SlideShare a Scribd company logo
1 of 34
Department of Computer Eng.
Sharif University of Technology
Discrete-time signal processing
Chapter 3:
THE Z-TRANSFORM
Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer and Buck, ©1999-2000 Prentice Hall Inc.
3.1 The Z-Transform
• Counterpart of the Laplace transform for discrete-time signals
• Generalization of the Fourier Transform
Fourier Transform does not exist for all signals
• Definition:
• Compare to DTFT definition:
• z is a complex variable that can be represented as z=r ej
• Substituting z=ej will reduce the z-transform to DTFT
Chapter 3: The Z-Transform 1
   






n
n
z
n
x
z
X
    n
j
n
j
e
n
x
e
X 
 





 
   
 
 

j
n
n
z
n
n
re
z
z
n
x
z
X
z
X
n
x
z
X
z
n
x
n
x
















0
)
(
)
(
)
(
r
:
‫اندازه‬
:
‫فاز‬ 
‫تبدیل‬
z
‫طرفه‬‫یک‬
‫تبدیل‬
z
‫طرفه‬‫دو‬
3.1 The Z-Transform
The z-transform and the DTFT
• Convenient to describe on the complex z-plane
• If we plot z=ej for =0 to 2 we get the unit circle
Chapter 3: The Z-Transform 3
Re
Im
Unit Circle

r=1
0
2 0 2
 

j
e
X
Convergence of the z-Transform
• DTFT does not always converge
Example: x[n] = anu[n] for |a|>1 does not have a DTFT
• Complex variable z can be written as r ej so the z-
transform
convert to the DTFT of x[n] multiplied with exponential
sequence r –n
• For certain choices of r the sum
maybe made finite
Chapter 3: The Z-Transform 4
      
 














n
n
j
n
n
n
j
j
e
n
x
e
n
x
re
X 


r
r
    n
j
n
j
e
n
x
e
X 
 





  





n
n
x r n
-
Region of Convergence (ROC)
• ROC: The set of values of z for which the z-transform converges
• The region of convergence is made of circles
Chapter 3: The Z-Transform 5
Re
Im
• Example: z-transform converges for
values of 0.5<r<2
ROC is shown on the left
In this example the ROC includes the unit circle,
so DTFT exists
• Example:
Doesn't converge for any r.
DTFT exists.
It has finite energy.
DTFT converges in a mean square sense.
• Example:
Doesn't converge for any r.
It doesn’t have even finite energy.
But we define a useful DTFT with
impulse function.
   
n
n
x o

cos

 
sin c n
x n
n



Region of Convergence (ROC)
Example 1: Right-Sided Exponential Sequence
• For Convergence we require
• Hence the ROC is defined as
• Inside the ROC series converges to
Chapter 3: The Z-Transform 7
         













0
n
n
1
n
n
n
n
az
z
n
u
a
z
X
n
u
a
n
x






0
n
n
1
az
a
z
1
az
n
1




    a
z
z
az
1
1
az
z
X
0
n
1
n
1




 




Re
Im
a 1
o x
• Region outside the circle of
radius a is the ROC
• Right-sided sequence ROCs
extend outside a circle
(
‫ا‬‫ر‬‫چپگ‬‫دنباله‬
)
   
   
 
a
z
z
az
z
a
z
X
a
z
z
a
z
a
ROC
z
a
z
a
z
a
z
n
u
a
z
X
n
n
n n
n
n
n
n
n
n
n
n












































 


1
1
1
0
1
1 0
1
1
1
1
1
1
1
1
1
:
1
1
   
1



 n
u
a
n
x n
Example 2: Left-Sided Exponential Sequence
Example 3: Two-Sided Exponential Sequence
Chapter 3: The Z-Transform 9
     
1
-
n
-
u
2
1
-
n
u
3
1
n
x
n
n














1
1
1
0
1
0
1
3
1
1
1
3
1
1
3
1
3
1
3
1



































z
z
z
z
z
n
n
1
1
0
1
1
1
n
n
1
z
2
1
1
1
z
2
1
1
z
2
1
z
2
1
z
2
1


































z
3
1
1
z
3
1
:
ROC 1


 
z
2
1
1
z
2
1
:
ROC 1



 




























