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)
ย 
SE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsSE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design Patterns
ย 
Selenium - Introduction
Selenium - IntroductionSelenium - Introduction
Selenium - Introduction
ย 
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)
ย 
SE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingSE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software Testing
ย 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
ย 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital Filters
ย 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
ย 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
ย 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
ย 
SE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignSE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software Design
ย 
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingDSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
ย 
DSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course Outlines
ย 
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptxSE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
ย 

Recently uploaded

๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
ย 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
ย 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
ย 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
ย 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
ย 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
ย 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
ย 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
ย 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examplesDr. Gudipudi Nageswara Rao
ย 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
ย 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
ย 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
ย 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
ย 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
ย 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
ย 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxnull - The Open Security Community
ย 

Recently uploaded (20)

Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
ย 
๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
ย 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
ย 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
ย 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
ย 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
ย 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
ย 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
ย 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
ย 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
ย 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
ย 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
ย 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
ย 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
ย 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
ย 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
ย 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
ย 
young call girls in Green Park๐Ÿ” 9953056974 ๐Ÿ” escort Service
young call girls in Green Park๐Ÿ” 9953056974 ๐Ÿ” escort Serviceyoung call girls in Green Park๐Ÿ” 9953056974 ๐Ÿ” escort Service
young call girls in Green Park๐Ÿ” 9953056974 ๐Ÿ” escort Service
ย 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
ย 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
ย 

Dcs lec02 - z-transform

  • 2. Agenda ๏ฑ Difference Equation vs Differential Equati ๏ฑ Z-Transform ๏‚ง Examples ๏‚ง Properties ๏ฑ Inverse Z-Transform ๏‚ง Long Division ๏‚ง Partial Fraction ๏ฑ Solution of Difference Equation ๏ฑ Mapping between s-plane to z-plane 2
  • 3. Difference Equation vs Differential Equation ๏ฑ A difference equation expresses the change in some variable as a result of a finite change in the other variable. ๏ฑ A differential equation expresses the change in some variable as a result of an infinitesimal change in the other variable. 3
  • 4. Differential Equation ๏ฑ Following figure shows a mass-spring-damper-system. Where y is position, F is applied force D is damping constant and K is spring constant. ๏ฑ Rearranging above equation in following form 4 ๐น ๐‘ก = ๐‘š ๐‘ฆ ๐‘ก + ๐ท ๐‘ฆ ๐‘ก + ๐พ๐‘ฆ(๐‘ก) ๐‘ฆ ๐‘ก = 1 ๐‘š ๐น ๐‘ก โˆ’ ๐ท ๐‘š ๐‘ฆ ๐‘ก ๐พ ๐‘š ๐‘ฆ(๐‘ก)
  • 5. Differential Equation ๏ฑ Rearranging above equation in following form 5 ๐‘ฆ ๐‘ก = 1 ๐‘š ๐น ๐‘ก โˆ’ ๐ท ๐‘š ๐‘ฆ ๐‘ก โˆ’ ๐พ ๐‘š ๐‘ฆ(๐‘ก) ๐’…๐’• ๐’…๐’•๐Ÿ ๐’Ž โˆ’ ๐‘ซ ๐’Ž โˆ’ ๐‘ฒ ๐’Ž ๐‘ฆ ๐‘ฆ ๐‘ฆ๐น(๐‘ก) ๏ƒฅ
  • 6. Difference Equation 6 ๐‘ฆ ๐‘˜ + 2 = 1 ๐‘š ๐น ๐‘˜ โˆ’ ๐ท ๐‘š ๐‘ฆ ๐‘˜ + 1 โˆ’ ๐พ ๐‘š ๐‘ฆ(๐‘˜) ๐Ÿ ๐’› ๐Ÿ ๐’› ๐Ÿ ๐’Ž โˆ’ ๐‘ซ ๐’Ž โˆ’ ๐‘ฒ ๐’Ž ๐‘ฆ(๐‘˜ + 2) ๐‘ฆ(๐‘˜)๐น(๐‘˜) ๏ƒฅ ๐‘ฆ(๐‘˜ + 1)
  • 7. Difference Equations ๏ฑ Difference equations arise in problems where the time is assumed to have a discrete set of possible values. ๏ฑ Where coefficients ๐‘Ž ๐‘›โˆ’1, ๐‘Ž ๐‘›โˆ’2,โ€ฆ and ๐‘ ๐‘›, ๐‘ ๐‘›โˆ’1,โ€ฆ are constant. ๏ฑ ๐‘ข(๐‘˜) is forcing function 7 ๐‘ฆ ๐‘˜ + ๐‘› + ๐‘Ž ๐‘›โˆ’1 ๐‘ฆ ๐‘˜ + ๐‘› โˆ’ 1 + โ‹ฏ + ๐‘Ž1 ๐‘ฆ ๐‘˜ + 1 + ๐‘Ž0 ๐‘ฆ ๐‘˜ = ๐‘ ๐‘› ๐‘ข ๐‘˜ + ๐‘› + ๐‘ ๐‘›โˆ’1 ๐‘ข ๐‘˜ + ๐‘› โˆ’ 1 + โ‹ฏ + ๐‘1 ๐‘ข ๐‘˜ + 1 + ๐‘0 ๐‘ข ๐‘˜
