SlideShare a Scribd company logo
1 of 6
Download to read offline
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
High-Efficiency Asymmetric Forward-Flyback Converter
for Wide Output Power Range
ABSTRACT
This paper proposes an asymmetric forward-flyback dc-dc converter that has high power-
conversion efficiency ηe over a wide output power range. To solve the problem of ringing in the
voltage of the rectifier diodes and the problem of duty loss in the conventional asymmetric half-
bridge (AHB) converter, the proposed converter uses a voltage doubler structure with a forward
inductor Lf in the second stage, instead of using the transformer leakage inductance, to control
output current. Lf resonates with the capacitors in the voltage doubler to achieve a zero-voltage
turn-on of switches and a zero-current turn-off of diodes for a wide output power range. The
proposed converter could operate at a wider input voltage range than the other AHB converters.
ηe was measured as 95.9% at output power PO = 100 W and as 90% at PO = 10 W, when the
converter was operated at input voltage 390 V, output voltage 142 V, and switching frequency
100 kHz.
KEYWORDS
1. DC-DC power conversion
2. Resonance
3. Stress
4. Transformer windings
SOFTWARE: MATLAB/SIMULINK
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
CIRCUIT DIAGRAM:
Fig. 1. Circuit structure of the proposed converter.
EXPECTED SIMULATION RESULTS
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 2. Voltage and current waveforms of switches of the proposed converter
at (a) PO = 100 W and (b) PO = 10 W.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 3. Voltage and current waveforms of D1 and D2 at PO = 100 W: (a) the proposed converter, (b) the
conventional AHB converter, and (c) the converter of [20].
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
CONCLUSION
The proposed asymmetric forward-flyback dc-dc converter had high power conversion efficiency
ηe for a wide range of output power PO. The problems of voltage ringing and duty loss in the
conventional AHB converter was solved by adopting a forward inductor Lf in the voltage doubler
circuit of the secondary stage. The proposed converter used an unbalanced secondary turns of
transformer which allowed it to operate for a much wider range of input voltage than the other
converter [20] that uses a voltage doubler structure in the secondary stage. The proposed
converter also reduced the voltage stress on switches and the current stress on diodes
significantly compared to the dual resonant converter (the converter of [24]). The proposed
converter had ηe ≥ 90% for 10 ≤ PO ≤ 100 W at VIN = 390 V, VO = 142 V, and fS = 100 kHz
(the highest ηe = 95.9%, at PO = 100 W), and could operate at 330 ≤ VIN ≤ 440 V. The proposed
asymmetric forward-flyback dc-dc converter is a good candidate for developing a step-down dc-
dc converter for applications that require high power-conversion efficiency over wide ranges of
input voltage and output power.
REFERENCES:
[1] J. B. Lio, M. S. Lin, D. Y. Chen, and W. S. Feng, “Single-switch soft-switching flyback
converter,” Electron. Letter, vol. 32, no. 16, pp. 1429-1430, Aug. 1996.
[2] A. Abramovitz, C. S. Liao, and K. Smedley, “State-Plane analysis of regenerative snubber for
flyback converters,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5323-5332, Nov. 2013.
[3] L. Huber, and M. M. Jovanovic, “Evaluation of flyback topologies for notebook AC/DC
adapter/charger applications,” in Proc. High Freq. Power Conversion Conf., 1995, pp. 284-294.
[4] S. Du, F. Zhu, and P. Qian, “Primary side control circuit of a flyback converter for HBLED,”
in Proc. 2nd IEEE Int. Symp. Power Electron. Distrib. Generation Syst., 2010, pp. 339-342.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
[5] E. S. Kim, B. G. Chung, S. H. Jang, M. G. Choi, and M. H. Kye, “A study of novel flyback
converter with very low power consumption at the standby operation mode,” in Proc. IEEE
Appl. Power Electron. Conf., 2010, pp. 1833-1837

More Related Content

What's hot

A generalized multilevel inverter topology with reduction of total standing v...
A generalized multilevel inverter topology with reduction of total standing v...A generalized multilevel inverter topology with reduction of total standing v...
A generalized multilevel inverter topology with reduction of total standing v...Asoka Technologies
 
Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...
Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...
Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...Asoka Technologies
 
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...Asoka Technologies
 
Novel Zero-Current Switching Current-Fed Half-Bridge Isolated Dc/Dc Converter...
Novel Zero-Current Switching Current-Fed Half-Bridge Isolated Dc/Dc Converter...Novel Zero-Current Switching Current-Fed Half-Bridge Isolated Dc/Dc Converter...
Novel Zero-Current Switching Current-Fed Half-Bridge Isolated Dc/Dc Converter...Asoka Technologies
 
