SlideShare a Scribd company logo
INTRODUCTION TO COMPUTER
GRAPHICS
BY
PRIYODARSHINI DHAR
CSE-20101041
What is computer graphics?
Computer graphics refers to the creation, storage
and manipulation of pictures and drawings using
digital computers
Used in diverse fields to represent data .
Scientific researches, engineering applications,
medicine, business, industry, government, art,
entertainment, advertising, education and other
fields make use of computer graphics.
It enhances the communication between computers
and users.
Application of Computer Graphics
Designing
• Engineering and architectural systems use
graphics for designing consumer products and many
other applications . CAD(computer aided design) is
used frequently in designing buildings, cities, aircraft,
spacecraft, defence mechanism and so on.
• Graphics make computer applications much more
interactive, active and dynamic . It opens unlimited
experimenting options for the designer .
 Image processing
 Animation
 Morphing
 Simulation
 E-learning
 Graphic design
2D and 3D image processing
and visualization
Example of graphic
design of a car
3D picture Animation
Film Industry
•Used largely in film industries and
multimedia application.
•Leaders of artistry and quality
Game Industry
• The newest driving force in CG
•Focus on interactivity
•Cost effective solutions
•Avoiding commutating and other tricks
•Games drive the baseline
Medical Imaging and Scientific
Visualization
•Tools for teaching and diagnosis
•New data representations and modalities
•Drive issues of precision and correctness
•Focus on presentation and interpretation
of data
•Construction of models from acquired
data
Basic terms related to display devices:
•Pixel: A pixel is defined as the smallest size object or colour spot
that can be displayed and addressed on a monitor. Pixels are
normally arranged in a regular 2-dimensional grid, and are often
represented using dots or squares.
•Resolution: They are two types
1) Image Resolution: It refers to pixel spacing. In
normal PC monitor it ranges between 25 to 80 pixels per inch.
2) Screen Resolution: It is the number of
distinct pixels in each dimension that can be displayed.
•Dot: The internal surface of the coated monitor screen is
arranged into millions of tint cells(red, green, blue) called Dots.
•Dot pitch: It is the distance between any two dots of the same
colour. It is the measure of screen resolution. Smaller the dot
pitch, higher will be the resolution, sharpness and detailed.
Note: If the image resolution is more compared to the
inherent resolution, then the displayed image quality gets
reduced.
•Aspect ratio: It is the ratio of the number of X pixels to the Y
pixels. The standard aspect ratio for PCs is 4:3 and 5:4.
Note: 5:4 aspect ratio distorts the image a bit.
Resolution Number of
Pixels
Aspect Ratio
320*200 64000 8:5
640*480 307200 4:3
800*600 480000 4:3
1024*768 786432 4:3
1280*1024 1310720 5:4
1600*1200 1920000 4:3
Table 1: Common resolution, respective number of pixels and standard aspect
ratios.
Bit Planes, Colour Depth and Colour Palette
 The appearance and colour of a pixel of an image is
result of interaction of three primary colour.
 When the intensity of all the 3 electron beam is high it
results in a white pixel.
 When the intensity of all the 3 electron beam is low it
results in a black pixel.
 When the intensity of all the 3 electron beam is in any
other combination it results in a intermediate coloured pixel.
NOTE:
•Colour Depth: The number of memory bits required to store
colour information(intensity value for all three primary colour
component) about a pixel is called colour depth or bit depth.
Corresponding to the intensity value 0 or 1,pixel can be black or
white.
•Bit plane or bitmap: The block of memory which stores bi-
level intensity values for each pixel of a full screen pure black and
white image is called a bit map or bit plane.
NOTE:
Colour or grey levels can be achieved using additional bit planes. Hence n-
bits per pixel means colour depth=n and it is a collection of n bit planes allowing 2^n
colours at every pixel.
Figure: For colour depth=n, n number of bit planes are used, each
bit plane contribute to the gray shade of pixel.
Note:
The more the number of bits used per pixel, the finer the colour detail of
the image. However more memory is used for storage.
Colour Depth Number of
Displayed colour
Bytes of Storage
Per Pixel
Common Name
for Colour Depth
4-Bit 16 0.5 Standard VGA
8-Bit 256 1.0 256-Colour Mode
16-Bit 65536 2.0 High Colour
24-Bit 1,67,77,216 3.0 True Colour
Table: Common colour depths used in PCs
For True Colour three bytes of information is used- Red,
Green and Blue .
A byte can hold 256 different values and so 256 voltage
settings are possible for each electron.
Hence each primary colour has 256 intensities.
16 million colour possibilities.
True colour is necessary for doing high quality photo-
editing, graphical design etc.
Primary Colours
True colour:
Figure: For Bit depth = 24 (true colour display) , 8 bit planes used for
storing each primary colour component ;of the colour value of a pixel
For High Colour two bytes of information are used to store
the intensity values for all three colours.
This is done by dividing 16 bits into 5 bits for blue 5 bits for
red and 6 bits for green.
Hence it has reduced colour precision and loss of visible
picture quality.
It is sometimes preferred as it uses 33% less memory than in
true colour.
256-Colour Mode:
In 265-colour mode the PC uses only 8 bits.
It may use 2 bits for blue, 3 bits for green and red.
There is chances that most of the colours of a picture are
not present.
In such cases we use a palette or look-up table.
High Colour:
Palette or Look-up table:
A palette or look-up table is a separate memory block
created containing 256 different colours.
The intensity values stored therein are not constrained
within the range of 0-3 for blue and 0-7 for red and green.
The intensity value finally results in having intensity 0-
256 each.
It is an excellent compromise at the cost of moderate
increase in memory.
It can be reloaded any time with different colour
combination.
Frame Buffer :
The frame buffer is the video memory that is used to hold
or map the image displayed on the screen.
The amount of memory required to hold the image
depend primarily on the resolution of the screen image and the