2
1
z
3
1
z
12
1
z
z
2
z
2
1
1
1
z
3
1
1
1
z
X
1
1
Im
2
1
oo
12
1
x
x
3
1

Example 4: Finite Length Sequence
Chapter 3: The Z-Transform 10
 


 



otherwise
0
1
0 N
n
a
n
x
n
N=16
Pole-zero plot
     
 
N
n
u
n
u
a
n
x n



   
0
:
1
1
1
)
(
1
0
1
1
1
1
1
1
0
1
1
0
































z
az
az
ROC
a
z
a
z
z
az
az
az
z
a
z
X
N
n
n
N
N
N
N
N
n
n
N
n
n
n
Some common Z-transform pairs
Chapter 3: The Z-Transform 11
SEQUENCE TRANSFORM ROC
1

z
 
 
0
m
if
or
0
m
if
0
except
z
All



1

z
1
1
1

 z
1
1
1

 z
m
z
 
 
 
 
m
n
n
u
n
u
n






1
1 z
ALL
Some common Z-transform pairs
 
 
 
 
 
 
     
 
1
:
cos
2
1
cos
1
cos
:
1
1
:
1
:
1
1
1
:
1
1
2
1
0
1
0
0
2
1
1
2
1
1
1
1




































z
ROC
z
z
z
n
u
n
a
z
ROC
az
az
n
u
na
a
z
ROC
az
az
n
u
na
a
z
ROC
az
n
u
a
a
z
ROC
az
n
u
a
Z
Z
n
Z
n
Z
n
Z
n



Some common Z-transform pairs
     
 
0
:
1
1
0
1
0
:
cos
2
1
sin
sin
1
2
2
1
0
1
0
0







 












z
ROC
az
z
a
otherwise
N
n
a
r
z
ROC
z
r
z
r
z
r
n
u
n
r
N
N
Z
n
Z
n



     
 
     
 
r
z
ROC
z
r
z
r
z
r
n
u
n
r
z
ROC
z
z
z
n
u
n
Z
n
Z

















:
cos
2
1
cos
1
cos
1
:
cos
2
1
sin
sin
2
2
1
0
1
0
0
2
1
0
1
0
0






Some common Z-transform pairs
3.2 Properties of The ROC of Z-Transform
• The ROC is a ring or disk centered at the origin
• DTFT exists if and only if the ROC includes the unit circle
• The ROC cannot contain any poles
• The ROC for finite-length sequence is the entire z-plane
except possibly z=0 and z=
• The ROC for a right-handed sequence extends outward from the
outermost pole possibly including z= 
• The ROC for a left-handed sequence extends inward from the
innermost pole possibly including z=0
• The ROC of a two-sided sequence is a ring bounded by poles
• The ROC must be a connected region
• A z-transform does not uniquely determine a sequence without
specifying the ROC
Chapter 3: The Z-Transform 15
Stability, Causality, and the ROC
• Consider a system with impulse response h[n]
• The z-transform H(z) and the pole-zero plot shown below
• Without any other information h[n] is not uniquely determined
|z|>2 or |z|<½ or ½<|z|<2
• If system stable ROC must include unit-circle: ½<|z|<2
• If system is causal must be right sided: |z|>2
Chapter 3: The Z-Transform 16
3.4 Z-Transform Properties: Linearity
• Notation
• Linearity
– Note that the ROC of combined sequence may be larger than either ROC
– This would happen if some pole/zero cancellation occurs
– Example:
•Both sequences are right-sided
•Both sequences have a pole z=a
•Both have a ROC defined as |z|>|a|
•In the combined sequence the pole at z=a cancels with a zero at z=a
•The combined ROC is the entire z plane except z=0
Chapter 3: The Z-Transform 17
    x
Z
R
ROC
z
X
n
x 

 

        2
1 x
x
2
1
Z
2
1 R
R
ROC
z
bX
z
aX
n
bx
n
ax 



 


     
N
-
n
u
a
-
n
u
a
n
x n
n

Z-Transform Properties: Time Shifting
• Here no is an integer
– If positive the sequence is shifted right
– If negative the sequence is shifted left
• The ROC can change
– The new term may add or remove poles at z=0 or z=
• Example
Chapter 3: The Z-Transform 18
    x
n
Z
o R
ROC
z
X
z
n
n
x o


 

 
 
4
1
z
z
4
1
1
1
z
z
X
1
1

















   
1
-
n
u
4
1
n
x
1
-
n







Z-Transform Properties: Multiplication by
Exponential
• ROC is scaled by |zo|
• All pole/zero locations are scaled
• If zo is a positive real number: z-plane shrinks or expands
• If zo is a complex number with unit magnitude it rotates
• Example: We know the z-transform pair
• Let’s find the z-transform of
Chapter 3: The Z-Transform 19
    x
o
o
Z
n
o R
z
ROC
z
/
z
X
n
x
z 

 

  1
z
:
ROC
z
-
1
1
n
u 1
-
Z


 

             
n
u
re
2
1
n
u
re
2
1
n
u
n
cos
r
n
x
n
j
n
j
o
n o
o 






  r
z
z
re
1
2
/
1
z
re
1
2
/
1
z
X 1
j
1
j o
o




 