  • 8. Difference Equations ๏ฑ Example 1: For the given difference equation, determine the (a) order of the equation. Is the equation (b) linear, (c) time invariant, or (d) homogeneous? ๐’š ๐’Œ + ๐Ÿ + ๐ŸŽ. ๐Ÿ–๐’š ๐’Œ + ๐Ÿ + ๐ŸŽ. ๐ŸŽ๐Ÿ•๐’š ๐’Œ = ๐’– ๐’Œ ๏ฑ Solution: a) The equation is second order. b) All terms enter the equation linearly c) All the terms if the equation have constant coefficients. Therefore the equation is therefore LTI. d) A forcing function appears in the equation, so it is nonhomogeneous. 8
  • 9. Z-Transform ๏ฑ Difference equations can be solved using z-transforms which provide a convenient approach for solving LTI equations. ๏ฑ The z-transform is an important tool in the analysis and design of discrete-time systems. ๏ฑ It simplifies the solution of discrete-time problems by converting LTI difference equations to algebraic equations and convolution to multiplication. ๏ฑ Thus, it plays a role similar to that served by Laplace transforms in continuous-time problems. 9
  • 10. Z-transform Definition ๏ฑ Given the causal sequence {x(ktT)}, its z-transform is defined as ๏ฑ The variable zโˆ’1 in the above equation can be regarded as a time delay operator. 10 X ๐‘ง = ๐‘ฅ 0 + ๐‘ฅ ๐‘‡ ๐‘งโˆ’1 + ๐‘ฅ 2๐‘‡ ๐‘งโˆ’2 + โ‹ฏ + ๐‘ฅ ๐‘˜๐‘‡ ๐‘งโˆ’๐‘˜ ๐‘‹ ๐‘ง = ๐‘˜=0 โˆž ๐‘ฅ ๐‘˜๐‘‡ ๐‘งโˆ’๐‘˜
  • 11. Example ๏ฑ Obtain the Z-transform of the sequence ๏ฑ Solution: 11 x ๐‘˜๐‘‡ = {1, 1, 3, 2, 0, 4, 0, 0, 0, โ€ฆ } X ๐‘ง = 1 + ๐‘งโˆ’1 +3 ๐‘งโˆ’2 + 2 ๐‘งโˆ’3 + 4๐‘งโˆ’5
  • 12. Laplace Transform and Z-Transform ๏ฑ Given the sampled impulse train of a signal ๐‘ฅโˆ— ๐‘ก = ๐‘ฅ 0 ๐›ฟ ๐‘ก + ๐‘ฅ ๐‘‡ ๐›ฟ ๐‘ก โˆ’ ๐‘‡ + โ‹ฏ + ๐‘ฅ ๐‘˜๐‘‡ ๐›ฟ(๐‘ก โˆ’ ๐‘˜๐‘‡) + โ‹ฏ ๐‘ฅโˆ— ๐‘ก = ๐‘˜=0 โˆž ๐‘ฅ ๐‘˜๐‘‡ ๐›ฟ ๐‘ก โˆ’ ๐‘˜๐‘‡ 12
  • 13. Laplace Transform and Z-Transform ๐‘‹โˆ— ๐‘† = ๐‘ฅ 0 + ๐‘ฅ ๐‘‡ ๐‘’โˆ’๐‘ ๐‘‡ + ๐‘ฅ 2๐‘‡ ๐‘’โˆ’๐‘ 2๐‘‡ + โ‹ฏ + ๐‘ฅ ๐‘˜๐‘‡ ๐‘’โˆ’๐‘ ๐‘˜๐‘‡ + โ‹ฏ ๐‘‹โˆ— ๐‘† = ๐‘˜=0 โˆž ๐‘ฅ ๐‘˜๐‘‡ ๐‘’โˆ’๐‘ ๐‘˜๐‘‡ = ๐‘˜=0 โˆž ๐‘ฅ ๐‘˜๐‘‡ (๐‘’ ๐‘ ๐‘‡)โˆ’๐‘˜ โ†’ (1) ๏ฑ The z-transform is ๐‘‹ ๐‘ง = ๐‘˜=0 โˆž ๐‘ฅ ๐‘˜๐‘‡ ๐‘งโˆ’๐‘˜ โ†’ (2) ๏ฑ Comparing (1) and (2) yields ๐‘ง = ๐‘’ ๐‘ ๐‘‡ where ๐‘‡ is the sample period 13
  • 14. A Note ๏ฑ In general, given a transfer function in s-domain you cannot just replace ๐‘  by s = ๐‘™๐‘›๐‘ง ๐‘‡ (from ๐‘ง = ๐‘’ ๐‘ ๐‘‡ ) to get its z-domain transfer function. ๏ฑ The reason is that ๐‘ง = ๐‘’ ๐‘ ๐‘‡ is true with the sampled signal. 14
  • 15. Identities Used Repeatedly ๐‘˜=0 โˆž ๐‘Ž ๐‘˜ = 1 1 โˆ’ ๐‘Ž , ๐‘Ž < 1 ๐‘˜=0 ๐‘› ๐‘Ž ๐‘˜ = 1 โˆ’ ๐‘Ž ๐‘›+1 1 โˆ’ ๐‘Ž , ๐‘Ž = 1 ๏ฑ Special Cases: ๐‘˜=0 โˆž ๐‘˜๐‘Ž ๐‘˜ = 1 (1 โˆ’ ๐‘Ž)2 , ๐‘Ž < 1 15
