SlideShare a Scribd company logo
IEEE ICC 2011

Yang Hong, Changcheng Huang, and James Yan
Department of Systems and Computer Engineering, 
Carleton University, Ottawa, Canada
Wh t i SIP?
What is SIP?
 Session Initiation Protocol
 protocol that establishes,

Internet

manages (multimedia)
sessions [RFC 3261]
 used for VoIP presence &
VoIP,
video conference

Proxy
Server

Proxy
Server

 SIP consists of two basic

elements
l
t
 UA (User Agent) and P-Server
(Proxy Server)

 About 1000 companies produce

SIP products
 Microsoft’s Windows
Messenger (≥4 7) i l d SIP
M
(≥4.7) includes

UA

UA

Simplified SIP Network Configuration

2
IMS SIP Server Overload – A 
f
h ll
Performance Management Challenge
 3GPP has adopted SIP
 as the basis of IMS architecture

 Problem: Server(s) cannot complete

the processing of requests under
overload conditions

 Multiple causes: Insufficient
p

capacity, Component Failures,
Unexpected traffic surges, DOS
attacks [RFC 5390]

 Impact: Performance degradation,

drop in throughput, revenue loss,
network collapse
Simplified
Si lifi d IMS C t l L
Control Layer O
Overview
i
3
Why Worry About SIP Message Retransmission?
Why Worry About SIP Message Retransmission?
 Retransmission built-in to maintain SIP reliability
y

against message loss
 Loss is detected as long delay in acknowledgment
 Surge in user demand can cause SIP server

overload and long delay to acknowledge SIP
messages
 Long delays may trigger more retransmissions and a

positive feedback exacerbating server overload

4
C t ib ti
f Thi P
Contributions of This Paper
 Using control-theoretic approach to
g
pp
 model the interaction of overloaded server and its
upstream server as a feedback control system
 Proposing Round Trip Delay Control (RTDC) algorithm

(a PI rate control algorithm) to mitigate the overload by
 regulating retransmissions
 clamping round trip delay below a desirable target value

 Performing OPNET simulations under two typical

overload scenarios to
 validate RTDC (implicit SIP overload control) algorithm
5
Outline
 SIP Retransmission Mechanism Overview
 Related Work on SIP Overload Control
 Queuing Dynamics of Overloaded Server
 Control-Theoretic Design for Overload Control Based

on R
Round-Trip Delay
dTi D l
 Performance Evaluation to Validate RTDC SIP

Overload Control Algorithm
 Conclusions
6
Typical SIP Procedure

7
Retransmission Mechanism
Retransmission Mechanism
 Purpose: Confirmation of successful transmission

P-servers
between UA and UA via P servers
 Two Types:
 Hop by Hop

First retransmission after T1 , subsequent one is 2
times previous interval. Total intervals up to 64 x T1
(maximum 6 retransmissions). Default T1 = 0.5 s.
 End-to End
First t
Fi t retransmission after T1 , subsequent one is 2 ti
i i
ft
b
t
i
times
previous interval up to a maximum of T2 . Total
intervals up to 64 x T1 (maximum 11 retransmissions).
Default T2 = 4.0 s.
8
Related Work on Overload Control
 Most of existing overload control solutions adopt

push-back mechanism
 cancel the overload effectively


by introducing overhead to advertise upstream servers to
 reduce message sending rate
d
di
t

 produce overload propagation from sever to server

until end-users
 block a large amount of calls unnecessarily


cause revenue loss of service providers

• Our Proposal: Reduce retransmission rate only to

mitigate overload
 by maintaining original message rate to


keep the revenue of service providers
9
SIP Overload Control Mechanism Classification

Figure 3. The classification for the existing SIP overload control schemes

Y. Hong, C. Huang, and J. Yan, “A Comparative Study of SIP Overload Control Algorithms,”
Network and T ffi E i
N
k d Traffic Engineering i E
i in Emerging Di ib d C
i Distributed Computing A li i
i Applications, Edi d b
Edited by
J. Abawajy, M. Pathan, M. Rahman, A.K. Pathan, and M.M. Deris, IGI Global, 2012, pp. 1‐20.
10
Queuing Dynamics of Overloaded Server
Q
g y
 

100Trying response
Invite request 1(t)
r1(t)
r2' (t )  
Timer fires

Message buffer

q1(t)
Reset timer

Timer expires



qr1(t)

Invite request
Server 2
2(t)
2  
1  

r2(t)
Server 1
2(t)
q2(t)
1(t)
100Trying response
Timer starts
Ti

Timer buffer

Queuing dynamics of Server 2
Queuing dynamics of Server 1


q 2 (t )  2 (t )  r2 (t )   2 (t )   2 (t )


q1 (t )  1 (t )  r1 (t )  r2' (t )  1 (t )  1 (t )

(1)
(2)

Notation: 1(t) original message rate, r1 (t) message retransmission rate,
2(t) service rate 1 (t) response rate q1 (t) queue size
rate,
rate,
Overload Scenario: Server slowdown at Server 2 due to routine maintenance
Overload Collapse: 2(t)   2(t) > 2(t)  q 2 (t )  0 (see Eq. (1))  q2(t) 

ti
trigger r''2(t)  r2(t) i
increases q2(t) more quickly
i kl

Overload Propagation: r'2(t) enter Server 1  q 1 ( t )  0 (see Eq. (2))  q1(t) 
11
Overload Controller Design 
g
Upstream Server 1 can process all arrival messages without any delay
• before the overload is propagated from its downstream Server 2
()
()
() ()(
p
)
• 2(t)=1(t) and r2(t)=r'2(t) (see previous slide #11)
Queuing dynamics of Server 2
Queuing delay of Server 2
g
y



q2 (t )  1 (t )  r2 (t )   2 (t )   2 (t )

(3)


2 (t )  [r2 (t )  1 (t )  2 (t )  2 (t )] / 2 (t ) (4)
( )

• Each request message corresponds to a response message [SIP RFC]
• Thus request message service rate (i.e., the response message rate
1(t)) can approximate the total service rate 2(t)



Queuing delay of Server 2  2 (t )  [r2 (t )  1 (t )   2 (t )  1 (t )] / 1 (t ) (5)
• Round trip delay of upstream server can approximate queuing delay of
overloaded downstream server 2(t)
 when overload happens and queuing delay is dominant
PI controller regulates retransmission rate r'2(t)
t


r2 (t )  K P e(t )  K I 0 e( )d
t

 K P ( 0   2 (t ))  K I 0 ( 0   2 ( ))d

12
Feedback Overload Control System 

Figure 4.Block diagram of feedback SIP overload control system
g
g
y
Control plant P(s)=2(s)/r'2(s)= {2(t)}/ {r'2(t)}1/(1s)
PI controller C(s)=KP+KI/s
( )
Open-loop overload control system G(s)=C(s)P(s)=(KP+KI/s)/(1s)
Positive phase margin m of G(s) can guarantee control system stability
PI controller gains can be obtained based on phase margin m

KP 

1 tan( m )
1  tan 2 ( m )

KI 

1
1  tan 2 ( m )
13
SIP Overload Control Algorithm (RTDC)
SIP Overload Control Algorithm (RTDC)

14
k
l
l
SIP Network Topology For OPNET Simulation

15
Scenario to Validate Overload Control Algorithm
• Poisson distributed message generation rate and service rate
• Two typical overload scenarios
• 4 originating servers generated original messages with the same rate

o= (1/4)1; Mean message arrive rate of Server 1 was 1=4o

• Mean service capacity of each originating server was Co=500 messages/sec

Scenario 1
Initial overload at 
Server 1 due to 
demand burst

• Mean arrival rate 1=800 messages/sec (emulating a
800

short surge of user demands) from time t=0s to t=30s

• Mean arrival rate 1=200 messages/sec (emulating

regular user demands) from time t=30s to t=90s
t 30s t 90s

• Mean service capacities of two proxy servers were

C1=C2=1000 messages/sec
Scenario 2
S
i  
Initial overload at 
Server 2 due to 
server slowdown

• M
Mean arrival rate 1=200 messages/sec
i l t
200
/
• Mean server capacity C1=1000 messages/sec
• Mean server capacity C2=100 messages/sec (emulating
100

server slowdown) from time t=0s to t=30s, and C2=1000
messages/sec from time t=30s to t=90s

16
Simulation Results of Scenario 1
Simulation Results of Scenario 1
7

NOLC Queu size q0 (messages)
ue

1

Queue size q (messages
s)

12000

x 10

NOLC q1
OLC q1

6
5
4
3
2
1
0

0

10

20

30

40

50

60

70

80

90

Time (sec)

Queue size q1 (messages) of Server 1
versus time

10
NOLC q0
OLC q0

8

9000

6
6000
4

3000
2

0

0

10

20

30

40

50

60

70

80

OLC Queue size q0 (messa
e
ages)

4

8

0
90

Time (sec)

Queue size qo (messages) of an originating
server versus time

• Without overload control algorithm applied, Server 1 became CPU overloaded
 overload deteriorated as time evolves, leading to eventual crash of Server 1
• Overload control algorithm made queue size of Server 1 increase slowly
 taking 27s to cancel the overload at Server 1 after new user demand rate
reduced at time t=30s
17
 11s faster than RRRC algorithm proposed by IEEE Globecom 2010
Simulation Results of Scenario 2
4

x 10

10

6

2

4

1

2

0

0

10

20

30

40

50

60

70

80

0
90

Time (sec)

Queue size q1 (
Q
i
(messages) of Server 1
) fS
versus time

x 10

1.8

2

3

2

Queu size q (messag
ue
ges)

8

OLC q1

1

NOLC q1
4

4

OLC Queue size q (me
Q
essages)

1

NOLC Queue size q (m
Q
messages)

5

NOLC q2

1.6

OLC q2

1.4
1.2
1
0.8
0.6
0.4
0.2
0

0

10

20

30

40

50

60

70

80

90

Time (sec)

Queue size q2 (messages) of Server 2
versus time

• Without overload control algorithm applied, overload was propagated from Server
2 to Server 1 when initial overload h
t S
h i iti l
l d happened at S
d t Server 2
• Persisted overload would crash Server 1 after Server 2 resumed its normal
service
O e oad control algorithm p e e t o e oad p opagat o to Se e 1
prevent overload propagation Server
• Overload co t o a go t
 taking only 7s to cancel the overload at Server 2
 2s faster than RRRC algorithm proposed by IEEE Globecom 2010
18
Conclusions
 Employing control-theoretic approach to
p
 model SIP overload problem as a feedback control p
problem

 Developing Round Trip Delay Control (RTDC) algorithm

(a PI rate control algorithm) to mitigate the overload by
 controlling retransmission rate
t lli
t
i i
t
 claiming round trip delay below desirable target value

 Simulation results demonstrate that RTDC (implicit SIP
( p

overload control) can
 prevent the overload propagation
 cancel the overload effectively

 Our solution does NOT require modification in the SIP

header and time-consuming standardization process
 can be freely implemented in any SIP servers of different carriers
19
Remarks (1)
 Explicit SIP overload control algorithm requires the modification in the

SIP header and the cooperation among different carriers in different
countries
 Implicit SIP overload control algorithm does NOT require the

modification in the SIP header and the cooperation among different
carriers in different countries. Any carrier can freely implement implicit
SIP overload control algorithm in its SIP servers to avoid potential
widespread server crash
 OPNET simulation code f 3 implicit SIP overload control algorithms
i l ti
d for i li it
l d
t l l ith