Z-Transform Properties: Differentiation
• Example: We want the inverse z-transform of
• Let’s differentiate to obtain rational expression
• Making use of z-transform properties and ROC
Chapter 3: The Z-Transform 20
   
x
Z
R
ROC
dz
z
dX
z
n
nx 


 

    a
z
az
1
log
z
X 1


 
   
1
1
1
2
az
1
1
az
dz
z
dX
z
az
1
az
dz
z
dX











     
1
n
u
a
a
n
nx
1
n




     
1
n
u
n
a
1
n
x
n
1
n




Z-Transform Properties: Conjugation
Chapter 3: The Z-Transform 21
    x
*
*
Z
*
R
ROC
z
X
n
x 

 

   
     
         
 
n
n
n n
n n
n n
n n
X z x n z
X z x n z x n z
X z x n z x n z Z x n




 
  
 
 

     
 

 
 
 
 
  

 
 
Z-Transform Properties: Time Reversal
• ROC is inverted
• Example:
• Time reversed version of
Chapter 3: The Z-Transform 22
   
x
Z
R
1
ROC
z
/
1
X
n
x 

 


   
n
u
a
n
x n

 
 
n
u
an
  1
1
1
-
1
-1
a
z
z
a
-
1
z
a
-
az
1
1
z
X 






Z-Transform Properties: Convolution
• Convolution in time domain is multiplication in z-domain
• Example: Let’s calculate the convolution of
• Multiplications of z-transforms is
• ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a|
• Partial fractional expansion of Y(z)
Chapter 3: The Z-Transform 23
        2
x
1
x
2
1
Z
2
1 R
R
:
ROC
z
X
z
X
n
x
n
x 

 


       
n
u
n
x
and
n
u
a
n
x 2
n
1 

  a
z
:
ROC
az
1
1
z
X 1
1 

 
  1
z
:
ROC
z
1
1
z
X 1
2 

 
     
  
1
1
2
1
z
1
az
1
1
z
X
z
X
z
Y 





  1
z
:
ROC
assume
1
1
1
1
1
1
1











 

az
a
z
a
z
Y      
 
n
u
a
n
u
a
1
1
n
y 1
n



Some Z-transform properties
Chapter 3: The Z-Transform 24
3.3 The Inverse Z-Transform
• Formal inverse z-transform is based on a Cauchy integral
• Less formal ways sufficient most of the time
– Inspection method
– Partial fraction expansion
– Power series expansion
• Inspection Method
Make use of known z-transform pairs such as
Example: The inverse z-transform of
Chapter 3: The Z-Transform 25
  a
z
az
1
1
n
u
a 1
Z
n



 
 
     
n
u
2
1
n
x
2
1
z
z
2
1
1
1
z
X
n
1












Inverse Z-Transform by Partial Fraction
Expansion
• Assume that a given z-transform can be expressed as
• Apply partial fractional expansion
• First term exist only if M>N
– Br is obtained by long division
• Second term represents all first order poles
• Third term represents an order s pole
– There will be a similar term for every high-order pole
• Each term can be inverse transformed by inspection
Chapter 3: The Z-Transform 26
 






 N
0
k
k
k
M
0
k
k
k
z
a
z
b
z
X
 
 


 












s
1
m
m
1
i
m
N
i
k
,
1
k
1
k
k
N
M
0
r
r
r
z
d
1
C
z
d
1
A
z
B
z
X
Inverse Z-Transform by Partial Fraction
Expansion
• Coefficients are given as
• Easier to understand with examples
Chapter 3: The Z-Transform 27
 
 


 












s
1
m
m
1
i
m
N
i
k
,
1
k
1
k
k
N
M
0
r
r
r
z
d
1
C
z
d
1
A
z
B
z
X
    k
d
z
1
k
k z
X
z
d
1
A 



   
   
  1
i
d
w
1
s
i
m
s
m
s
m
s
i
m w
X
w
d
1
dw
d
d
!
m
s
1
C
















Example 5: 2nd Order Z-Transform
Chapter 3: The Z-Transform 28
 
2
1
z
:
ROC
z
2
1
1
z
4
1
1
1
z
X
1
1


















 

















 1
2
1
1
z
2
1
1
A
z
4
1
1
A
z
X
  1
4
1
2
1
1
1
z
X
z
4
1
1
A 1
4
1
z
1
1 
























 


  2
2
1
4
1
1
1
z
X
z
2
1
1
A 1
2
1
z
1
2 























 


Example 5 Continued
• ROC extends to infinity
– Indicates right sided sequence
Chapter 3: The Z-Transform 29
 