  • 16. z-transform of the Unit impulse ๏ฑ Let x(kT) = ฮด(kT) ๏ฑ Then 16 ๏ƒฎ ๏ƒญ ๏ƒฌ ๏€ฝ ๏€ฝ otherwise0 0kfor1 (kT)๏ค ๏€จ ๏€ฉ ๏› ๏ 1(kT) 00 ๏€ฝ๏€ฝ๏€ฝ ๏ƒฅ๏ƒฅ ๏‚ฅ ๏€ฝ ๏€ญ ๏‚ฅ ๏€ฝ ๏€ญ k k k k zzkTxzX ๏ค
  • 17. z-transform of the a Shifted Unit impulse ๏ฑ Let x(kT) = ฮด(kT-qT) ๏ฑ Then 17 ๏ƒฎ ๏ƒญ ๏ƒฌ ๏€ฝ ๏€ฝ otherwise0 qkfor1 qT)-(kT๏ค ๏€จ ๏€ฉ q k k k k zzzkTxzX ๏€ญ ๏‚ฅ ๏€ฝ ๏€ญ ๏‚ฅ ๏€ฝ ๏€ญ ๏€ฝ๏€ฝ๏€ฝ ๏ƒฅ๏ƒฅ 00 qT)-(kT)( ๏ค
  • 18. z-transform of a Unit-Step Function ๏ฑ Let x(kT) = u(kT) ๏ฑ Then 18 ๏ƒฎ ๏ƒญ ๏ƒฌ ๏‚ณ ๏€ฝ 0kfor0 0kfor1 (kT) ๏ฐ u ๏€จ ๏€ฉ 11 1 (kT))( 1 000 ๏€ญ ๏€ฝ ๏€ญ ๏€ฝ๏€ฝ๏€ฝ๏€ฝ ๏€ญ ๏‚ฅ ๏€ฝ ๏€ญ ๏‚ฅ ๏€ฝ ๏€ญ ๏‚ฅ ๏€ฝ ๏€ญ ๏ƒฅ๏ƒฅ๏ƒฅ z z z zzuzkTxzX k k k k k k
  • 19. z-transform of Sample Exponential ๏ฑ Let x(kT) = ak u(kT) ๏ฑ Then 19 ๏ƒฎ ๏ƒญ ๏ƒฌ ๏‚ณ ๏€ฝ 0kfor0 0kfor (kT) ๏ฐ k k a ua ๏€จ ๏€ฉ ๏ƒฅ๏ƒฅ๏ƒฅ ๏‚ฅ ๏€ฝ ๏€ญ ๏‚ฅ ๏€ฝ ๏€ญ ๏‚ฅ ๏€ฝ ๏€ญ ๏€ฝ๏€ฝ๏€ฝ 000 (kT))( k kk k kk k k zazuazkTxzX ๏€จ ๏€ฉ az z az azzX k k ๏€ญ ๏€ฝ ๏€ญ ๏€ฝ๏€ฝ ๏€ญ ๏‚ฅ ๏€ฝ ๏€ญ ๏ƒฅ 1 0 1 1 1 )(
  • 20. z-transform of kaku[k] ๏ฑ Let x(kT) = k ak u(kT) ๏ฑ Then 20 ๏ƒฎ ๏ƒญ ๏ƒฌ ๏‚ณ ๏€ฝ 0kfor0 0kfor (kT) ๏ฐ k k ka uka ๏€จ ๏€ฉ ๏ƒฅ๏ƒฅ๏ƒฅ ๏‚ฅ ๏€ฝ ๏€ญ ๏‚ฅ ๏€ฝ ๏€ญ ๏‚ฅ ๏€ฝ ๏€ญ ๏€ฝ๏€ฝ๏€ฝ 000 k(kT))( k kk k kk k k zazukazkTxzX ๏€จ ๏€ฉ 221 0 1 )()1( 1 )(k az z az azzX k k ๏€ญ ๏€ฝ ๏€ญ ๏€ฝ๏€ฝ ๏€ญ ๏‚ฅ ๏€ฝ ๏€ญ ๏ƒฅ
  • 21. z-transform of Sinusoids ๏ฑ Let x(kT) = (cos ฮฉkT) u(kT) ๏ฑ Then ๏ฑ Similarly it can be shown: 21 ๏ƒฎ ๏ƒญ ๏ƒฌ ๏‚ณ๏— ๏€ฝ๏— 0kfor0 0kfor)cos( (n))cos( ๏ฐ kT un 2 )k(cos kTjkTj ee T ๏—๏€ญ๏— ๏€ซ ๏€ฝ๏—๏‘ )}()({ 2 1 u(k)})k({cos kTuekTueZT kTjkTj ๏—๏€ญ๏— ๏€ซ๏€ฝ๏—๏š ๏ƒบ๏ƒป ๏ƒน ๏ƒช๏ƒซ ๏ƒฉ ๏€ญ ๏€ซ ๏€ญ ๏€ฝ๏—๏š ๏—๏€ญ๏— TjTj ez z ez z kTkT 2 1 )}u()({cos 1)(cos2 )(cos )(cos21 )(cos1 )}u()({cos 2 2 21 1 ๏€ซ๏—๏€ญ ๏—๏€ญ ๏€ฝ ๏€ซ๏—๏€ญ ๏—๏€ญ ๏€ฝ๏—๏š ๏€ญ๏€ญ ๏€ญ Tzz Tzz zTz Tz kTkT 1)(cos2 )(s )(cos21 )(s )}u()({sin 221 1 ๏€ซ๏—๏€ญ ๏— ๏€ฝ ๏€ซ๏—๏€ญ ๏— ๏€ฝ๏—๏š ๏€ญ๏€ญ ๏€ญ Tzz Tinz zTz Tinz kTkT
  • 22. 22 Signal, ๐ฑ(๐’Œ๐‘ป) Z-Transform, ๐—(๐ณ) Z-Transform, ๐—(๐ณ) ROC 1 ๐›…(๐’Œ๐‘ป) 1 1 all Z 2 ๐›…(๐’Œ๐‘ป โˆ’ ๐’’) ๐ณโˆ’๐’’ ๐ณโˆ’๐’’ ๐ณ โ‰  ๐ŸŽ 3 ๐ฎ(๐’Œ๐‘ป) ๐Ÿ ๐Ÿ โˆ’ ๐’›โˆ’๐Ÿ ๐ณ ๐ณ โˆ’ ๐Ÿ ๐ณ > ๐Ÿ 4 ๐š ๐’Œ ๐ฎ(๐ค๐“) ๐Ÿ ๐Ÿ โˆ’ ๐’‚๐’›โˆ’๐Ÿ ๐ณ ๐ณ โˆ’ ๐š ๐ณ > ๐š 5 ๐’Œ ๐ฎ(๐ค๐“) ๐Ÿ (๐Ÿ โˆ’ ๐’›โˆ’๐Ÿ) ๐Ÿ ๐ณ (๐ณ โˆ’ ๐Ÿ) ๐Ÿ ๐ณ > ๐Ÿ 6 ๐’Œ ๐š ๐’Œ ๐ฎ(๐ค๐“) ๐š๐’›โˆ’๐Ÿ (๐Ÿ โˆ’ ๐š๐’›โˆ’๐Ÿ) ๐Ÿ ๐š๐ณ (๐ณ โˆ’ ๐š) ๐Ÿ ๐ณ > ๐š 7 ๐œ๐จ๐ฌ(๐›š ๐ŸŽ ๐ค๐“) ๐Ÿ โˆ’ ๐’›โˆ’๐Ÿ ๐œ๐จ๐ฌ(๐›š ๐ŸŽ) ๐Ÿ โˆ’ ๐Ÿ๐’›โˆ’๐Ÿ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐’›โˆ’๐Ÿ ๐ณ ๐Ÿ โˆ’ ๐ณ๐œ๐จ๐ฌ(๐›š ๐ŸŽ) ๐ณ ๐Ÿ โˆ’ ๐Ÿ๐ณ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐Ÿ ๐ณ > ๐Ÿ 8 ๐ฌ๐ข๐ง(๐›š ๐ŸŽ ๐ค๐“) ๐’›โˆ’๐Ÿ ๐ฌ๐ข๐ง(๐›š ๐ŸŽ) ๐Ÿ โˆ’ ๐Ÿ๐’›โˆ’๐Ÿ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐’›โˆ’๐Ÿ ๐ณ ๐ฌ๐ข๐ง(๐›š ๐ŸŽ) ๐ณ ๐Ÿ โˆ’ ๐Ÿ๐ณ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐Ÿ ๐ณ > ๐Ÿ 9 ๐ซ ๐’Œ ๐œ๐จ๐ฌ(๐›š ๐ŸŽ ๐ค๐“) ๐Ÿ โˆ’ ๐ซ ๐’›โˆ’๐Ÿ ๐œ๐จ๐ฌ(๐›š ๐ŸŽ) ๐Ÿ โˆ’ ๐Ÿ๐ซ ๐’›โˆ’๐Ÿ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐ซ ๐Ÿ ๐’›โˆ’๐Ÿ ๐ณ ๐Ÿ โˆ’ ๐’“ ๐ณ ๐œ๐จ๐ฌ(๐›š ๐ŸŽ) ๐ณ ๐Ÿ โˆ’ ๐Ÿ๐’“ ๐ณ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐ซ ๐Ÿ ๐ณ > ๐ซ 10 ๐ซ ๐’Œ ๐ฌ๐ข๐ง(๐›š ๐ŸŽ ๐ค๐“) ๐’“ ๐’›โˆ’๐Ÿ ๐ฌ๐ข๐ง(๐›š ๐ŸŽ) ๐Ÿ โˆ’ ๐Ÿ๐ซ ๐’›โˆ’๐Ÿ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐ซ ๐Ÿ ๐’›โˆ’๐Ÿ ๐’“ ๐ณ ๐ฌ๐ข๐ง(๐›š ๐ŸŽ) ๐ณ ๐Ÿ โˆ’ ๐Ÿ๐’“ ๐ณ ๐œ๐จ๐ฌ ๐›š ๐ŸŽ + ๐ซ ๐Ÿ ๐ณ > ๐ซ
  • 24. 24 Z-Transform Properties: Linearity ๏ฑ Notation ๏ฑ Linearity ๏ฑ Example: ๏€จ ๏€ฉ ๏€จ ๏€ฉzXkTxzXkTx ZZ 2211 )(&)( ๏‚พ๏‚ฎ๏‚ฌ๏‚พ๏‚ฎ๏‚ฌ ๏€จ ๏€ฉ ๏€จ ๏€ฉzXbzXakTxbkTxa Z 2121 )()( ๏€ซ๏‚พ๏‚ฎ๏‚ฌ๏€ซ )(u3a-)(4)( k kTkTukTx ๏€ฝ ๏€จ ๏€ฉ )1)(1( )43(1 1 3 1 4 11 1 11 ๏€ญ๏€ญ ๏€ญ ๏€ญ๏€ญ ๏€ญ๏€ญ ๏€ญ๏€ญ ๏€ฝ ๏€ญ ๏€ญ ๏€ญ ๏€ฝ azz za azz zX
  • 25. Z-Transform Properties: Time Right Shifting (Time Delay) ๏ฑ Use the time delay property of the Laplace Transform ๏ฑ Then ๏ฑ Example: 25 ๏€จ ๏€ฉzXznTkTx nZ ๏€ญ ๏‚พ๏‚ฎ๏‚ฌ๏€ญ )( ๏€จ ๏€ฉSXeTtx TSZ d ๏€ญ ๏‚พ๏‚ฎ๏‚ฌ๏€ญ )( ))3(()2.0()( )3( TkukTx Tk ๏€ญ๏€ฝ ๏€ญ 1 3 2.01 1 )( ๏€ญ ๏€ญ ๏€ญ ๏€ฝ z zZX
  • 26. Z-Transform Properties: Time Left Shifting (Time Advance) ๏ฑ Example: 26 ๏€จ ๏€ฉ ])([)( 1 0 ๏ƒฅ ๏€ญ ๏€ฝ ๏€ญ ๏€ญ๏‚พ๏‚ฎ๏‚ฌ๏€ซ n k knZ zkTxzXznTkTx ))2(()2.0()( )2( TkukTx Tk ๏€ซ๏€ฝ ๏€ซ ])( 2.01 1 [)( 1 0 1 2 ๏ƒฅ๏€ฝ ๏€ญ ๏€ญ ๏€ญ ๏€ญ ๏€ฝ k k zkTx z zZX 1 1 1 2 2.01 04.0 )]2.01( 2.01 1 [)( ๏€ญ ๏€ญ ๏€ญ ๏€ญ ๏€ฝ๏€ซ๏€ญ ๏€ญ ๏€ฝ z z z zZX
  • 27. Z-Transform Properties: Multiplication by Exponential 27 ๏€จ ๏€ฉazXkTxa Zk /)( ๏‚พ๏‚ฎ๏‚ฌ ๏ฑ Example:
  • 28. Z-Transform Properties: Complex Differentiation 28 ๏€จ ๏€ฉ dz zdX zkTxk Z ๏€ญ๏‚พ๏‚ฎ๏‚ฌ)( ๏€จ ๏€ฉzX dz d zkTxk m Zm ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ๏‚พ๏‚ฎ๏‚ฌ)(
  • 29. Z-Transform Properties: Convolution ๏ฑ Convolution in time domain is multiplication in z-domain ๏ฑ Example: Letโ€™s calculate the convolution of ๏ฑ Multiplications of z-transforms is 29 ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉzXzXkTxkTx Z 2121 ๏‚พ๏‚ฎ๏‚ฌ๏€ช ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉkTukTkTuakTx kT ๏€ฝ๏€ฝ 21 xand ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏€จ ๏€ฉ1121 11 1 ๏€ญ๏€ญ ๏€ญ๏€ญ ๏€ฝ๏€ฝ zaz zXzXzY ๏€จ ๏€ฉ ๏€จ ๏€ฉzXkTxzXkTx ZZ 2211 )(&)( ๏‚พ๏‚ฎ๏‚ฌ๏‚พ๏‚ฎ๏‚ฌ
  • 30. Z-Transform Properties: Initial and Final Value Theorems ๏ฑ Initial Value Theorem: ๏‚ง The value of x(n) as k โ†’ 0 is given by: ๏ฑ Final Value Theorem: ๏‚ง The value of x(n) as k โ†’ ๏‚ฅ is given by: 30 ๏€จ ๏€ฉ )(limlim)0( 0 zXkTxx zk ๏‚ฅ๏‚ฎ๏‚ฎ ๏€ฝ๏€ฝ ๏€จ ๏€ฉ )]()1[(limlim)( 1 zXzkTxx zk ๏€ญ๏€ฝ๏€ฝ๏‚ฅ ๏‚ฎ๏‚ฅ๏‚ฎ
