This paper proposes a Tamil document summarization system that utilizes statistical, semantic, and heuristic methods to generate a coherent multi-document summary based on a given query. The system performs Latent Dirichlet Allocation (LDA) topic modeling on document clusters to identify important topics and words. Sentences are then scored based on topic modeling results and redundancy is removed using Maximal Marginal Relevance. The summary is generated from the highest scoring sentences in different perspectives based on the query topic or entities. Evaluation results show the system effectively summarizes multiple documents according to the query.