2
1
z
z
2
1
1
2
z
4
1
1
1
z
X
1
1




















     
n
u
4
1
-
n
u
2
1
2
n
x
n
n













Example 6
• Long division to obtain Bo
Chapter 3: The Z-Transform 30
   
 
1
z
z
1
z
2
1
1
z
1
z
2
1
z
2
3
1
z
z
2
1
z
X
1
1
2
1
2
1
2
1























1
z
5
2
z
3
z
2
1
z
2
z
1
z
2
3
z
2
1
1
1
2
1
2
1
2














 
 
1
1
1
z
1
z
2
1
1
z
5
1
2
z
X















  1
2
1
1
z
1
A
z
2
1
1
A
2
z
X 
 




  9
z
X
z
2
1
1
A
2
1
z
1
1 











    8
z
X
z
1
A
1
z
1
2 




Example 5 Continued
• ROC extends to infinity
– Indicates right-sided sequence
Chapter 3: The Z-Transform 31
  1
z
z
1
8
z
2
1
1
9
2
z
X 1
1





 

       
n
8u
-
n
u
2
1
9
n
2
n
x
n









Inverse Z-Transform by Power Series
Expansion
• The z-transform is power series
• In expanded form
• Z-transforms of this form can generally be inversed easily
• Especially useful for finite-length series
Chapter 3: The Z-Transform 32
   






n
n
z
n
x
z
X
            
 







 
 2
1
1
2
2
1
0
1
2 z
x
z
x
x
z
x
z
x
z
X
    
1
2
1
1
1
2
z
2
1
1
z
2
1
z
z
1
z
1
z
2
1
1
z
z
X


















         
1
n
2
1
n
1
n
2
1
2
n
n
x 










 



















2
n
0
1
n
2
1
0
n
1
1
n
2
1
2
n
1
n
x
Example 6

More Related Content

Similar to Signals and systems3 ppt

DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformAmr E. Mohamed
 
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Waqas Afzal
 
Region of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-planeRegion of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-planevenkatasuman1983
 
dsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointdsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointAnujKumar734472
 
Digital Signal Processing and the z-transform
Digital Signal Processing and the  z-transformDigital Signal Processing and the  z-transform
Digital Signal Processing and the z-transformRowenaDulay1
 
Z trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlabZ trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlabHasnain Yaseen
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transformtaha25
 

Similar to Signals and systems3 ppt (20)

ADSP (17 Nov).ppt
ADSP (17 Nov).pptADSP (17 Nov).ppt
ADSP (17 Nov).ppt
 
Z transform
Z transformZ transform
Z transform
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
 
lecture8.ppt
lecture8.pptlecture8.ppt
lecture8.ppt
 
ch3-4
ch3-4ch3-4
ch3-4
 
Z TRRANSFORM
Z  TRRANSFORMZ  TRRANSFORM
Z TRRANSFORM
 
Z transform
Z transformZ transform
Z transform
 
Z transform
Z transformZ transform
Z transform
 
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
 
Z transform
Z transformZ transform
Z transform
 
Region of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-planeRegion of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-plane
 
dsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointdsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power point
 
Digital Signal Processing and the z-transform
Digital Signal Processing and the  z-transformDigital Signal Processing and the  z-transform
Digital Signal Processing and the z-transform
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
 
Z trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlabZ trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlab
 
z transform.pptx
z transform.pptxz transform.pptx
z transform.pptx
 
Z Transform
Z TransformZ Transform
Z Transform
 
Unit 7 &amp; 8 z-transform
Unit 7 &amp; 8  z-transformUnit 7 &amp; 8  z-transform
Unit 7 &amp; 8 z-transform
 
Z Transform
Z TransformZ Transform
Z Transform
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
 

More from Engr umar

RES Lecture 18 Hydro.pptx
RES Lecture 18 Hydro.pptxRES Lecture 18 Hydro.pptx
RES Lecture 18 Hydro.pptxEngr umar
 
renewable-energy-resources-by-john-twidell-tony-weir.pdf
renewable-energy-resources-by-john-twidell-tony-weir.pdfrenewable-energy-resources-by-john-twidell-tony-weir.pdf
renewable-energy-resources-by-john-twidell-tony-weir.pdfEngr umar
 
Chapter 06_Pdu.pptx
Chapter 06_Pdu.pptxChapter 06_Pdu.pptx
Chapter 06_Pdu.pptxEngr umar
 
Electric Welding 7.ppt
Electric Welding  7.pptElectric Welding  7.ppt
Electric Welding 7.pptEngr umar
 