colour depth.
The formula to calculate how much video memory is
required at a given resolution and bit depth is given below.
Memory in MB = (X-resolution*Y-resolution*Bit per
pixel)/(8*1024*1024)
Display Devices:
The most prominent part of a computer is the display
system that is responsible for graphic display. Some of the
common types are given below:
1) Raster Scan Display
2) Random Scan Display
3) Direct View storage tube.
4) Flat Panel Displays
5) Three Dimensional Viewing Devices
6) Stereoscopic and Virtual Reality System
Fig : CRT used in TVs
Raster Scan Display and Random Scan Display:
Basically there are two types of CRT’s- Raster Scan type and
Random Scan type.
The main difference between the two is the technique with
which the image is generated on the phosphor coated CRT screen.
In Raster scan type the electron beam sweeps the entire
screen from left to right, top to bottom, in the same fashion as we
write on a notebook, word by word.
In Random Scan type the electronic beam is directed
straightway to the particular point(s) on the screen where the
image has to be produced. This technique is also called vector
drawing or stroke writing or calligraphic display.
Figure: Drawing a triangle on a Raster Scan Display
Figure :Drawing a triangle using Random Scan Display
Though the vector drawn images lack in depth and real-
like colour precision, the random display can work at higher
resolution than raster displays.
The images are sharper and have smooth edges unlike the
jagged lines and edges in raster type.
Direct View Storage Tube :
It is rarely used now-a-days as part of display system.
In DVST there is no refresh buffer; the images are created by
drawing vectors or line segment with relatively slow moving
electron beam.
It is one of the display devices in which an electron
flood gun and writing gun is present.
The flood gun floods electrons to a wire grid on which
already the writing gun has written some image.
The electrons from the flood gun will be repelled back
by the negatively charged wire grid which has been charged so
by the writing electron beam.
The part of the wire grid which has not been charged
-ve will allow the electrons to pass through and the electrons
will collide on the screen and produce the image.
Advantages-
1)Refreshing CRT is not required.
2)Complex picture can be displayed in high resolution without
flicker
3)It has flat screen
In existence since 1964’s,Flat
panel displays are much
thinner and flatter than
traditional TVs
Flat Panel Display:
It refers to a class of video devices
that have a:-
reduced volume, smaller,thinner,
reduced weight and
reduced power requirements
compared to a standard CRT
Examples are LCD, Plasma display panel, LED
panel and thin CRT.
Current usage:
•Small and big TV monitors
•Pocket video games
•Laptop computers
•Advertisement boards in
elevators and showrooms.
•Portable monitors.
Thin/Slim CRT:
To produce a thin CRT, the normal CRT is reduced by
bending it in the middle.
The deflection apparatus is modified so that electron
beams can be bend through 90 degrees to focus on the screen
and at the same time can be steered up and down and across the
screen.
Fig:
Thin CRT from Candescent Technologies
LCD(LIQUID CRISTAL DISPLAY)
LCD consists of a layer of liquid crystal, sandwiched
between two polarized plates.
The polarizers are aligned perpendicular to each other, so
that light incident on the first polarizer will be blocked by the
second.
The LCD displays are addressed in a matrix fashion.
Rows and Columns are defined by a thin layer of vertical
transparent conductors.
The intersection of the two conductors defines a
pixel position.
Figure: There are two thin films of polarizer
glued on both sides of the glass. The purpose
of the polarizer is to allow the right amount of
backlight to pass through it in order to have a
proper display.
The liquid crystal material is made up of long
rod shaped crystalline molecules containing cynobiphenyl units.
The individual polar molecules in a nematic LC layer
are normally arranged in a spiral fashion.
Light from an internal source enters the first
polarizer(say horizontal) and is polarized accordingly. As the light
passes through the LC layer it is twisted 90 degrees.
NOTE : The light entering through the front polarizer is not allowed to pass
through the rear polarizer due to mismatch of polarization direction.
The result is ZERO reflection of light and hence the LCD appears black.
In a color LCD there are layers of 3 liquid crystal
panels one on top of other. Each one is filled with a color- Red,
Green or Blue liquid crystal.
Fig: Layer of LCD panel
Advantage of 3 layers:
It helps create as many as screen pixels as intersections.
It has high resolution panels.
Each pixel comprises 3 color cells or sub pixel elements.
Comparison between LCD and CRT:
The image painting operation in LCD panel is different
from CRT.
Both are of Raster scan type.
FIG: LCD and CRT
Plasma Panel :
Here a layer of gas usually neon is sandwiched between
two glass plates.
Thin vertical strips of conductor run across one plate,
while horizontal conductors run up and down the other plate.
By applying high voltage to a pair of horizontal and vertical
conductors, a pair of horizontal and vertical conductors, a small
section of gas at the intersection of the conductors breaks down
into glowing plasma of electrons and ions.
In the array of gas bulbs, each one can be set to an ‘on’
state or ‘off ‘state by adjusting the voltage of the pair of
conductor.
Advantage:
1) Excellent brightness.
2)High contrast
3)Huge scalability
Limitation:
1) Very costly.
Fig: Layers of Plasma
Panel
READYMADE IMAGE
SCANNER:
A graphic device which directly copies images from a
paper or photograph and converts it into the digital format for
display, storage and graphic manipulation is called a scanner.
Types of scanner:
1. Drum scanner : They are the high-end scanners.
2. Sheetfed scanner: They are ordinary type scanner.
3. Flatbed scanner: It strikes a balance between the above two
in quality as well as price.
4. Handheld scanner / bar code readers: They are used for
scanning documents in strips of about 4 inches wide by holding
the scanner in one hand and sliding it over the documents.
Fig: Drum Scanner Fig: Sheetfed scanner
Fig : Flatbed Scanner
Fig: Barcode Reader