  • 32. 32 The Inverse Z-Transform ๏ฑ Formal inverse z-transform is based on a Cauchy integral ๏ฑ Less formal ways sufficient most of the time 1) Direct or Long Division Method 2) Partial fraction expansion and Look-up Table 3) Inversion Integral Method (Residue-theorem) ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏› ๏ ๏€จ ๏€ฉ dzzzX j zXZkTx k C 11 2 1 ๏€ญ๏€ญ ๏ƒฒ๏€ฝ๏€ฝ ๏ฐ
  • 33. 33 Inverse Z-Transform: Power Series Expansion ๏ฑ Using Long Division to expand X(z) as a series ๏ฑ Write the inverse transform as the sequence ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏ƒฅ ๏‚ฅ ๏€ฝ ๏€ญ๏€ญ๏€ญ ๏€ฝ๏€ซ๏€ซ๏€ซ๏€ฝ 0 21 ...20 k k zkTxzTxzTxxzX ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ...},2,,0{ TxTxxkTx ๏€ฝ
  • 34. 34 Inverse Z-Transform: Power Series Expansion ๏ฑ Example ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏€จ ๏€ฉ 321 111 2 1 2 1 1 11 2 1 1 ๏€ญ๏€ญ๏€ญ ๏€ญ๏€ญ๏€ญ ๏€ซ๏€ญ๏€ญ๏€ฝ ๏€ญ๏€ซ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ๏€ฝ zzz zzzzX ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉTkTTkTTkTkTkTx 3 2 1 2 2 1 ๏€ญ๏€ซ๏€ญ๏€ญ๏€ญ๏€ญ๏€ฝ ๏ค๏ค๏ค๏ค ๏€จ ๏€ฉ ๏ƒฏ ๏ƒฏ ๏ƒฏ ๏ƒฎ ๏ƒฏ ๏ƒฏ ๏ƒฏ ๏ƒญ ๏ƒฌ ๏€ฝ ๏€ฝ๏€ญ ๏€ฝ ๏€ญ ๏€ฝ ๏€ฝ Otherwise k k k k kTx 0 3 2 1 21 1 2 1 01
  • 35. Inverse Z-Transform: Power Series Expansion ๏ฑ Example: Find x(n) for n = 0, 1, 2, 3, 4, when X(z) is given by: ๏ฑ Solution: ๏‚ง First, rewrite X(z) as a ratio of polynomial in ๐‘งโˆ’1 , as follows: ๏‚ง Dividing the numerator by the denominator, we have: 35 ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏€จ ๏€ฉ2.01 510 ๏€ญ๏€ญ ๏€ซ ๏€ฝ zz z zX ๏€จ ๏€ฉ 21 21 2.02.11 510 ๏€ญ๏€ญ ๏€ญ๏€ญ ๏€ซ๏€ญ ๏€ซ ๏€ฝ zz zz zX 4321 68.184.181710 ๏€ญ๏€ญ๏€ญ๏€ญ ๏€ซ๏€ซ๏€ซ zzzz 21 2.02.11 ๏€ญ๏€ญ ๏€ซ๏€ญ zz 21 510 ๏€ญ๏€ญ ๏€ซ zz 32 217 ๏€ญ๏€ญ ๏€ญ zz 432 4.34.2017 ๏€ญ๏€ญ๏€ญ ๏€ซ๏€ญ zzz 43 4.34.18 ๏€ญ๏€ญ ๏€ญ zz 543 68.308.224.18 ๏€ญ๏€ญ๏€ญ ๏€ซ๏€ญ zzz 54 68.368.18 ๏€ญ๏€ญ ๏€ญ zz 654 736.3416.2268.18 ๏€ญ๏€ญ๏€ญ ๏€ซ๏€ญ zzz 321 21210 ๏€ญ๏€ญ๏€ญ ๏€ซ๏€ญ zzz Therefore, โ€ข x(0) = 0, โ€ข x(1) = 10, โ€ข x(2) = 17, โ€ข x(3) = 18.4 โ€ข x(4) = 18.68
  • 36. Inverse Z-Transform: Partial Fraction Expansion ๏ฑ Assume that a given z-transform can be expressed as ๏ฑ Apply partial fractional expansion ๏ฑ First term exist only if M>N ๏‚ง Br is obtained by long division ๏ฑ Second term represents all first order poles ๏ฑ Third term represents an order s pole ๏‚ง There will be a similar term for every high-order pole ๏ฑ Each term can be inverse transformed by inspection 36 ๏€จ ๏€ฉ ๏ƒฅ ๏ƒฅ ๏€ฝ ๏€ญ ๏€ฝ ๏€ญ ๏€ฝ N 0k k k M 0k k k za zb zX ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏ƒฅ๏ƒฅ๏ƒฅ ๏€ฝ ๏€ญ ๏‚น๏€ฝ ๏€ญ ๏€ญ ๏€ฝ ๏€ญ ๏€ญ ๏€ซ ๏€ญ ๏€ซ๏€ฝ s 1m m1 i m N ik,1k 1 k k NM 0r r r zd1 C zd1 A zBzX