Ps all examples
Ps all examplesPs all examples
Ps all examplesEngr umar
 
Probability chap 1 note.
Probability chap 1 note.Probability chap 1 note.
Probability chap 1 note.Engr umar
 
Linear algebra (summer) lec 12 (1)
Linear algebra (summer) lec 12 (1)Linear algebra (summer) lec 12 (1)
Linear algebra (summer) lec 12 (1)Engr umar
 
Linear algebra (summer) lec 11
Linear algebra (summer) lec 11Linear algebra (summer) lec 11
Linear algebra (summer) lec 11Engr umar
 
Linear algebra (summer) lec 9
Linear algebra (summer) lec 9Linear algebra (summer) lec 9
Linear algebra (summer) lec 9Engr umar
 
Linear algebra (summer) lec 7
Linear algebra (summer) lec 7Linear algebra (summer) lec 7
Linear algebra (summer) lec 7Engr umar
 
Linear algebra (summer) lec 6
Linear algebra (summer) lec 6Linear algebra (summer) lec 6
Linear algebra (summer) lec 6Engr umar
 
Linear algebra (summer) lec 5
Linear algebra (summer) lec 5Linear algebra (summer) lec 5
Linear algebra (summer) lec 5Engr umar
 
Linear algebra (summer) lec 4
Linear algebra (summer) lec 4Linear algebra (summer) lec 4
Linear algebra (summer) lec 4Engr umar
 
Linear algebra (summer) lec 3
Linear algebra (summer) lec 3Linear algebra (summer) lec 3
Linear algebra (summer) lec 3Engr umar
 
Linear algebra (summer) lec 1
Linear algebra (summer) lec 1Linear algebra (summer) lec 1
Linear algebra (summer) lec 1Engr umar
 
Ems project
Ems project Ems project
Ems project Engr umar
 
Cs project ppt
Cs project pptCs project ppt
Cs project pptEngr umar
 
Project presentation of engineering subject
Project presentation   of engineering  subjectProject presentation   of engineering  subject
Project presentation of engineering subjectEngr umar
 
Amperes law and_it_application
Amperes law and_it_applicationAmperes law and_it_application
Amperes law and_it_applicationEngr umar
 
Lecture week 5
Lecture week 5Lecture week 5
Lecture week 5Engr umar
 

More from Engr umar (20)

RES Lecture 18 Hydro.pptx
RES Lecture 18 Hydro.pptxRES Lecture 18 Hydro.pptx
RES Lecture 18 Hydro.pptx
 
renewable-energy-resources-by-john-twidell-tony-weir.pdf
renewable-energy-resources-by-john-twidell-tony-weir.pdfrenewable-energy-resources-by-john-twidell-tony-weir.pdf
renewable-energy-resources-by-john-twidell-tony-weir.pdf
 
Chapter 06_Pdu.pptx
Chapter 06_Pdu.pptxChapter 06_Pdu.pptx
Chapter 06_Pdu.pptx
 
Electric Welding 7.ppt
Electric Welding  7.pptElectric Welding  7.ppt
Electric Welding 7.ppt
 
Ps all examples
Ps all examplesPs all examples
Ps all examples
 
Probability chap 1 note.
Probability chap 1 note.Probability chap 1 note.
Probability chap 1 note.
 
Linear algebra (summer) lec 12 (1)
Linear algebra (summer) lec 12 (1)Linear algebra (summer) lec 12 (1)
Linear algebra (summer) lec 12 (1)
 
Linear algebra (summer) lec 11
Linear algebra (summer) lec 11Linear algebra (summer) lec 11
Linear algebra (summer) lec 11
 
Linear algebra (summer) lec 9
Linear algebra (summer) lec 9Linear algebra (summer) lec 9
Linear algebra (summer) lec 9
 
Linear algebra (summer) lec 7
Linear algebra (summer) lec 7Linear algebra (summer) lec 7
Linear algebra (summer) lec 7
 
Linear algebra (summer) lec 6
Linear algebra (summer) lec 6Linear algebra (summer) lec 6
Linear algebra (summer) lec 6
 
Linear algebra (summer) lec 5
Linear algebra (summer) lec 5Linear algebra (summer) lec 5
Linear algebra (summer) lec 5
 
Linear algebra (summer) lec 4
Linear algebra (summer) lec 4Linear algebra (summer) lec 4
Linear algebra (summer) lec 4
 
Linear algebra (summer) lec 3
Linear algebra (summer) lec 3Linear algebra (summer) lec 3
Linear algebra (summer) lec 3
 
Linear algebra (summer) lec 1
Linear algebra (summer) lec 1Linear algebra (summer) lec 1
Linear algebra (summer) lec 1
 