(RRRC, RTDC, and RTQC) published by IEEE Globecom 2010/ICC
2011 available for non-commercial research use upon request
 RTDC algorithm (proposed by this IEEE ICC 2011 paper) has been

recommended as White paper by TechRepublic (an online trade publication
and social community for IT professionals, part of the CBS Interactive)

http://www.techrepublic.com/whitepapers/design-of-a-pi-rate-controller-formitigating-sip-overload/25142469
20
Remarks (2)
 Journal version discusses how to apply RTDC algorithm to mitigate SIP

overload for both SIP over UDP and SIP over TCP (with TLS)
 “Applying control theoretic approach to mitigate SIP overload,”
y
( )
Telecommunication Systems, 54(4), 2013, pp. 387-404. Available at
http://www.researchgate.net/publication/257667871_Applying_control_theoretic
_approach_to_mitigate_SIP_overload
 Survey on SIP overload control algorithms: “A Comparative Study of SIP
y
g
p
y

Overload Control Algorithms,” Network and Traffic Engineering in Emerging
Distributed Computing Applications, IGI Global, 2012, pp. 1-20.
http://www.igi-global.com/chapter/comparative-study-sip-overloadcontrol/67496
t l/67496
http://www.researchgate.net/publication/231609451_A_Comparative_Study_of
_SIP_Overload_Control_Algorithms
 Discussions on control system design can be found in the answers to the

ResearchGate question “What are trends in control theory and its
applications in physical systems (from a research point of view)? ”
https://www.researchgate.net/post/What_are_trends_in_control_theory_and_its
https://www researchgate net/post/What are trends in control theory and its
_applications_in_physical_systems_from_a_research_point_of_view2
21

More Related Content

What's hot

Part 8 : TCP and Congestion control
Part 8 : TCP and Congestion controlPart 8 : TCP and Congestion control
Part 8 : TCP and Congestion control
Olivier Bonaventure
 
Basic ntp configuration
Basic ntp configurationBasic ntp configuration
Basic ntp configurationRaghu nath
 
Tcpip 1
Tcpip 1Tcpip 1
Tcpip 1
myrajendra
 
Seminar
SeminarSeminar
Seminar
parita_parekh
 
Synchronisation
SynchronisationSynchronisation
Synchronisation
Puran Pangeni
 
Synchronization Overview
Synchronization OverviewSynchronization Overview
Synchronization Overview
Abuzar Ghalib
 
Part 1 : reliable transmission
Part 1 : reliable transmissionPart 1 : reliable transmission
Part 1 : reliable transmission
Olivier Bonaventure
 
7 tcp-congestion
7 tcp-congestion7 tcp-congestion
7 tcp-congestion
Olivier Bonaventure
 
RIPE 80: Buffers and Protocols
RIPE 80: Buffers and ProtocolsRIPE 80: Buffers and Protocols
RIPE 80: Buffers and Protocols
APNIC
 
Te442 lecture02-2016-14-4-2016-1
Te442 lecture02-2016-14-4-2016-1Te442 lecture02-2016-14-4-2016-1
Te442 lecture02-2016-14-4-2016-1
colman mboya
 
4 transport-sharing
4 transport-sharing4 transport-sharing
4 transport-sharing
Olivier Bonaventure
 
The leap second is coming by Tomonori TAKADA [APRICOT 2015]
The leap second is coming by Tomonori TAKADA [APRICOT 2015]The leap second is coming by Tomonori TAKADA [APRICOT 2015]
The leap second is coming by Tomonori TAKADA [APRICOT 2015]
APNIC
 
Machine Learning Based Session Drop Prediction in LTE Networks and its SON As...
Machine Learning Based Session Drop Prediction in LTE Networks and its SON As...Machine Learning Based Session Drop Prediction in LTE Networks and its SON As...
Machine Learning Based Session Drop Prediction in LTE Networks and its SON As...
Ericsson
 
Computer Networking : Principles, Protocols and Practice - lesson 1
Computer Networking : Principles, Protocols and Practice - lesson 1Computer Networking : Principles, Protocols and Practice - lesson 1
Computer Networking : Principles, Protocols and Practice - lesson 1
Olivier Bonaventure
 
5 sharing-app
5 sharing-app5 sharing-app
5 sharing-app
Olivier Bonaventure
 

What's hot (17)

Part 8 : TCP and Congestion control
Part 8 : TCP and Congestion controlPart 8 : TCP and Congestion control
Part 8 : TCP and Congestion control
 
Basic ntp configuration
Basic ntp configurationBasic ntp configuration
Basic ntp configuration
 
Tcpip 1
Tcpip 1Tcpip 1
Tcpip 1
 
Seminar
SeminarSeminar
Seminar
 
Thesis
ThesisThesis
Thesis
 
Synchronisation
SynchronisationSynchronisation
Synchronisation
 
Synchronization Overview
Synchronization OverviewSynchronization Overview
Synchronization Overview
 
Part 1 : reliable transmission
Part 1 : reliable transmissionPart 1 : reliable transmission
Part 1 : reliable transmission
 
Tcp traffic control and red ecn
Tcp traffic control and red ecnTcp traffic control and red ecn
Tcp traffic control and red ecn
 
7 tcp-congestion
7 tcp-congestion7 tcp-congestion
7 tcp-congestion
 
RIPE 80: Buffers and Protocols
RIPE 80: Buffers and ProtocolsRIPE 80: Buffers and Protocols
RIPE 80: Buffers and Protocols
 
Te442 lecture02-2016-14-4-2016-1
Te442 lecture02-2016-14-4-2016-1Te442 lecture02-2016-14-4-2016-1
Te442 lecture02-2016-14-4-2016-1
 
4 transport-sharing
4 transport-sharing4 transport-sharing
4 transport-sharing
 
The leap second is coming by Tomonori TAKADA [APRICOT 2015]
The leap second is coming by Tomonori TAKADA [APRICOT 2015]The leap second is coming by Tomonori TAKADA [APRICOT 2015]
The leap second is coming by Tomonori TAKADA [APRICOT 2015]
 
Machine Learning Based Session Drop Prediction in LTE Networks and its SON As...
Machine Learning Based Session Drop Prediction in LTE Networks and its SON As...Machine Learning Based Session Drop Prediction in LTE Networks and its SON As...
Machine Learning Based Session Drop Prediction in LTE Networks and its SON As...
 