More Related Content

What's hot

Introduction to computer graphics
Introduction to computer graphicsIntroduction to computer graphics
Introduction to computer graphics
Rajamanickam Gomathijayam
 
Frame buffer
Frame bufferFrame buffer
Frame buffer
Aparna Joshi
 
Raster scan displays ppt
Raster scan displays pptRaster scan displays ppt
Raster scan displays ppt
ABHISHEK KUMAR
 
Computer graphics
Computer graphicsComputer graphics
Computer graphics
Mohsin Azam
 
Attributes of Output Primitives
Attributes of Output PrimitivesAttributes of Output Primitives
Attributes of Output Primitives
Renita Santhmayora
 
Computer animation Computer Graphics
Computer animation Computer Graphics Computer animation Computer Graphics
Computer animation Computer Graphics
University of Potsdam
 
Depth Buffer Method
Depth Buffer MethodDepth Buffer Method
Depth Buffer Method
Ummiya Mohammedi
 
Overview of the graphics system
Overview of the graphics systemOverview of the graphics system
Overview of the graphics system
Kamal Acharya
 
Overview of Graphics System
Overview of Graphics SystemOverview of Graphics System
Overview of Graphics System
PrathimaBaliga
 
Cohen sutherland line clipping
Cohen sutherland line clippingCohen sutherland line clipping
Cohen sutherland line clipping
Mani Kanth
 