Cascaded Open-End Winding Transformer based DVR
Cascaded Open-End Winding Transformer based DVRCascaded Open-End Winding Transformer based DVR
Cascaded Open-End Winding Transformer based DVRAsoka Technologies
 
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...Asoka Technologies
 
Inverter topologies for DSTATCOM applications—a simulation study
Inverter topologies for DSTATCOM applications—a simulation studyInverter topologies for DSTATCOM applications—a simulation study
Inverter topologies for DSTATCOM applications—a simulation studyAsoka Technologies
 
Volume weight cost comparison of a 1 mva 10 kv 400v solid state against a con...
Volume weight cost comparison of a 1 mva 10 kv 400v solid state against a con...Volume weight cost comparison of a 1 mva 10 kv 400v solid state against a con...
Volume weight cost comparison of a 1 mva 10 kv 400v solid state against a con...Asoka Technologies
 
Comparison of Modulation Techniques for Matrix Converter
Comparison of Modulation Techniques for Matrix ConverterComparison of Modulation Techniques for Matrix Converter
Comparison of Modulation Techniques for Matrix ConverterAsoka Technologies
 
Single phase ac ac buck-boost converter with single-phase matrix topology
Single phase ac ac buck-boost converter with single-phase matrix topologySingle phase ac ac buck-boost converter with single-phase matrix topology
Single phase ac ac buck-boost converter with single-phase matrix topologyAsoka Technologies
 
A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...
A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...
A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...Asoka Technologies
 
Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...
Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...
Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...Asoka Technologies
 
High frequency ac-link pv inverter
High frequency ac-link pv inverterHigh frequency ac-link pv inverter
High frequency ac-link pv inverterAsoka Technologies
 
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...Asoka Technologies
 
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...Asoka Technologies
 
Control of a Three-Phase Hybrid Converter for a PV Charging Station
Control of a Three-Phase Hybrid Converter for a PV Charging StationControl of a Three-Phase Hybrid Converter for a PV Charging Station
Control of a Three-Phase Hybrid Converter for a PV Charging StationAsoka Technologies
 
39 9146 a novel single source multi output (edit lafi)
39 9146 a novel single source multi output (edit lafi)39 9146 a novel single source multi output (edit lafi)
39 9146 a novel single source multi output (edit lafi)IAESIJEECS
 
Design and simulation of single phase five-level symmetrical cascaded h-bridg...
Design and simulation of single phase five-level symmetrical cascaded h-bridg...Design and simulation of single phase five-level symmetrical cascaded h-bridg...
Design and simulation of single phase five-level symmetrical cascaded h-bridg...Asoka Technologies
 
A Two-Input Dual Active Bridge Converter for a Smart User Network Using Integ...
A Two-Input Dual Active Bridge Converter for a Smart User Network Using Integ...A Two-Input Dual Active Bridge Converter for a Smart User Network Using Integ...
A Two-Input Dual Active Bridge Converter for a Smart User Network Using Integ...Alessandro Burgio
 
Delta connection (line and phase quantities)
Delta connection (line and phase quantities)Delta connection (line and phase quantities)
Delta connection (line and phase quantities)Keshav
 

What's hot (20)

A generalized multilevel inverter topology with reduction of total standing v...
A generalized multilevel inverter topology with reduction of total standing v...A generalized multilevel inverter topology with reduction of total standing v...
A generalized multilevel inverter topology with reduction of total standing v...
 
Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...
Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...
Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...
 
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
 
Novel Zero-Current Switching Current-Fed Half-Bridge Isolated Dc/Dc Converter...
Novel Zero-Current Switching Current-Fed Half-Bridge Isolated Dc/Dc Converter...Novel Zero-Current Switching Current-Fed Half-Bridge Isolated Dc/Dc Converter...
Novel Zero-Current Switching Current-Fed Half-Bridge Isolated Dc/Dc Converter...
 
Cascaded Open-End Winding Transformer based DVR
Cascaded Open-End Winding Transformer based DVRCascaded Open-End Winding Transformer based DVR
Cascaded Open-End Winding Transformer based DVR
 
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
 
Inverter topologies for DSTATCOM applications—a simulation study
Inverter topologies for DSTATCOM applications—a simulation studyInverter topologies for DSTATCOM applications—a simulation study
Inverter topologies for DSTATCOM applications—a simulation study
 
Volume weight cost comparison of a 1 mva 10 kv 400v solid state against a con...
Volume weight cost comparison of a 1 mva 10 kv 400v solid state against a con...Volume weight cost comparison of a 1 mva 10 kv 400v solid state against a con...
Volume weight cost comparison of a 1 mva 10 kv 400v solid state against a con...
 