Computer Networking : Principles, Protocols and Practice - lesson 1
Computer Networking : Principles, Protocols and Practice - lesson 1Computer Networking : Principles, Protocols and Practice - lesson 1
Computer Networking : Principles, Protocols and Practice - lesson 1
 
5 sharing-app
5 sharing-app5 sharing-app
5 sharing-app
 

Similar to Design Of A PI Rate Controller For Mitigating SIP Overload

Self-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policiesSelf-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policies
NECST Lab @ Politecnico di Milano
 
CRC AND TRANSMIT ERROR REPORT
CRC AND TRANSMIT ERROR REPORTCRC AND TRANSMIT ERROR REPORT
CRC AND TRANSMIT ERROR REPORT
Alex TX
 
IRJET- Modeling a New Startup Algorithm for TCP New Reno
IRJET- Modeling a New Startup Algorithm for TCP New RenoIRJET- Modeling a New Startup Algorithm for TCP New Reno
IRJET- Modeling a New Startup Algorithm for TCP New Reno
IRJET Journal
 
Self-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policiesSelf-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policies
NECST Lab @ Politecnico di Milano
 
Self-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policiesSelf-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policies
NECST Lab @ Politecnico di Milano
 
HIGH SPEED NETWORKS
HIGH SPEED NETWORKSHIGH SPEED NETWORKS
HIGH SPEED NETWORKS
Kathirvel Ayyaswamy
 
4 ijaems nov-2015-4-fsk demodulator- case study of pll application
4 ijaems nov-2015-4-fsk demodulator- case study of pll application4 ijaems nov-2015-4-fsk demodulator- case study of pll application
4 ijaems nov-2015-4-fsk demodulator- case study of pll application
INFOGAIN PUBLICATION
 
Improved implementation of a Deadline Monotonic algorithm for aperiodic traff...
Improved implementation of a Deadline Monotonic algorithm for aperiodic traff...Improved implementation of a Deadline Monotonic algorithm for aperiodic traff...
Improved implementation of a Deadline Monotonic algorithm for aperiodic traff...
Andrea Tino
 
14 queuing
14 queuing14 queuing
14 queuing
Dian Saputra
 
chapter 3.2 TCP.pptx
chapter 3.2 TCP.pptxchapter 3.2 TCP.pptx
chapter 3.2 TCP.pptx
Tekle12
 
Qualcomm lte-performance-challenges-09-01-2011
Qualcomm lte-performance-challenges-09-01-2011Qualcomm lte-performance-challenges-09-01-2011
Qualcomm lte-performance-challenges-09-01-2011Muhammad Noor Ifansyah
 
intelligent braking system report
intelligent braking system reportintelligent braking system report
intelligent braking system report
Sumit Kumar
 
Queuing theory and traffic analysis in depth
Queuing theory and traffic analysis in depthQueuing theory and traffic analysis in depth
Queuing theory and traffic analysis in depth
IdcIdk1
 
frequency responce.ppt
frequency responce.pptfrequency responce.ppt
frequency responce.ppt
IbrahimKhawaji3
 
REDUCING THE MONITORING REGISTER FOR THE DETECTION OF ANOMALIES IN SOFTWARE D...
REDUCING THE MONITORING REGISTER FOR THE DETECTION OF ANOMALIES IN SOFTWARE D...REDUCING THE MONITORING REGISTER FOR THE DETECTION OF ANOMALIES IN SOFTWARE D...
REDUCING THE MONITORING REGISTER FOR THE DETECTION OF ANOMALIES IN SOFTWARE D...
csandit
 
Generating Automated and Online Test Oracles for Simulink Models with Continu...
Generating Automated and Online Test Oracles for Simulink Models with Continu...Generating Automated and Online Test Oracles for Simulink Models with Continu...
Generating Automated and Online Test Oracles for Simulink Models with Continu...
Lionel Briand
 
UDT
UDTUDT
UDT
lilyco
 
TCP Over Wireless
TCP Over WirelessTCP Over Wireless
TCP Over WirelessFarooq Khan
 
A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...
A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...
A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...
Steven Wallach
 
Intelligent Network Services through Active Flow Manipulation
Intelligent Network Services through Active Flow ManipulationIntelligent Network Services through Active Flow Manipulation
Intelligent Network Services through Active Flow Manipulation
Tal Lavian Ph.D.
 