ANIMATION SEQUENCE
ANIMATION SEQUENCEANIMATION SEQUENCE
ANIMATION SEQUENCE
KABILESH RAMAR
 
Introduction to computer graphics
Introduction to computer graphicsIntroduction to computer graphics
Introduction to computer graphicsAmandeep Kaur
 
Attributes of output primitives( curve attributes & area fill attributes)
Attributes of output primitives( curve attributes & area fill attributes)Attributes of output primitives( curve attributes & area fill attributes)
Attributes of output primitives( curve attributes & area fill attributes)
shalinikarunakaran1
 
Raster Scan display
Raster Scan displayRaster Scan display
Raster Scan display
Lokesh Singrol
 
Dda algorithm
Dda algorithmDda algorithm
Dda algorithm
Mani Kanth
 
Animation in Computer Graphics
Animation in Computer GraphicsAnimation in Computer Graphics
Animation in Computer Graphics
RinkuNahar
 
Attributes of output primitive(line attributes)
Attributes of output primitive(line attributes)Attributes of output primitive(line attributes)
Attributes of output primitive(line attributes)
shalinikarunakaran1
 
applications of computer graphics
applications of computer graphicsapplications of computer graphics
applications of computer graphicsAaina Katyal
 
Intro to scan conversion
Intro to scan conversionIntro to scan conversion
Intro to scan conversionMohd Arif
 
Line drawing algo.
Line drawing algo.Line drawing algo.
Line drawing algo.Mohd Arif
 

What's hot (20)

Introduction to computer graphics
Introduction to computer graphicsIntroduction to computer graphics
Introduction to computer graphics
 
Frame buffer
Frame bufferFrame buffer
Frame buffer
 
Raster scan displays ppt
Raster scan displays pptRaster scan displays ppt
Raster scan displays ppt
 
Computer graphics
Computer graphicsComputer graphics
Computer graphics
 
Attributes of Output Primitives
Attributes of Output PrimitivesAttributes of Output Primitives
Attributes of Output Primitives
 
Computer animation Computer Graphics
Computer animation Computer Graphics Computer animation Computer Graphics
Computer animation Computer Graphics
 
Depth Buffer Method
Depth Buffer MethodDepth Buffer Method
Depth Buffer Method
 
Overview of the graphics system
Overview of the graphics systemOverview of the graphics system
Overview of the graphics system
 
Overview of Graphics System
Overview of Graphics SystemOverview of Graphics System
Overview of Graphics System
 
Cohen sutherland line clipping
Cohen sutherland line clippingCohen sutherland line clipping
Cohen sutherland line clipping
 
ANIMATION SEQUENCE
ANIMATION SEQUENCEANIMATION SEQUENCE
ANIMATION SEQUENCE
 
Introduction to computer graphics
Introduction to computer graphicsIntroduction to computer graphics
Introduction to computer graphics
 
Attributes of output primitives( curve attributes & area fill attributes)
Attributes of output primitives( curve attributes & area fill attributes)Attributes of output primitives( curve attributes & area fill attributes)
Attributes of output primitives( curve attributes & area fill attributes)
 
Raster Scan display
Raster Scan displayRaster Scan display
Raster Scan display
 
Dda algorithm
Dda algorithmDda algorithm
Dda algorithm
 
Animation in Computer Graphics
Animation in Computer GraphicsAnimation in Computer Graphics
Animation in Computer Graphics
 
Attributes of output primitive(line attributes)
Attributes of output primitive(line attributes)Attributes of output primitive(line attributes)
Attributes of output primitive(line attributes)
 
applications of computer graphics
applications of computer graphicsapplications of computer graphics
applications of computer graphics
 
Intro to scan conversion
Intro to scan conversionIntro to scan conversion
Intro to scan conversion
 
Line drawing algo.
Line drawing algo.Line drawing algo.
Line drawing algo.
 