  • 37. Inverse Z-Transform: Partial Fraction Expansion ๏ฑ Coefficients are given as ๏ฑ Easier to understand with examples 37 ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏ƒฅ๏ƒฅ๏ƒฅ ๏€ฝ ๏€ญ ๏‚น๏€ฝ ๏€ญ ๏€ญ ๏€ฝ ๏€ญ ๏€ญ ๏€ซ ๏€ญ ๏€ซ๏€ฝ s m m i m N ikk k k NM r r r zd C zd A zBzX 1 1 ,1 1 0 11 ๏€จ ๏€ฉ ๏€จ ๏€ฉ kdzkk zXzdA ๏€ฝ ๏€ญ ๏€ญ๏€ฝ 1 1 ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏› ๏ 1 1 1 ! 1 ๏€ญ ๏€ฝ ๏€ญ ๏€ญ ๏€ญ ๏€ญ ๏ƒพ ๏ƒฝ ๏ƒผ ๏ƒฎ ๏ƒญ ๏ƒฌ ๏€ญ ๏€ญ๏€ญ ๏€ฝ idw s ims ms ms i m wXwd dw d dms C
  • 38. Example: ๏ฑ Find x(kT) if X(z) is given by: ๏ฑ Solution: We first expand X(z)/z into partial fractions as follows : ๏ฑ Then we obtain ๏ฑ then 38 ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏€จ ๏€ฉ2.01 10 ๏€ญ๏€ญ ๏€ฝ zz z zX ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ2.0 5.12 1 5.12 2.01 10 ๏€ญ ๏€ญ ๏€ญ ๏€ฝ ๏€ญ๏€ญ ๏€ฝ zzzzz zX ๏€จ ๏€ฉ ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ ๏€ญ ๏€ญ ๏€ฝ 2.01 5.12 z z z z zX ๏€จ ๏€ฉ )()2.0(5.12)(5.12 kTukTukTx k ๏€ญ๏€ฝ ๏€จ ๏€ฉ )(11 kTZ ๏ค๏€ฝ๏€ญ ๏€จ ๏€ฉkTu z z Z ๏€ฝ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ ๏€ญ 1 1 ๏€จ ๏€ฉkTua az z Z n ๏€ฝ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ ๏€ญ1
  • 39. Another Solution ๏ฑ In this example, if X(z), rather than X(z)/z, is expanded into partial fractions, then we obtain: ๏ฑ However, by use of the shifting theorem we find : ๏ฑ Then 39 ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏€จ ๏€ฉ 2.0 5.2 1 5.12 2.01 10 ๏€ญ ๏€ญ ๏€ญ ๏€ฝ ๏€ญ๏€ญ ๏€ฝ zzzz z zX ๏€จ ๏€ฉ ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ ๏€ญ ๏€ญ ๏€ฝ ๏€ญ๏€ญ 2.0 5.2 1 5.12 11 z z z z z zzX ๏€จ ๏€ฉ )(2.015.12)()2.0( 2.0 5.2 )(5.12)( )()2.0(5.2)(5.12)( 1 TkTuTkTuTkTukTx TkTuTkTukTx kk k ๏€ญ๏€ญ๏€ฝ๏€ญ๏€ญ๏€ญ๏€ฝ ๏€ญ๏€ญ๏€ญ๏€ฝ ๏€ญ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ .. .. 48.124 4.123 122 101 00 ๏€ฝ ๏€ฝ ๏€ฝ ๏€ฝ ๏€ฝ x x x x x ๏€จ ๏€ฉ๏› ๏ ๏€จ ๏€ฉ๏› ๏TnkTxzXzZ o no ๏€ญ๏€ฝ๏€ญ๏€ญ1
  • 40. Example: ๏ฑ Find x(kT) if X(z) is given by: ๏ฑ Solution: Expand X(z)/z into partial fraction as follows: ๏ฑ Then: ๏ฑ By referring to tables we find that x(kT) is given by: ๏ฑ and therefore, ๏ฑ x(0) = 0 -1 +3 = 2 ๏ฑ x(1) = 18 โ€“ 2 + 3= 19 40 ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ12 2 2 3 ๏€ญ๏€ญ ๏€ซ ๏€ฝ zz zz zX ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ 1 3 2 1 2 9 12 12 22 2 ๏€ญ ๏€ซ ๏€ญ ๏€ญ ๏€ญ ๏€ฝ ๏€ญ๏€ญ ๏€ซ ๏€ฝ zzzzz z z zX ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ1 3 22 9 2 ๏€ญ ๏€ซ ๏€ญ ๏€ญ ๏€ญ ๏€ฝ z z z z z z zX ๏€จ ๏€ฉ )(3)()2()()2(5.4 kTukTukTrkTx kk ๏€ซ๏€ญ๏€ฝ ๏€จ ๏€ฉkTuk k kk kTr ๏€ฝ ๏ƒฎ ๏ƒญ ๏ƒฌ ๏‚ณ ๏€ฝ 00 0 )( ๏ฐ ๏€จ ๏€ฉ ๏€จ ๏€ฉkTr z z Z ๏€ฝ๏ƒบ ๏ƒป ๏ƒน ๏ƒช ๏ƒซ ๏ƒฉ ๏€ญ ๏€ญ 2 1 1 ๏€จ ๏€ฉ ๏€จ ๏€ฉkTra az az Z k ๏€ฝ๏ƒบ ๏ƒป ๏ƒน ๏ƒช ๏ƒซ ๏ƒฉ ๏€ญ ๏€ญ 2 1