Similar to Design Of A PI Rate Controller For Mitigating SIP Overload (20)

Self-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policiesSelf-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policies
 
CRC AND TRANSMIT ERROR REPORT
CRC AND TRANSMIT ERROR REPORTCRC AND TRANSMIT ERROR REPORT
CRC AND TRANSMIT ERROR REPORT
 
IRJET- Modeling a New Startup Algorithm for TCP New Reno
IRJET- Modeling a New Startup Algorithm for TCP New RenoIRJET- Modeling a New Startup Algorithm for TCP New Reno
IRJET- Modeling a New Startup Algorithm for TCP New Reno
 
Self-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policiesSelf-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policies
 
Self-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policiesSelf-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policies
 
HIGH SPEED NETWORKS
HIGH SPEED NETWORKSHIGH SPEED NETWORKS
HIGH SPEED NETWORKS
 
4 ijaems nov-2015-4-fsk demodulator- case study of pll application
4 ijaems nov-2015-4-fsk demodulator- case study of pll application4 ijaems nov-2015-4-fsk demodulator- case study of pll application
4 ijaems nov-2015-4-fsk demodulator- case study of pll application
 
Improved implementation of a Deadline Monotonic algorithm for aperiodic traff...
Improved implementation of a Deadline Monotonic algorithm for aperiodic traff...Improved implementation of a Deadline Monotonic algorithm for aperiodic traff...
Improved implementation of a Deadline Monotonic algorithm for aperiodic traff...
 
14 queuing
14 queuing14 queuing
14 queuing
 
chapter 3.2 TCP.pptx
chapter 3.2 TCP.pptxchapter 3.2 TCP.pptx
chapter 3.2 TCP.pptx
 
Qualcomm lte-performance-challenges-09-01-2011
Qualcomm lte-performance-challenges-09-01-2011Qualcomm lte-performance-challenges-09-01-2011
Qualcomm lte-performance-challenges-09-01-2011
 
intelligent braking system report
intelligent braking system reportintelligent braking system report
intelligent braking system report
 
Queuing theory and traffic analysis in depth
Queuing theory and traffic analysis in depthQueuing theory and traffic analysis in depth
Queuing theory and traffic analysis in depth
 
frequency responce.ppt
frequency responce.pptfrequency responce.ppt
frequency responce.ppt
 
REDUCING THE MONITORING REGISTER FOR THE DETECTION OF ANOMALIES IN SOFTWARE D...
REDUCING THE MONITORING REGISTER FOR THE DETECTION OF ANOMALIES IN SOFTWARE D...REDUCING THE MONITORING REGISTER FOR THE DETECTION OF ANOMALIES IN SOFTWARE D...
REDUCING THE MONITORING REGISTER FOR THE DETECTION OF ANOMALIES IN SOFTWARE D...
 
Generating Automated and Online Test Oracles for Simulink Models with Continu...
Generating Automated and Online Test Oracles for Simulink Models with Continu...Generating Automated and Online Test Oracles for Simulink Models with Continu...
Generating Automated and Online Test Oracles for Simulink Models with Continu...
 
UDT
UDTUDT
UDT
 
TCP Over Wireless
TCP Over WirelessTCP Over Wireless
TCP Over Wireless
 
A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...
A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...
A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...
 
Intelligent Network Services through Active Flow Manipulation
Intelligent Network Services through Active Flow ManipulationIntelligent Network Services through Active Flow Manipulation
Intelligent Network Services through Active Flow Manipulation
 

Recently uploaded

Understanding User Behavior with Google Analytics.pdf
Understanding User Behavior with Google Analytics.pdfUnderstanding User Behavior with Google Analytics.pdf
Understanding User Behavior with Google Analytics.pdf
SEO Article Boost
 
原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样
原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样
原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样
3ipehhoa
 
重新申请毕业证书(RMIT毕业证)皇家墨尔本理工大学毕业证成绩单精仿办理
重新申请毕业证书(RMIT毕业证)皇家墨尔本理工大学毕业证成绩单精仿办理重新申请毕业证书(RMIT毕业证)皇家墨尔本理工大学毕业证成绩单精仿办理
重新申请毕业证书(RMIT毕业证)皇家墨尔本理工大学毕业证成绩单精仿办理
vmemo1
 
Comptia N+ Standard Networking lesson guide
Comptia N+ Standard Networking lesson guideComptia N+ Standard Networking lesson guide
Comptia N+ Standard Networking lesson guide
GTProductions1
 
一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理
一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理
一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理
keoku
 
Bài tập unit 1 English in the world.docx
Bài tập unit 1 English in the world.docxBài tập unit 1 English in the world.docx
Bài tập unit 1 English in the world.docx
nhiyenphan2005
 
Bridging the Digital Gap Brad Spiegel Macon, GA Initiative.pptx
Bridging the Digital Gap Brad Spiegel Macon, GA Initiative.pptxBridging the Digital Gap Brad Spiegel Macon, GA Initiative.pptx
Bridging the Digital Gap Brad Spiegel Macon, GA Initiative.pptx
Brad Spiegel Macon GA
 
一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理
一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理
一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理
ufdana
 
急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样
急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样
急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样
3ipehhoa
 
APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024
APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024
APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024
APNIC
 
可查真实(Monash毕业证)西澳大学毕业证成绩单退学买
可查真实(Monash毕业证)西澳大学毕业证成绩单退学买可查真实(Monash毕业证)西澳大学毕业证成绩单退学买
可查真实(Monash毕业证)西澳大学毕业证成绩单退学买
cuobya
 
1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样
1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样
1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样
3ipehhoa
 
1.Wireless Communication System_Wireless communication is a broad term that i...
1.Wireless Communication System_Wireless communication is a broad term that i...1.Wireless Communication System_Wireless communication is a broad term that i...
1.Wireless Communication System_Wireless communication is a broad term that i...
JeyaPerumal1
 
一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理
一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理
一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理
eutxy
 
Search Result Showing My Post is Now Buried
Search Result Showing My Post is Now BuriedSearch Result Showing My Post is Now Buried
Search Result Showing My Post is Now Buried
Trish Parr
 
Internet of Things in Manufacturing: Revolutionizing Efficiency & Quality | C...
Internet of Things in Manufacturing: Revolutionizing Efficiency & Quality | C...Internet of Things in Manufacturing: Revolutionizing Efficiency & Quality | C...
Internet of Things in Manufacturing: Revolutionizing Efficiency & Quality | C...
CIOWomenMagazine
 