Similar to Introduction to computer graphics

new ai techniques.pptx
new ai techniques.pptxnew ai techniques.pptx
new ai techniques.pptx
SanandMishra
 
Introduction to computer graphics and multimedia
Introduction to computer graphics and multimediaIntroduction to computer graphics and multimedia
Introduction to computer graphics and multimedia
Shweta Shah
 
Chapter 10: Display Systems
Chapter 10: Display SystemsChapter 10: Display Systems
Chapter 10: Display Systemsaskme
 
Introduction to computer graphics part 1
Introduction to computer graphics part 1Introduction to computer graphics part 1
Introduction to computer graphics part 1
Ankit Garg
 
CG_Unit1_SShah.pptx
CG_Unit1_SShah.pptxCG_Unit1_SShah.pptx
CG_Unit1_SShah.pptx
Shweta Shah
 
Introduction to computer graphics part 2
Introduction to computer graphics part 2Introduction to computer graphics part 2
Introduction to computer graphics part 2
Ankit Garg
 
111 03 hardware 2 output
111 03 hardware 2 output111 03 hardware 2 output
111 03 hardware 2 output
Christian Gabriel
 
Overview of graphics systems.ppt
Overview of graphics systems.pptOverview of graphics systems.ppt
Overview of graphics systems.ppt
MalleshBettadapura1
 
Graphics Primitives and CG Display Devices
Graphics Primitives and CG Display DevicesGraphics Primitives and CG Display Devices
Graphics Primitives and CG Display Devices
DIPIKA83
 
Monitor
MonitorMonitor
Monitor
Amzad Khan
 
CG.pptx
CG.pptxCG.pptx
CG.pptx
AdityaBisht34
 
1.1.2.pdf
1.1.2.pdf1.1.2.pdf
1.1.2.pdf
ssuser255bf1
 
Characteristics of Display Adapter
Characteristics of Display AdapterCharacteristics of Display Adapter
Characteristics of Display Adapter
ssuser255bf1
 
Chapter 1 fundamentals of digital imaging
Chapter 1  fundamentals of digital imagingChapter 1  fundamentals of digital imaging
Chapter 1 fundamentals of digital imaging
ZCELPROPS
 
Computer Graphics - Introduction and CRT Devices
Computer Graphics - Introduction and CRT DevicesComputer Graphics - Introduction and CRT Devices
Computer Graphics - Introduction and CRT Devices
Hisham Al Kurdi, EAVA, DMC-D-4K, HCCA-P, HCAA-D
 
Model 1 multimedia graphics and animation introduction (1)
Model 1 multimedia graphics and animation introduction (1)Model 1 multimedia graphics and animation introduction (1)
Model 1 multimedia graphics and animation introduction (1)
Rahul Borate
 
Computer Graphics Notes
Computer Graphics NotesComputer Graphics Notes
Computer Graphics Notes
Gurpreet singh
 
Introduction to Computer Graphics.pptx
Introduction to Computer Graphics.pptxIntroduction to Computer Graphics.pptx
Introduction to Computer Graphics.pptx
AhmadAbba6
 
Chapter 1 fundamentals of digital imaging
Chapter 1  fundamentals of digital imagingChapter 1  fundamentals of digital imaging
Chapter 1 fundamentals of digital imaging
Zcel Tablizo
 
MultimediaLecture5.pptx
MultimediaLecture5.pptxMultimediaLecture5.pptx
MultimediaLecture5.pptx
vishal choudhary
 

Similar to Introduction to computer graphics (20)

new ai techniques.pptx
new ai techniques.pptxnew ai techniques.pptx
new ai techniques.pptx
 
Introduction to computer graphics and multimedia
Introduction to computer graphics and multimediaIntroduction to computer graphics and multimedia
Introduction to computer graphics and multimedia
 
Chapter 10: Display Systems
Chapter 10: Display SystemsChapter 10: Display Systems
Chapter 10: Display Systems
 
Introduction to computer graphics part 1
Introduction to computer graphics part 1Introduction to computer graphics part 1
Introduction to computer graphics part 1
 
CG_Unit1_SShah.pptx
CG_Unit1_SShah.pptxCG_Unit1_SShah.pptx
CG_Unit1_SShah.pptx
 
Introduction to computer graphics part 2
Introduction to computer graphics part 2Introduction to computer graphics part 2
Introduction to computer graphics part 2
 
111 03 hardware 2 output
111 03 hardware 2 output111 03 hardware 2 output
111 03 hardware 2 output
 
Overview of graphics systems.ppt
Overview of graphics systems.pptOverview of graphics systems.ppt
Overview of graphics systems.ppt
 
Graphics Primitives and CG Display Devices
Graphics Primitives and CG Display DevicesGraphics Primitives and CG Display Devices
Graphics Primitives and CG Display Devices
 