Ems project
Ems project Ems project
Ems project
 
Cs project ppt
Cs project pptCs project ppt
Cs project ppt
 
Project presentation of engineering subject
Project presentation   of engineering  subjectProject presentation   of engineering  subject
Project presentation of engineering subject
 
Amperes law and_it_application
Amperes law and_it_applicationAmperes law and_it_application
Amperes law and_it_application
 
Lecture week 5
Lecture week 5Lecture week 5
Lecture week 5
 

Recently uploaded

Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 

Recently uploaded (20)

Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 

Signals and systems3 ppt

  • 1. Department of Computer Eng. Sharif University of Technology Discrete-time signal processing Chapter 3: THE Z-TRANSFORM Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer and Buck, ©1999-2000 Prentice Hall Inc.
  • 2. 3.1 The Z-Transform • Counterpart of the Laplace transform for discrete-time signals • Generalization of the Fourier Transform Fourier Transform does not exist for all signals • Definition: • Compare to DTFT definition: • z is a complex variable that can be represented as z=r ej • Substituting z=ej will reduce the z-transform to DTFT Chapter 3: The Z-Transform 1           n n z n x z X     n j n j e n x e X        
  • 3.            j n n z n n re z z n x z X z X n x z X z n x n x                 0 ) ( ) ( ) ( r : ‫اندازه‬ : ‫فاز‬  ‫تبدیل‬ z ‫طرفه‬‫یک‬ ‫تبدیل‬ z ‫طرفه‬‫دو‬ 3.1 The Z-Transform
  • 4. The z-transform and the DTFT • Convenient to describe on the complex z-plane • If we plot z=ej for =0 to 2 we get the unit circle Chapter 3: The Z-Transform 3 Re Im Unit Circle  r=1 0 2 0 2    j e X
  • 5. Convergence of the z-Transform • DTFT does not always converge Example: x[n] = anu[n] for |a|>1 does not have a DTFT • Complex variable z can be written as r ej so the z- transform convert to the DTFT of x[n] multiplied with exponential sequence r –n • For certain choices of r the sum maybe made finite Chapter 3: The Z-Transform 4                        n n j n n n j j e n x e n x re X    r r     n j n j e n x e X                 n n x r n -
  • 6. Region of Convergence (ROC) • ROC: The set of values of z for which the z-transform converges • The region of convergence is made of circles Chapter 3: The Z-Transform 5 Re Im • Example: z-transform converges for values of 0.5<r<2 ROC is shown on the left In this example the ROC includes the unit circle, so DTFT exists
  • 7. • Example: Doesn't converge for any r. DTFT exists. It has finite energy. DTFT converges in a mean square sense. • Example: Doesn't converge for any r. It doesn’t have even finite energy. But we define a useful DTFT with impulse function.     n n x o  cos    sin c n x n n    Region of Convergence (ROC)
  • 8. Example 1: Right-Sided Exponential Sequence • For Convergence we require • Hence the ROC is defined as • Inside the ROC series converges to Chapter 3: The Z-Transform 7                        0 n n 1 n n n n az z n u a z X n u a n x       0 n n 1 az a z 1 az n 1         a z z az 1 1 az z X 0 n 1 n 1           Re Im a 1 o x • Region outside the circle of radius a is the ROC • Right-sided sequence ROCs extend outside a circle
  • 9. ( ‫ا‬‫ر‬‫چپگ‬‫دنباله‬ )           a z z az z a z X a z z a z a ROC z a z a z a z n u a z X n n n n n n n n n n n n                                                 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 : 1 1     1     n u a n x n Example 2: Left-Sided Exponential Sequence
  • 10. Example 3: Two-Sided Exponential Sequence Chapter 3: The Z-Transform 9       1 - n - u 2 1 - n u 3 1 n x n n               1 1 1 0 1 0 1 3 1 1 1 3 1 1 3 1 3 1 3 1                                    z z z z z n n 1 1 0 1 1 1 n n 1 z 2 1 1 1 z 2 1 1 z 2 1 z 2 1 z 2 1                                   z 3 1 1 z 3 1 : ROC 1     z 2 1 1 z 2 1 : ROC 1                                  2 1 z 3 1 z 12 1 z z 2 z 2 1 1 1 z 3 1 1 1 z X 1 1 Im 2 1 oo 12 1 x x 3 1 