Comparison of Modulation Techniques for Matrix Converter
Comparison of Modulation Techniques for Matrix ConverterComparison of Modulation Techniques for Matrix Converter
Comparison of Modulation Techniques for Matrix Converter
 
Single phase ac ac buck-boost converter with single-phase matrix topology
Single phase ac ac buck-boost converter with single-phase matrix topologySingle phase ac ac buck-boost converter with single-phase matrix topology
Single phase ac ac buck-boost converter with single-phase matrix topology
 
A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...
A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...
A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...
 
Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...
Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...
Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...
 
High frequency ac-link pv inverter
High frequency ac-link pv inverterHigh frequency ac-link pv inverter
High frequency ac-link pv inverter
 
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
 
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
 
Control of a Three-Phase Hybrid Converter for a PV Charging Station
Control of a Three-Phase Hybrid Converter for a PV Charging StationControl of a Three-Phase Hybrid Converter for a PV Charging Station
Control of a Three-Phase Hybrid Converter for a PV Charging Station
 
39 9146 a novel single source multi output (edit lafi)
39 9146 a novel single source multi output (edit lafi)39 9146 a novel single source multi output (edit lafi)
39 9146 a novel single source multi output (edit lafi)
 
Design and simulation of single phase five-level symmetrical cascaded h-bridg...
Design and simulation of single phase five-level symmetrical cascaded h-bridg...Design and simulation of single phase five-level symmetrical cascaded h-bridg...
Design and simulation of single phase five-level symmetrical cascaded h-bridg...
 
A Two-Input Dual Active Bridge Converter for a Smart User Network Using Integ...
A Two-Input Dual Active Bridge Converter for a Smart User Network Using Integ...A Two-Input Dual Active Bridge Converter for a Smart User Network Using Integ...
A Two-Input Dual Active Bridge Converter for a Smart User Network Using Integ...
 
Delta connection (line and phase quantities)
Delta connection (line and phase quantities)Delta connection (line and phase quantities)
Delta connection (line and phase quantities)
 

Similar to High efficiency asymmetric forward-flyback converter for wide output power range

Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...
Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...
Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...Asoka Technologies
 
Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...
Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...
Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...Asoka Technologies
 
Three phase unidirectional rectifiers with open-end source and cascaded float...
Three phase unidirectional rectifiers with open-end source and cascaded float...Three phase unidirectional rectifiers with open-end source and cascaded float...
Three phase unidirectional rectifiers with open-end source and cascaded float...Asoka Technologies
 
A comparison of soft switched dc to dc converters for electrolyzer application
 A comparison of soft switched dc to dc converters for electrolyzer application A comparison of soft switched dc to dc converters for electrolyzer application
A comparison of soft switched dc to dc converters for electrolyzer applicationAsoka Technologies
 
A Modified Seven Level Cascaded H Bridge Inverter
A Modified Seven Level Cascaded H Bridge InverterA Modified Seven Level Cascaded H Bridge Inverter
A Modified Seven Level Cascaded H Bridge InverterAsoka Technologies
 
New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...Asoka Technologies
 
Application of PWM Control Strategy on Z-Source Isolated Dual active bridge D...
Application of PWM Control Strategy on Z-Source Isolated Dual active bridge D...Application of PWM Control Strategy on Z-Source Isolated Dual active bridge D...
Application of PWM Control Strategy on Z-Source Isolated Dual active bridge D...IJMER
 
Front end buck rectifier with reduced filter size and single-loop control
Front end buck rectifier with reduced filter size and single-loop controlFront end buck rectifier with reduced filter size and single-loop control
Front end buck rectifier with reduced filter size and single-loop controlAsoka Technologies
 
New Approaches for Harmonic Reduction Using Cascaded H-Bridge and Level Modules
New Approaches for Harmonic Reduction Using Cascaded H-Bridge and Level ModulesNew Approaches for Harmonic Reduction Using Cascaded H-Bridge and Level Modules
New Approaches for Harmonic Reduction Using Cascaded H-Bridge and Level Modulesijiert bestjournal
 
A Modified Seven Level Cascaded H Bridge Inverter
A Modified Seven Level Cascaded H Bridge InverterA Modified Seven Level Cascaded H Bridge Inverter
A Modified Seven Level Cascaded H Bridge InverterAsoka Technologies
 