How to Use Contact Form 7 Like a Pro.pptx
How to Use Contact Form 7 Like a Pro.pptxHow to Use Contact Form 7 Like a Pro.pptx
How to Use Contact Form 7 Like a Pro.pptx
Gal Baras
 
test test test test testtest test testtest test testtest test testtest test ...
test test  test test testtest test testtest test testtest test testtest test ...test test  test test testtest test testtest test testtest test testtest test ...
test test test test testtest test testtest test testtest test testtest test ...
Arif0071
 
国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理
国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理
国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理
zoowe
 
Meet up Milano 14 _ Axpo Italia_ Migration from Mule3 (On-prem) to.pdf
Meet up Milano 14 _ Axpo Italia_ Migration from Mule3 (On-prem) to.pdfMeet up Milano 14 _ Axpo Italia_ Migration from Mule3 (On-prem) to.pdf
Meet up Milano 14 _ Axpo Italia_ Migration from Mule3 (On-prem) to.pdf
Florence Consulting
 

Recently uploaded (20)

Understanding User Behavior with Google Analytics.pdf
Understanding User Behavior with Google Analytics.pdfUnderstanding User Behavior with Google Analytics.pdf
Understanding User Behavior with Google Analytics.pdf
 
原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样
原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样
原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样
 
重新申请毕业证书(RMIT毕业证)皇家墨尔本理工大学毕业证成绩单精仿办理
重新申请毕业证书(RMIT毕业证)皇家墨尔本理工大学毕业证成绩单精仿办理重新申请毕业证书(RMIT毕业证)皇家墨尔本理工大学毕业证成绩单精仿办理
重新申请毕业证书(RMIT毕业证)皇家墨尔本理工大学毕业证成绩单精仿办理
 
Comptia N+ Standard Networking lesson guide
Comptia N+ Standard Networking lesson guideComptia N+ Standard Networking lesson guide
Comptia N+ Standard Networking lesson guide
 
一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理
一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理
一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理
 
Bài tập unit 1 English in the world.docx
Bài tập unit 1 English in the world.docxBài tập unit 1 English in the world.docx
Bài tập unit 1 English in the world.docx
 
Bridging the Digital Gap Brad Spiegel Macon, GA Initiative.pptx
Bridging the Digital Gap Brad Spiegel Macon, GA Initiative.pptxBridging the Digital Gap Brad Spiegel Macon, GA Initiative.pptx
Bridging the Digital Gap Brad Spiegel Macon, GA Initiative.pptx
 
一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理
一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理
一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理
 
急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样
急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样
急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样
 
APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024
APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024
APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024
 
可查真实(Monash毕业证)西澳大学毕业证成绩单退学买
可查真实(Monash毕业证)西澳大学毕业证成绩单退学买可查真实(Monash毕业证)西澳大学毕业证成绩单退学买
可查真实(Monash毕业证)西澳大学毕业证成绩单退学买
 
1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样
1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样
1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样
 
1.Wireless Communication System_Wireless communication is a broad term that i...
1.Wireless Communication System_Wireless communication is a broad term that i...1.Wireless Communication System_Wireless communication is a broad term that i...
1.Wireless Communication System_Wireless communication is a broad term that i...
 
一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理
一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理
一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理
 
Search Result Showing My Post is Now Buried
Search Result Showing My Post is Now BuriedSearch Result Showing My Post is Now Buried
Search Result Showing My Post is Now Buried
 
Internet of Things in Manufacturing: Revolutionizing Efficiency & Quality | C...
Internet of Things in Manufacturing: Revolutionizing Efficiency & Quality | C...Internet of Things in Manufacturing: Revolutionizing Efficiency & Quality | C...
Internet of Things in Manufacturing: Revolutionizing Efficiency & Quality | C...
 
How to Use Contact Form 7 Like a Pro.pptx
How to Use Contact Form 7 Like a Pro.pptxHow to Use Contact Form 7 Like a Pro.pptx
How to Use Contact Form 7 Like a Pro.pptx
 
test test test test testtest test testtest test testtest test testtest test ...
test test  test test testtest test testtest test testtest test testtest test ...test test  test test testtest test testtest test testtest test testtest test ...
test test test test testtest test testtest test testtest test testtest test ...
 
国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理
国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理
国外证书(Lincoln毕业证)新西兰林肯大学毕业证成绩单不能毕业办理
 
Meet up Milano 14 _ Axpo Italia_ Migration from Mule3 (On-prem) to.pdf
Meet up Milano 14 _ Axpo Italia_ Migration from Mule3 (On-prem) to.pdfMeet up Milano 14 _ Axpo Italia_ Migration from Mule3 (On-prem) to.pdf
Meet up Milano 14 _ Axpo Italia_ Migration from Mule3 (On-prem) to.pdf
 