  • 11. Example 4: Finite Length Sequence Chapter 3: The Z-Transform 10          otherwise 0 1 0 N n a n x n N=16 Pole-zero plot         N n u n u a n x n        0 : 1 1 1 ) ( 1 0 1 1 1 1 1 1 0 1 1 0                                 z az az ROC a z a z z az az az z a z X N n n N N N N N n n N n n n
  • 12. Some common Z-transform pairs Chapter 3: The Z-Transform 11
  • 13. SEQUENCE TRANSFORM ROC 1  z     0 m if or 0 m if 0 except z All    1  z 1 1 1   z 1 1 1   z m z         m n n u n u n       1 1 z ALL Some common Z-transform pairs
  • 14.                     1 : cos 2 1 cos 1 cos : 1 1 : 1 : 1 1 1 : 1 1 2 1 0 1 0 0 2 1 1 2 1 1 1 1                                     z ROC z z z n u n a z ROC az az n u na a z ROC az az n u na a z ROC az n u a a z ROC az n u a Z Z n Z n Z n Z n    Some common Z-transform pairs
  • 15.         0 : 1 1 0 1 0 : cos 2 1 sin sin 1 2 2 1 0 1 0 0                      z ROC az z a otherwise N n a r z ROC z r z r z r n u n r N N Z n Z n                    r z ROC z r z r z r n u n r z ROC z z z n u n Z n Z                  : cos 2 1 cos 1 cos 1 : cos 2 1 sin sin 2 2 1 0 1 0 0 2 1 0 1 0 0       Some common Z-transform pairs
  • 16. 3.2 Properties of The ROC of Z-Transform • The ROC is a ring or disk centered at the origin • DTFT exists if and only if the ROC includes the unit circle • The ROC cannot contain any poles • The ROC for finite-length sequence is the entire z-plane except possibly z=0 and z= • The ROC for a right-handed sequence extends outward from the outermost pole possibly including z=  • The ROC for a left-handed sequence extends inward from the innermost pole possibly including z=0 • The ROC of a two-sided sequence is a ring bounded by poles • The ROC must be a connected region • A z-transform does not uniquely determine a sequence without specifying the ROC Chapter 3: The Z-Transform 15
  • 17. Stability, Causality, and the ROC • Consider a system with impulse response h[n] • The z-transform H(z) and the pole-zero plot shown below • Without any other information h[n] is not uniquely determined |z|>2 or |z|<½ or ½<|z|<2 • If system stable ROC must include unit-circle: ½<|z|<2 • If system is causal must be right sided: |z|>2 Chapter 3: The Z-Transform 16
  • 18. 3.4 Z-Transform Properties: Linearity • Notation • Linearity – Note that the ROC of combined sequence may be larger than either ROC – This would happen if some pole/zero cancellation occurs – Example: •Both sequences are right-sided •Both sequences have a pole z=a •Both have a ROC defined as |z|>|a| •In the combined sequence the pole at z=a cancels with a zero at z=a •The combined ROC is the entire z plane except z=0 Chapter 3: The Z-Transform 17     x Z R ROC z X n x              2 1 x x 2 1 Z 2 1 R R ROC z bX z aX n bx n ax               N - n u a - n u a n x n n 
  • 19. Z-Transform Properties: Time Shifting • Here no is an integer – If positive the sequence is shifted right – If negative the sequence is shifted left • The ROC can change – The new term may add or remove poles at z=0 or z= • Example Chapter 3: The Z-Transform 18     x n Z o R ROC z X z n n x o          4 1 z z 4 1 1 1 z z X 1 1                      1 - n u 4 1 n x 1 - n       
  • 20. Z-Transform Properties: Multiplication by Exponential • ROC is scaled by |zo| • All pole/zero locations are scaled • If zo is a positive real number: z-plane shrinks or expands • If zo is a complex number with unit magnitude it rotates • Example: We know the z-transform pair • Let’s find the z-transform of Chapter 3: The Z-Transform 19     x o o Z n o R z ROC z / z X n x z        1 z : ROC z - 1 1 n u 1 - Z                    n u re 2 1 n u re 2 1 n u n cos r n x n j n j o n o o          r z z re 1 2 / 1 z re 1 2 / 1 z X 1 j 1 j o o          
  • 21. Z-Transform Properties: Differentiation • Example: We want the inverse z-transform of • Let’s differentiate to obtain rational expression • Making use of z-transform properties and ROC Chapter 3: The Z-Transform 20     x Z R ROC dz z dX z n nx           a z az 1 log z X 1         1 1 1 2 az 1 1 az dz z dX z az 1 az dz z dX                  1 n u a a n nx 1 n           1 n u n a 1 n x n 1 n    