Analysis and hardware implementation of five level cascaded H Bridge inverter
Analysis and hardware implementation of five level cascaded H Bridge inverterAnalysis and hardware implementation of five level cascaded H Bridge inverter
Analysis and hardware implementation of five level cascaded H Bridge inverterIJERA Editor
 
Analysis of 12 pulse phase control ac dc converter
Analysis of 12 pulse phase control ac dc converterAnalysis of 12 pulse phase control ac dc converter
Analysis of 12 pulse phase control ac dc converterAsoka Technologies
 
A transformerless grid connected photovoltaic inverter with switched capacitors
A transformerless grid connected photovoltaic inverter with switched capacitorsA transformerless grid connected photovoltaic inverter with switched capacitors
A transformerless grid connected photovoltaic inverter with switched capacitorsAsoka Technologies
 
Quasi-Single-Stage_Current-Fed_Resonant_AC-DC_Converter_Having_Improved_Heat_...
Quasi-Single-Stage_Current-Fed_Resonant_AC-DC_Converter_Having_Improved_Heat_...Quasi-Single-Stage_Current-Fed_Resonant_AC-DC_Converter_Having_Improved_Heat_...
Quasi-Single-Stage_Current-Fed_Resonant_AC-DC_Converter_Having_Improved_Heat_...Engnr Kami Zeb
 
Power quality improvement in utility interactive based ac dc converter using ...
Power quality improvement in utility interactive based ac dc converter using ...Power quality improvement in utility interactive based ac dc converter using ...
Power quality improvement in utility interactive based ac dc converter using ...Asoka Technologies
 
High step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converterHigh step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converterAsoka Technologies
 

Similar to High efficiency asymmetric forward-flyback converter for wide output power range (20)

Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...
Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...
Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...
 
Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...
Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...
Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...
 
Three phase unidirectional rectifiers with open-end source and cascaded float...
Three phase unidirectional rectifiers with open-end source and cascaded float...Three phase unidirectional rectifiers with open-end source and cascaded float...
Three phase unidirectional rectifiers with open-end source and cascaded float...
 
A comparison of soft switched dc to dc converters for electrolyzer application
 A comparison of soft switched dc to dc converters for electrolyzer application A comparison of soft switched dc to dc converters for electrolyzer application
A comparison of soft switched dc to dc converters for electrolyzer application
 
A Modified Seven Level Cascaded H Bridge Inverter
A Modified Seven Level Cascaded H Bridge InverterA Modified Seven Level Cascaded H Bridge Inverter
A Modified Seven Level Cascaded H Bridge Inverter
 
New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...
 
Application of PWM Control Strategy on Z-Source Isolated Dual active bridge D...
Application of PWM Control Strategy on Z-Source Isolated Dual active bridge D...Application of PWM Control Strategy on Z-Source Isolated Dual active bridge D...
Application of PWM Control Strategy on Z-Source Isolated Dual active bridge D...
 
Front end buck rectifier with reduced filter size and single-loop control
Front end buck rectifier with reduced filter size and single-loop controlFront end buck rectifier with reduced filter size and single-loop control
Front end buck rectifier with reduced filter size and single-loop control
 
New Approaches for Harmonic Reduction Using Cascaded H-Bridge and Level Modules
New Approaches for Harmonic Reduction Using Cascaded H-Bridge and Level ModulesNew Approaches for Harmonic Reduction Using Cascaded H-Bridge and Level Modules
New Approaches for Harmonic Reduction Using Cascaded H-Bridge and Level Modules
 
Simulation and Analysis of Multiphase Boost Converter with Soft-Switching for...
Simulation and Analysis of Multiphase Boost Converter with Soft-Switching for...Simulation and Analysis of Multiphase Boost Converter with Soft-Switching for...
Simulation and Analysis of Multiphase Boost Converter with Soft-Switching for...
 