Monitor
MonitorMonitor
Monitor
 
CG.pptx
CG.pptxCG.pptx
CG.pptx
 
1.1.2.pdf
1.1.2.pdf1.1.2.pdf
1.1.2.pdf
 
Characteristics of Display Adapter
Characteristics of Display AdapterCharacteristics of Display Adapter
Characteristics of Display Adapter
 
Chapter 1 fundamentals of digital imaging
Chapter 1  fundamentals of digital imagingChapter 1  fundamentals of digital imaging
Chapter 1 fundamentals of digital imaging
 
Computer Graphics - Introduction and CRT Devices
Computer Graphics - Introduction and CRT DevicesComputer Graphics - Introduction and CRT Devices
Computer Graphics - Introduction and CRT Devices
 
Model 1 multimedia graphics and animation introduction (1)
Model 1 multimedia graphics and animation introduction (1)Model 1 multimedia graphics and animation introduction (1)
Model 1 multimedia graphics and animation introduction (1)
 
Computer Graphics Notes
Computer Graphics NotesComputer Graphics Notes
Computer Graphics Notes
 
Introduction to Computer Graphics.pptx
Introduction to Computer Graphics.pptxIntroduction to Computer Graphics.pptx
Introduction to Computer Graphics.pptx
 
Chapter 1 fundamentals of digital imaging
Chapter 1  fundamentals of digital imagingChapter 1  fundamentals of digital imaging
Chapter 1 fundamentals of digital imaging
 
MultimediaLecture5.pptx
MultimediaLecture5.pptxMultimediaLecture5.pptx
MultimediaLecture5.pptx
 

Recently uploaded

De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
DianaGray10
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
Bhaskar Mitra
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
Ralf Eggert
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 

Recently uploaded (20)