  • 22. Z-Transform Properties: Conjugation Chapter 3: The Z-Transform 21     x * * Z * R ROC z X n x                            n n n n n n n n n n X z x n z X z x n z x n z X z x n z x n z Z x n                                       
  • 23. Z-Transform Properties: Time Reversal • ROC is inverted • Example: • Time reversed version of Chapter 3: The Z-Transform 22     x Z R 1 ROC z / 1 X n x           n u a n x n      n u an   1 1 1 - 1 -1 a z z a - 1 z a - az 1 1 z X       
  • 24. Z-Transform Properties: Convolution • Convolution in time domain is multiplication in z-domain • Example: Let’s calculate the convolution of • Multiplications of z-transforms is • ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a| • Partial fractional expansion of Y(z) Chapter 3: The Z-Transform 23         2 x 1 x 2 1 Z 2 1 R R : ROC z X z X n x n x               n u n x and n u a n x 2 n 1     a z : ROC az 1 1 z X 1 1       1 z : ROC z 1 1 z X 1 2              1 1 2 1 z 1 az 1 1 z X z X z Y         1 z : ROC assume 1 1 1 1 1 1 1               az a z a z Y         n u a n u a 1 1 n y 1 n   
  • 25. Some Z-transform properties Chapter 3: The Z-Transform 24
  • 26. 3.3 The Inverse Z-Transform • Formal inverse z-transform is based on a Cauchy integral • Less formal ways sufficient most of the time – Inspection method – Partial fraction expansion – Power series expansion • Inspection Method Make use of known z-transform pairs such as Example: The inverse z-transform of Chapter 3: The Z-Transform 25   a z az 1 1 n u a 1 Z n              n u 2 1 n x 2 1 z z 2 1 1 1 z X n 1            
  • 27. Inverse Z-Transform by Partial Fraction Expansion • Assume that a given z-transform can be expressed as • Apply partial fractional expansion • First term exist only if M>N – Br is obtained by long division • Second term represents all first order poles • Third term represents an order s pole – There will be a similar term for every high-order pole • Each term can be inverse transformed by inspection Chapter 3: The Z-Transform 26          N 0 k k k M 0 k k k z a z b z X                     s 1 m m 1 i m N i k , 1 k 1 k k N M 0 r r r z d 1 C z d 1 A z B z X
  • 28. Inverse Z-Transform by Partial Fraction Expansion • Coefficients are given as • Easier to understand with examples Chapter 3: The Z-Transform 27                     s 1 m m 1 i m N i k , 1 k 1 k k N M 0 r r r z d 1 C z d 1 A z B z X     k d z 1 k k z X z d 1 A               1 i d w 1 s i m s m s m s i m w X w d 1 dw d d ! m s 1 C                
  • 29. Example 5: 2nd Order Z-Transform Chapter 3: The Z-Transform 28   2 1 z : ROC z 2 1 1 z 4 1 1 1 z X 1 1                                       1 2 1 1 z 2 1 1 A z 4 1 1 A z X   1 4 1 2 1 1 1 z X z 4 1 1 A 1 4 1 z 1 1                                2 2 1 4 1 1 1 z X z 2 1 1 A 1 2 1 z 1 2                            
  • 30. Example 5 Continued • ROC extends to infinity – Indicates right sided sequence Chapter 3: The Z-Transform 29   2 1 z z 2 1 1 2 z 4 1 1 1 z X 1 1                           n u 4 1 - n u 2 1 2 n x n n             
  • 31. Example 6 • Long division to obtain Bo Chapter 3: The Z-Transform 30       1 z z 1 z 2 1 1 z 1 z 2 1 z 2 3 1 z z 2 1 z X 1 1 2 1 2 1 2 1                        1 z 5 2 z 3 z 2 1 z 2 z 1 z 2 3 z 2 1 1 1 2 1 2 1 2                   1 1 1 z 1 z 2 1 1 z 5 1 2 z X                  1 2 1 1 z 1 A z 2 1 1 A 2 z X          9 z X z 2 1 1 A 2 1 z 1 1                 8 z X z 1 A 1 z 1 2     
  • 32. Example 5 Continued • ROC extends to infinity – Indicates right-sided sequence Chapter 3: The Z-Transform 31   1 z z 1 8 z 2 1 1 9 2 z X 1 1                 n 8u - n u 2 1 9 n 2 n x n         
  • 33. Inverse Z-Transform by Power Series Expansion • The z-transform is power series • In expanded form • Z-transforms of this form can generally be inversed easily • Especially useful for finite-length series Chapter 3: The Z-Transform 32           n n z n x z X                          2 1 1 2 2 1 0 1 2 z x z x x z x z x z X
  • 34.      1 2 1 1 1 2 z 2 1 1 z 2 1 z z 1 z 1 z 2 1 1 z z X                             1 n 2 1 n 1 n 2 1 2 n n x                                 2 n 0 1 n 2 1 0 n 1 1 n 2 1 2 n 1 n x Example 6