  • 41. Solution of Difference Equations 41
  • 42. Transfer Function Representation ๏ฑ First โ€“ Order Case ๏‚ง Let ๐’š(๐’Œ๐‘ป) + ๐’‚๐’š(๐’Œ๐‘ป โˆ’ ๐‘ป) = ๐’ƒ๐’™(๐’Œ๐‘ป) ๏‚ง Then take the z-transform to get: โ€ข ๐’€(๐’›) + ๐’‚ ๐’› โˆ’ ๐Ÿ ๐’€(๐’›) = ๐’ƒ ๐‘ฟ(๐’›) ๏‚ง Simplifying: โ€ข ๐’€(๐’›) (๐Ÿ + ๐’‚๐’› โˆ’ ๐Ÿ) = ๐’ƒ ๐‘ฟ(๐’›) โ€ข ๐’€(๐’›) = (๐’ƒ ๐‘ฟ(๐’›))/ (๐Ÿ + ๐’‚๐’› โˆ’ ๐Ÿ) ๏‚ง And we have the transfer function H(z): โ€ข ๐’€(๐’›) = ๐‘ฏ(๐’›) ๐‘ฟ(๐’›) โ€ข so ๏ƒจ ๐‘ฏ(๐’›) = ๐’ƒ ๐’› ๐’› + ๐’‚ ๏‚ง By inverse z-transform: ๐’š ๐’Œ๐‘ป = ๐’ƒ โˆ’๐’‚ ๐’Œ ๐’–(๐’Œ๐‘ป) 42
  • 43. Mapping between s-plane to z-plane 43
  • 44. Mapping between s-plane to z-plane ๏ฑ Where ๐‘  = ๐œŽ + ๐‘—๐œ” for real number ๐œŽ and real number ๐œ”. ๏ฑ Then ๐‘ง in polar coordinates is given by 44 ๐‘ง = ๐‘’(๐œŽ+๐‘—๐œ”)๐‘‡ ๐‘ง = ๐‘’ ๐œŽ๐‘‡ ๐‘’ ๐‘—๐œ”๐‘‡ โˆ ๐‘ง = ๐œ”๐‘‡๐‘ง = ๐‘’ ๐œŽ๐‘‡ ๐‘ง = ๐‘’ ๐‘ ๐‘‡
  • 45. Mapping between s-plane to z-plane ๏ฑ We will discuss following cases to map given points on s-plane to z- plane. ๏‚ง Case-1: Real pole in s-plane (๐‘  = ๐œŽ) [on the left hand-side] ๏‚ง Case-2: Imaginary Pole in s-plane (๐‘  = ๐‘—๐œ”) ๏‚ง Case-3: Complex Poles (๐‘  = ๐œŽ + ๐‘—๐œ”) 45๐‘  โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’ ๐‘ง โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’
  • 46. Mapping between s-plane to z-plane ๏ฑ Case-1: Real pole in s-plane (๐‘  = ๐œŽ) ๏ฑ When ๐‘  = 0 ๏ฑ When ๐‘  = โˆ’โˆž 46 โˆ ๐‘ง = ๐œ”๐‘‡๐‘ง = ๐‘’ ๐œŽ ๐‘‡ ๐‘ง = ๐‘’0๐‘‡ = 1 โˆ ๐‘ง = 0๐‘‡ = 0 ๐‘  = 0 ๐‘  โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’ ๐‘ง โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’ 1 ๐‘ง = ๐‘’โˆ’โˆž๐‘‡ = 1 โˆ ๐‘ง = 0๐‘‡ = 0
  • 47. Mapping between s-plane to z-plane ๏ฑ Case-2: Imaginary pole in s-plane (๐‘  = ยฑ๐‘—๐œ”) ๏ฑ When ๐’” = ๐’‹๐Ž 47 โˆ ๐‘ง = ๐œ”๐‘‡๐‘ง = ๐‘’ ๐œŽ๐‘‡ ๐’› = ๐’† ๐ŸŽ๐‘ป = ๐Ÿ โˆ ๐’› = ๐Ž๐‘ป ๐‘  = ๐‘—๐œ” ๐‘  โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’ ๐‘ง โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’ 1 โˆ’1 โˆ’1 1 ๐œ”๐‘‡
  • 48. Mapping between s-plane to z-plane ๏ฑ Case-3: Complex pole in s-plane (๐‘  = ๐œŽ ยฑ ๐‘—๐œ”) ๏ฑ When ๐’” = ๐ˆ ยฑ ๐’‹๐Ž 48 โˆ ๐‘ง = ๐œ”๐‘‡๐‘ง = ๐‘’ ๐œŽ๐‘‡ ๐’› = ๐’† ๐ˆ๐‘ป โˆ ๐’› = ๐Ž๐‘ป ๐‘  = ๐œŽ + ๐‘—๐œ” ๐‘  โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’ ๐‘ง โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’ 1 โˆ’1 โˆ’1 1 ๐œ”๐‘‡ ๐‘  = ๐œŽ โˆ’ ๐‘—๐œ”
  • 49. Mapping Regions of the s-plane onto the z-plane 49
  • 50. 50