De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 

Introduction to computer graphics

  • 2. What is computer graphics? Computer graphics refers to the creation, storage and manipulation of pictures and drawings using digital computers Used in diverse fields to represent data . Scientific researches, engineering applications, medicine, business, industry, government, art, entertainment, advertising, education and other fields make use of computer graphics. It enhances the communication between computers and users.
  • 3. Application of Computer Graphics Designing • Engineering and architectural systems use graphics for designing consumer products and many other applications . CAD(computer aided design) is used frequently in designing buildings, cities, aircraft, spacecraft, defence mechanism and so on. • Graphics make computer applications much more interactive, active and dynamic . It opens unlimited experimenting options for the designer .
  • 4.  Image processing  Animation  Morphing  Simulation  E-learning  Graphic design 2D and 3D image processing and visualization Example of graphic design of a car 3D picture Animation
  • 5. Film Industry •Used largely in film industries and multimedia application. •Leaders of artistry and quality
  • 6. Game Industry • The newest driving force in CG •Focus on interactivity •Cost effective solutions •Avoiding commutating and other tricks •Games drive the baseline Medical Imaging and Scientific Visualization •Tools for teaching and diagnosis •New data representations and modalities •Drive issues of precision and correctness •Focus on presentation and interpretation of data •Construction of models from acquired data
  • 7. Basic terms related to display devices: •Pixel: A pixel is defined as the smallest size object or colour spot that can be displayed and addressed on a monitor. Pixels are normally arranged in a regular 2-dimensional grid, and are often represented using dots or squares. •Resolution: They are two types 1) Image Resolution: It refers to pixel spacing. In normal PC monitor it ranges between 25 to 80 pixels per inch. 2) Screen Resolution: It is the number of distinct pixels in each dimension that can be displayed. •Dot: The internal surface of the coated monitor screen is arranged into millions of tint cells(red, green, blue) called Dots.
  • 8. •Dot pitch: It is the distance between any two dots of the same colour. It is the measure of screen resolution. Smaller the dot pitch, higher will be the resolution, sharpness and detailed. Note: If the image resolution is more compared to the inherent resolution, then the displayed image quality gets reduced. •Aspect ratio: It is the ratio of the number of X pixels to the Y pixels. The standard aspect ratio for PCs is 4:3 and 5:4. Note: 5:4 aspect ratio distorts the image a bit.
  • 9. Resolution Number of Pixels Aspect Ratio 320*200 64000 8:5 640*480 307200 4:3 800*600 480000 4:3 1024*768 786432 4:3 1280*1024 1310720 5:4 1600*1200 1920000 4:3 Table 1: Common resolution, respective number of pixels and standard aspect ratios.
  • 10. Bit Planes, Colour Depth and Colour Palette  The appearance and colour of a pixel of an image is result of interaction of three primary colour.  When the intensity of all the 3 electron beam is high it results in a white pixel.  When the intensity of all the 3 electron beam is low it results in a black pixel.  When the intensity of all the 3 electron beam is in any other combination it results in a intermediate coloured pixel. NOTE:
  • 11. •Colour Depth: The number of memory bits required to store colour information(intensity value for all three primary colour component) about a pixel is called colour depth or bit depth. Corresponding to the intensity value 0 or 1,pixel can be black or white. •Bit plane or bitmap: The block of memory which stores bi- level intensity values for each pixel of a full screen pure black and white image is called a bit map or bit plane. NOTE: Colour or grey levels can be achieved using additional bit planes. Hence n- bits per pixel means colour depth=n and it is a collection of n bit planes allowing 2^n colours at every pixel.
  • 12. Figure: For colour depth=n, n number of bit planes are used, each bit plane contribute to the gray shade of pixel.
  • 13. Note: The more the number of bits used per pixel, the finer the colour detail of the image. However more memory is used for storage. Colour Depth Number of Displayed colour Bytes of Storage Per Pixel Common Name for Colour Depth 4-Bit 16 0.5 Standard VGA 8-Bit 256 1.0 256-Colour Mode 16-Bit 65536 2.0 High Colour 24-Bit 1,67,77,216 3.0 True Colour Table: Common colour depths used in PCs
  • 14. For True Colour three bytes of information is used- Red, Green and Blue . A byte can hold 256 different values and so 256 voltage settings are possible for each electron. Hence each primary colour has 256 intensities. 16 million colour possibilities. True colour is necessary for doing high quality photo- editing, graphical design etc. Primary Colours True colour:
  • 15. Figure: For Bit depth = 24 (true colour display) , 8 bit planes used for storing each primary colour component ;of the colour value of a pixel
  • 16. For High Colour two bytes of information are used to store the intensity values for all three colours. This is done by dividing 16 bits into 5 bits for blue 5 bits for red and 6 bits for green. Hence it has reduced colour precision and loss of visible picture quality. It is sometimes preferred as it uses 33% less memory than in true colour. 256-Colour Mode: In 265-colour mode the PC uses only 8 bits. It may use 2 bits for blue, 3 bits for green and red. There is chances that most of the colours of a picture are not present. In such cases we use a palette or look-up table. High Colour:
  • 17. Palette or Look-up table: A palette or look-up table is a separate memory block created containing 256 different colours. The intensity values stored therein are not constrained within the range of 0-3 for blue and 0-7 for red and green. The intensity value finally results in having intensity 0- 256 each. It is an excellent compromise at the cost of moderate increase in memory. It can be reloaded any time with different colour combination.