A Modified Seven Level Cascaded H Bridge Inverter
A Modified Seven Level Cascaded H Bridge InverterA Modified Seven Level Cascaded H Bridge Inverter
A Modified Seven Level Cascaded H Bridge Inverter
 
Analysis and hardware implementation of five level cascaded H Bridge inverter
Analysis and hardware implementation of five level cascaded H Bridge inverterAnalysis and hardware implementation of five level cascaded H Bridge inverter
Analysis and hardware implementation of five level cascaded H Bridge inverter
 
N367984
N367984N367984
N367984
 
Analysis of 12 pulse phase control ac dc converter
Analysis of 12 pulse phase control ac dc converterAnalysis of 12 pulse phase control ac dc converter
Analysis of 12 pulse phase control ac dc converter
 
A transformerless grid connected photovoltaic inverter with switched capacitors
A transformerless grid connected photovoltaic inverter with switched capacitorsA transformerless grid connected photovoltaic inverter with switched capacitors
A transformerless grid connected photovoltaic inverter with switched capacitors
 
Quasi-Single-Stage_Current-Fed_Resonant_AC-DC_Converter_Having_Improved_Heat_...
Quasi-Single-Stage_Current-Fed_Resonant_AC-DC_Converter_Having_Improved_Heat_...Quasi-Single-Stage_Current-Fed_Resonant_AC-DC_Converter_Having_Improved_Heat_...
Quasi-Single-Stage_Current-Fed_Resonant_AC-DC_Converter_Having_Improved_Heat_...
 
Simplified cascade multiphase DC-DC buck power converter for low voltage larg...
Simplified cascade multiphase DC-DC buck power converter for low voltage larg...Simplified cascade multiphase DC-DC buck power converter for low voltage larg...
Simplified cascade multiphase DC-DC buck power converter for low voltage larg...
 
Power quality improvement in utility interactive based ac dc converter using ...
Power quality improvement in utility interactive based ac dc converter using ...Power quality improvement in utility interactive based ac dc converter using ...
Power quality improvement in utility interactive based ac dc converter using ...
 
High step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converterHigh step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converter
 
A1103030111
A1103030111A1103030111
A1103030111
 

More from Asoka Technologies

Solar pv charging station for electric vehicles
Solar pv charging station for electric vehiclesSolar pv charging station for electric vehicles
Solar pv charging station for electric vehiclesAsoka Technologies
 
Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...Asoka Technologies
 
Reliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV systemReliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV systemAsoka Technologies
 
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...Asoka Technologies
 
Power optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehiclePower optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehicleAsoka Technologies
 
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...Asoka Technologies
 
Power flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipcPower flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipcAsoka Technologies
 
Multifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms controlMultifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms controlAsoka Technologies
 
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...Asoka Technologies
 
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...Asoka Technologies
 
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...Asoka Technologies
 
Implementation of solar pv battery and diesel generator based electric vehic...
Implementation of solar pv  battery and diesel generator based electric vehic...Implementation of solar pv  battery and diesel generator based electric vehic...
Implementation of solar pv battery and diesel generator based electric vehic...Asoka Technologies
 
Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...Asoka Technologies
 
Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...Asoka Technologies
 
Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...Asoka Technologies
 
Application of Artificial Neural Networks for Shunt APF Control
Application of Artificial Neural Networks for Shunt APF ControlApplication of Artificial Neural Networks for Shunt APF Control
Application of Artificial Neural Networks for Shunt APF ControlAsoka Technologies
 
Control strategy of pmsg based wind energy conversion system under strong win...
Control strategy of pmsg based wind energy conversion system under strong win...Control strategy of pmsg based wind energy conversion system under strong win...
Control strategy of pmsg based wind energy conversion system under strong win...Asoka Technologies
 
Control and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv systemControl and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv systemAsoka Technologies
 
Application of boost converter to increase the speed range of dual stator win...
Application of boost converter to increase the speed range of dual stator win...Application of boost converter to increase the speed range of dual stator win...
Application of boost converter to increase the speed range of dual stator win...Asoka Technologies
 
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...Asoka Technologies
 

More from Asoka Technologies (20)

Solar pv charging station for electric vehicles
Solar pv charging station for electric vehiclesSolar pv charging station for electric vehicles
Solar pv charging station for electric vehicles
 
Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...
 
Reliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV systemReliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV system
 
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
 
Power optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehiclePower optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehicle
 
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
 
Power flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipcPower flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipc
 
Multifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms controlMultifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms control
 
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
 
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
 
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
 
Implementation of solar pv battery and diesel generator based electric vehic...
Implementation of solar pv  battery and diesel generator based electric vehic...Implementation of solar pv  battery and diesel generator based electric vehic...
Implementation of solar pv battery and diesel generator based electric vehic...
 
Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...
 
Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...
 
Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...
 
Application of Artificial Neural Networks for Shunt APF Control
Application of Artificial Neural Networks for Shunt APF ControlApplication of Artificial Neural Networks for Shunt APF Control
Application of Artificial Neural Networks for Shunt APF Control
 
Control strategy of pmsg based wind energy conversion system under strong win...
Control strategy of pmsg based wind energy conversion system under strong win...Control strategy of pmsg based wind energy conversion system under strong win...
Control strategy of pmsg based wind energy conversion system under strong win...
 