Design Of A PI Rate Controller For Mitigating SIP Overload

  • 2. Wh t i SIP? What is SIP?  Session Initiation Protocol  protocol that establishes, Internet manages (multimedia) sessions [RFC 3261]  used for VoIP presence & VoIP, video conference Proxy Server Proxy Server  SIP consists of two basic elements l t  UA (User Agent) and P-Server (Proxy Server)  About 1000 companies produce SIP products  Microsoft’s Windows Messenger (≥4 7) i l d SIP M (≥4.7) includes UA UA Simplified SIP Network Configuration 2
  • 3. IMS SIP Server Overload – A  f h ll Performance Management Challenge  3GPP has adopted SIP  as the basis of IMS architecture  Problem: Server(s) cannot complete the processing of requests under overload conditions  Multiple causes: Insufficient p capacity, Component Failures, Unexpected traffic surges, DOS attacks [RFC 5390]  Impact: Performance degradation, drop in throughput, revenue loss, network collapse Simplified Si lifi d IMS C t l L Control Layer O Overview i 3
  • 4. Why Worry About SIP Message Retransmission? Why Worry About SIP Message Retransmission?  Retransmission built-in to maintain SIP reliability y against message loss  Loss is detected as long delay in acknowledgment  Surge in user demand can cause SIP server overload and long delay to acknowledge SIP messages  Long delays may trigger more retransmissions and a positive feedback exacerbating server overload 4
  • 5. C t ib ti f Thi P Contributions of This Paper  Using control-theoretic approach to g pp  model the interaction of overloaded server and its upstream server as a feedback control system  Proposing Round Trip Delay Control (RTDC) algorithm (a PI rate control algorithm) to mitigate the overload by  regulating retransmissions  clamping round trip delay below a desirable target value  Performing OPNET simulations under two typical overload scenarios to  validate RTDC (implicit SIP overload control) algorithm 5
  • 6. Outline  SIP Retransmission Mechanism Overview  Related Work on SIP Overload Control  Queuing Dynamics of Overloaded Server  Control-Theoretic Design for Overload Control Based on R Round-Trip Delay dTi D l  Performance Evaluation to Validate RTDC SIP Overload Control Algorithm  Conclusions 6
  • 8. Retransmission Mechanism Retransmission Mechanism  Purpose: Confirmation of successful transmission P-servers between UA and UA via P servers  Two Types:  Hop by Hop First retransmission after T1 , subsequent one is 2 times previous interval. Total intervals up to 64 x T1 (maximum 6 retransmissions). Default T1 = 0.5 s.  End-to End First t Fi t retransmission after T1 , subsequent one is 2 ti i i ft b t i times previous interval up to a maximum of T2 . Total intervals up to 64 x T1 (maximum 11 retransmissions). Default T2 = 4.0 s. 8
  • 9. Related Work on Overload Control  Most of existing overload control solutions adopt push-back mechanism  cancel the overload effectively  by introducing overhead to advertise upstream servers to  reduce message sending rate d di t  produce overload propagation from sever to server until end-users  block a large amount of calls unnecessarily  cause revenue loss of service providers • Our Proposal: Reduce retransmission rate only to mitigate overload  by maintaining original message rate to  keep the revenue of service providers 9
  • 10. SIP Overload Control Mechanism Classification Figure 3. The classification for the existing SIP overload control schemes Y. Hong, C. Huang, and J. Yan, “A Comparative Study of SIP Overload Control Algorithms,” Network and T ffi E i N k d Traffic Engineering i E i in Emerging Di ib d C i Distributed Computing A li i i Applications, Edi d b Edited by J. Abawajy, M. Pathan, M. Rahman, A.K. Pathan, and M.M. Deris, IGI Global, 2012, pp. 1‐20. 10
  • 11. Queuing Dynamics of Overloaded Server Q g y   100Trying response Invite request 1(t) r1(t) r2' (t )   Timer fires Message buffer  q1(t) Reset timer Timer expires  qr1(t) Invite request Server 2 2(t) 2   1    r2(t) Server 1 2(t) q2(t) 1(t) 100Trying response Timer starts Ti Timer buffer Queuing dynamics of Server 2 Queuing dynamics of Server 1  q 2 (t )  2 (t )  r2 (t )   2 (t )   2 (t )  q1 (t )  1 (t )  r1 (t )  r2' (t )  1 (t )  1 (t ) (1) (2) Notation: 1(t) original message rate, r1 (t) message retransmission rate, 2(t) service rate 1 (t) response rate q1 (t) queue size rate, rate, Overload Scenario: Server slowdown at Server 2 due to routine maintenance Overload Collapse: 2(t)   2(t) > 2(t)  q 2 (t )  0 (see Eq. (1))  q2(t)   ti trigger r''2(t)  r2(t) i increases q2(t) more quickly i kl  Overload Propagation: r'2(t) enter Server 1  q 1 ( t )  0 (see Eq. (2))  q1(t)  11
  • 12. Overload Controller Design  g Upstream Server 1 can process all arrival messages without any delay • before the overload is propagated from its downstream Server 2 () () () ()( p ) • 2(t)=1(t) and r2(t)=r'2(t) (see previous slide #11) Queuing dynamics of Server 2 Queuing delay of Server 2 g y   q2 (t )  1 (t )  r2 (t )   2 (t )   2 (t ) (3)  2 (t )  [r2 (t )  1 (t )  2 (t )  2 (t )] / 2 (t ) (4) ( ) • Each request message corresponds to a response message [SIP RFC] • Thus request message service rate (i.e., the response message rate 1(t)) can approximate the total service rate 2(t)   Queuing delay of Server 2  2 (t )  [r2 (t )  1 (t )   2 (t )  1 (t )] / 1 (t ) (5) • Round trip delay of upstream server can approximate queuing delay of overloaded downstream server 2(t)  when overload happens and queuing delay is dominant PI controller regulates retransmission rate r'2(t) t  r2 (t )  K P e(t )  K I 0 e( )d t  K P ( 0   2 (t ))  K I 0 ( 0   2 ( ))d 12
  • 13. Feedback Overload Control System  Figure 4.Block diagram of feedback SIP overload control system g g y Control plant P(s)=2(s)/r'2(s)= {2(t)}/ {r'2(t)}1/(1s) PI controller C(s)=KP+KI/s ( ) Open-loop overload control system G(s)=C(s)P(s)=(KP+KI/s)/(1s) Positive phase margin m of G(s) can guarantee control system stability PI controller gains can be obtained based on phase margin m KP  1 tan( m ) 1  tan 2 ( m ) KI  1 1  tan 2 ( m ) 13