  • 18. Frame Buffer : The frame buffer is the video memory that is used to hold or map the image displayed on the screen. The amount of memory required to hold the image depend primarily on the resolution of the screen image and the colour depth. The formula to calculate how much video memory is required at a given resolution and bit depth is given below. Memory in MB = (X-resolution*Y-resolution*Bit per pixel)/(8*1024*1024)
  • 19. Display Devices: The most prominent part of a computer is the display system that is responsible for graphic display. Some of the common types are given below: 1) Raster Scan Display 2) Random Scan Display 3) Direct View storage tube. 4) Flat Panel Displays 5) Three Dimensional Viewing Devices 6) Stereoscopic and Virtual Reality System Fig : CRT used in TVs
  • 20. Raster Scan Display and Random Scan Display: Basically there are two types of CRT’s- Raster Scan type and Random Scan type. The main difference between the two is the technique with which the image is generated on the phosphor coated CRT screen. In Raster scan type the electron beam sweeps the entire screen from left to right, top to bottom, in the same fashion as we write on a notebook, word by word. In Random Scan type the electronic beam is directed straightway to the particular point(s) on the screen where the image has to be produced. This technique is also called vector drawing or stroke writing or calligraphic display.
  • 21. Figure: Drawing a triangle on a Raster Scan Display
  • 22. Figure :Drawing a triangle using Random Scan Display
  • 23. Though the vector drawn images lack in depth and real- like colour precision, the random display can work at higher resolution than raster displays. The images are sharper and have smooth edges unlike the jagged lines and edges in raster type. Direct View Storage Tube : It is rarely used now-a-days as part of display system. In DVST there is no refresh buffer; the images are created by drawing vectors or line segment with relatively slow moving electron beam.
  • 24. It is one of the display devices in which an electron flood gun and writing gun is present. The flood gun floods electrons to a wire grid on which already the writing gun has written some image. The electrons from the flood gun will be repelled back by the negatively charged wire grid which has been charged so by the writing electron beam. The part of the wire grid which has not been charged -ve will allow the electrons to pass through and the electrons will collide on the screen and produce the image. Advantages- 1)Refreshing CRT is not required. 2)Complex picture can be displayed in high resolution without flicker 3)It has flat screen
  • 25. In existence since 1964’s,Flat panel displays are much thinner and flatter than traditional TVs Flat Panel Display: It refers to a class of video devices that have a:- reduced volume, smaller,thinner, reduced weight and reduced power requirements compared to a standard CRT Examples are LCD, Plasma display panel, LED panel and thin CRT. Current usage: •Small and big TV monitors •Pocket video games •Laptop computers •Advertisement boards in elevators and showrooms. •Portable monitors.
  • 26. Thin/Slim CRT: To produce a thin CRT, the normal CRT is reduced by bending it in the middle. The deflection apparatus is modified so that electron beams can be bend through 90 degrees to focus on the screen and at the same time can be steered up and down and across the screen. Fig: Thin CRT from Candescent Technologies
  • 27. LCD(LIQUID CRISTAL DISPLAY) LCD consists of a layer of liquid crystal, sandwiched between two polarized plates. The polarizers are aligned perpendicular to each other, so that light incident on the first polarizer will be blocked by the second. The LCD displays are addressed in a matrix fashion. Rows and Columns are defined by a thin layer of vertical transparent conductors. The intersection of the two conductors defines a pixel position.
  • 28. Figure: There are two thin films of polarizer glued on both sides of the glass. The purpose of the polarizer is to allow the right amount of backlight to pass through it in order to have a proper display.
  • 29. The liquid crystal material is made up of long rod shaped crystalline molecules containing cynobiphenyl units. The individual polar molecules in a nematic LC layer are normally arranged in a spiral fashion. Light from an internal source enters the first polarizer(say horizontal) and is polarized accordingly. As the light passes through the LC layer it is twisted 90 degrees. NOTE : The light entering through the front polarizer is not allowed to pass through the rear polarizer due to mismatch of polarization direction. The result is ZERO reflection of light and hence the LCD appears black. In a color LCD there are layers of 3 liquid crystal panels one on top of other. Each one is filled with a color- Red, Green or Blue liquid crystal.
  • 30. Fig: Layer of LCD panel
  • 31. Advantage of 3 layers: It helps create as many as screen pixels as intersections. It has high resolution panels. Each pixel comprises 3 color cells or sub pixel elements. Comparison between LCD and CRT: The image painting operation in LCD panel is different from CRT. Both are of Raster scan type. FIG: LCD and CRT
  • 32. Plasma Panel : Here a layer of gas usually neon is sandwiched between two glass plates. Thin vertical strips of conductor run across one plate, while horizontal conductors run up and down the other plate. By applying high voltage to a pair of horizontal and vertical conductors, a pair of horizontal and vertical conductors, a small section of gas at the intersection of the conductors breaks down into glowing plasma of electrons and ions. In the array of gas bulbs, each one can be set to an ‘on’ state or ‘off ‘state by adjusting the voltage of the pair of conductor.
  • 33. Advantage: 1) Excellent brightness. 2)High contrast 3)Huge scalability Limitation: 1) Very costly. Fig: Layers of Plasma Panel
  • 34. READYMADE IMAGE SCANNER: A graphic device which directly copies images from a paper or photograph and converts it into the digital format for display, storage and graphic manipulation is called a scanner. Types of scanner: 1. Drum scanner : They are the high-end scanners. 2. Sheetfed scanner: They are ordinary type scanner. 3. Flatbed scanner: It strikes a balance between the above two in quality as well as price. 4. Handheld scanner / bar code readers: They are used for scanning documents in strips of about 4 inches wide by holding the scanner in one hand and sliding it over the documents.
  • 35. Fig: Drum Scanner Fig: Sheetfed scanner Fig : Flatbed Scanner Fig: Barcode Reader