Control and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv systemControl and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv system
 
Application of boost converter to increase the speed range of dual stator win...
Application of boost converter to increase the speed range of dual stator win...Application of boost converter to increase the speed range of dual stator win...
Application of boost converter to increase the speed range of dual stator win...
 
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
 

Recently uploaded

Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoordharasingh5698
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...soginsider
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf203318pmpc
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756dollysharma2066
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 

Recently uploaded (20)

Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 

High efficiency asymmetric forward-flyback converter for wide output power range

  • 1. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 High-Efficiency Asymmetric Forward-Flyback Converter for Wide Output Power Range ABSTRACT This paper proposes an asymmetric forward-flyback dc-dc converter that has high power- conversion efficiency ηe over a wide output power range. To solve the problem of ringing in the voltage of the rectifier diodes and the problem of duty loss in the conventional asymmetric half- bridge (AHB) converter, the proposed converter uses a voltage doubler structure with a forward inductor Lf in the second stage, instead of using the transformer leakage inductance, to control output current. Lf resonates with the capacitors in the voltage doubler to achieve a zero-voltage turn-on of switches and a zero-current turn-off of diodes for a wide output power range. The proposed converter could operate at a wider input voltage range than the other AHB converters. ηe was measured as 95.9% at output power PO = 100 W and as 90% at PO = 10 W, when the converter was operated at input voltage 390 V, output voltage 142 V, and switching frequency 100 kHz. KEYWORDS 1. DC-DC power conversion 2. Resonance 3. Stress 4. Transformer windings SOFTWARE: MATLAB/SIMULINK
  • 2. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 CIRCUIT DIAGRAM: Fig. 1. Circuit structure of the proposed converter. EXPECTED SIMULATION RESULTS
  • 3. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 2. Voltage and current waveforms of switches of the proposed converter at (a) PO = 100 W and (b) PO = 10 W.
  • 4. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 3. Voltage and current waveforms of D1 and D2 at PO = 100 W: (a) the proposed converter, (b) the conventional AHB converter, and (c) the converter of [20].
  • 5. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 CONCLUSION The proposed asymmetric forward-flyback dc-dc converter had high power conversion efficiency ηe for a wide range of output power PO. The problems of voltage ringing and duty loss in the conventional AHB converter was solved by adopting a forward inductor Lf in the voltage doubler circuit of the secondary stage. The proposed converter used an unbalanced secondary turns of transformer which allowed it to operate for a much wider range of input voltage than the other converter [20] that uses a voltage doubler structure in the secondary stage. The proposed converter also reduced the voltage stress on switches and the current stress on diodes significantly compared to the dual resonant converter (the converter of [24]). The proposed converter had ηe ≥ 90% for 10 ≤ PO ≤ 100 W at VIN = 390 V, VO = 142 V, and fS = 100 kHz (the highest ηe = 95.9%, at PO = 100 W), and could operate at 330 ≤ VIN ≤ 440 V. The proposed asymmetric forward-flyback dc-dc converter is a good candidate for developing a step-down dc- dc converter for applications that require high power-conversion efficiency over wide ranges of input voltage and output power. REFERENCES: [1] J. B. Lio, M. S. Lin, D. Y. Chen, and W. S. Feng, “Single-switch soft-switching flyback converter,” Electron. Letter, vol. 32, no. 16, pp. 1429-1430, Aug. 1996. [2] A. Abramovitz, C. S. Liao, and K. Smedley, “State-Plane analysis of regenerative snubber for flyback converters,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5323-5332, Nov. 2013. [3] L. Huber, and M. M. Jovanovic, “Evaluation of flyback topologies for notebook AC/DC adapter/charger applications,” in Proc. High Freq. Power Conversion Conf., 1995, pp. 284-294. [4] S. Du, F. Zhu, and P. Qian, “Primary side control circuit of a flyback converter for HBLED,” in Proc. 2nd IEEE Int. Symp. Power Electron. Distrib. Generation Syst., 2010, pp. 339-342.
  • 6. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 [5] E. S. Kim, B. G. Chung, S. H. Jang, M. G. Choi, and M. H. Kye, “A study of novel flyback converter with very low power consumption at the standby operation mode,” in Proc. IEEE Appl. Power Electron. Conf., 2010, pp. 1833-1837