  • 14. SIP Overload Control Algorithm (RTDC) SIP Overload Control Algorithm (RTDC) 14
  • 16. Scenario to Validate Overload Control Algorithm • Poisson distributed message generation rate and service rate • Two typical overload scenarios • 4 originating servers generated original messages with the same rate o= (1/4)1; Mean message arrive rate of Server 1 was 1=4o • Mean service capacity of each originating server was Co=500 messages/sec Scenario 1 Initial overload at  Server 1 due to  demand burst • Mean arrival rate 1=800 messages/sec (emulating a 800 short surge of user demands) from time t=0s to t=30s • Mean arrival rate 1=200 messages/sec (emulating regular user demands) from time t=30s to t=90s t 30s t 90s • Mean service capacities of two proxy servers were C1=C2=1000 messages/sec Scenario 2 S i   Initial overload at  Server 2 due to  server slowdown • M Mean arrival rate 1=200 messages/sec i l t 200 / • Mean server capacity C1=1000 messages/sec • Mean server capacity C2=100 messages/sec (emulating 100 server slowdown) from time t=0s to t=30s, and C2=1000 messages/sec from time t=30s to t=90s 16
  • 17. Simulation Results of Scenario 1 Simulation Results of Scenario 1 7 NOLC Queu size q0 (messages) ue 1 Queue size q (messages s) 12000 x 10 NOLC q1 OLC q1 6 5 4 3 2 1 0 0 10 20 30 40 50 60 70 80 90 Time (sec) Queue size q1 (messages) of Server 1 versus time 10 NOLC q0 OLC q0 8 9000 6 6000 4 3000 2 0 0 10 20 30 40 50 60 70 80 OLC Queue size q0 (messa e ages) 4 8 0 90 Time (sec) Queue size qo (messages) of an originating server versus time • Without overload control algorithm applied, Server 1 became CPU overloaded  overload deteriorated as time evolves, leading to eventual crash of Server 1 • Overload control algorithm made queue size of Server 1 increase slowly  taking 27s to cancel the overload at Server 1 after new user demand rate reduced at time t=30s 17  11s faster than RRRC algorithm proposed by IEEE Globecom 2010
  • 18. Simulation Results of Scenario 2 4 x 10 10 6 2 4 1 2 0 0 10 20 30 40 50 60 70 80 0 90 Time (sec) Queue size q1 ( Q i (messages) of Server 1 ) fS versus time x 10 1.8 2 3 2 Queu size q (messag ue ges) 8 OLC q1 1 NOLC q1 4 4 OLC Queue size q (me Q essages) 1 NOLC Queue size q (m Q messages) 5 NOLC q2 1.6 OLC q2 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 10 20 30 40 50 60 70 80 90 Time (sec) Queue size q2 (messages) of Server 2 versus time • Without overload control algorithm applied, overload was propagated from Server 2 to Server 1 when initial overload h t S h i iti l l d happened at S d t Server 2 • Persisted overload would crash Server 1 after Server 2 resumed its normal service O e oad control algorithm p e e t o e oad p opagat o to Se e 1 prevent overload propagation Server • Overload co t o a go t  taking only 7s to cancel the overload at Server 2  2s faster than RRRC algorithm proposed by IEEE Globecom 2010 18
  • 19. Conclusions  Employing control-theoretic approach to p  model SIP overload problem as a feedback control p problem  Developing Round Trip Delay Control (RTDC) algorithm (a PI rate control algorithm) to mitigate the overload by  controlling retransmission rate t lli t i i t  claiming round trip delay below desirable target value  Simulation results demonstrate that RTDC (implicit SIP ( p overload control) can  prevent the overload propagation  cancel the overload effectively  Our solution does NOT require modification in the SIP header and time-consuming standardization process  can be freely implemented in any SIP servers of different carriers 19
  • 20. Remarks (1)  Explicit SIP overload control algorithm requires the modification in the SIP header and the cooperation among different carriers in different countries  Implicit SIP overload control algorithm does NOT require the modification in the SIP header and the cooperation among different carriers in different countries. Any carrier can freely implement implicit SIP overload control algorithm in its SIP servers to avoid potential widespread server crash  OPNET simulation code f 3 implicit SIP overload control algorithms i l ti d for i li it l d t l l ith (RRRC, RTDC, and RTQC) published by IEEE Globecom 2010/ICC 2011 available for non-commercial research use upon request  RTDC algorithm (proposed by this IEEE ICC 2011 paper) has been recommended as White paper by TechRepublic (an online trade publication and social community for IT professionals, part of the CBS Interactive) http://www.techrepublic.com/whitepapers/design-of-a-pi-rate-controller-formitigating-sip-overload/25142469 20
  • 21. Remarks (2)  Journal version discusses how to apply RTDC algorithm to mitigate SIP overload for both SIP over UDP and SIP over TCP (with TLS)  “Applying control theoretic approach to mitigate SIP overload,” y ( ) Telecommunication Systems, 54(4), 2013, pp. 387-404. Available at http://www.researchgate.net/publication/257667871_Applying_control_theoretic _approach_to_mitigate_SIP_overload  Survey on SIP overload control algorithms: “A Comparative Study of SIP y g p y Overload Control Algorithms,” Network and Traffic Engineering in Emerging Distributed Computing Applications, IGI Global, 2012, pp. 1-20. http://www.igi-global.com/chapter/comparative-study-sip-overloadcontrol/67496 t l/67496 http://www.researchgate.net/publication/231609451_A_Comparative_Study_of _SIP_Overload_Control_Algorithms  Discussions on control system design can be found in the answers to the ResearchGate question “What are trends in control theory and its applications in physical systems (from a research point of view)? ” https://www.researchgate.net/post/What_are_trends_in_control_theory_and_its https://www researchgate net/post/What are trends in control theory and its _applications_in_physical_systems_from_a_research_point_of_view2 21