SlideShare a Scribd company logo
1 of 4
Download to read offline
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Volume/Weight/Cost Comparison of a 1MVA 10 kV/400V
Solid-State against a Conventional Low-Frequency
Distribution Transformer
ABSTRACT:
Solid-State Transformers (SSTs) are an emergent topic in the context of the Smart Grid
paradigm, where SSTs could replace conventional passive transformers to add flexibility and
controllability, such as power routing capabilities or reactive power compensation, to the grid.
This paper presents a comparison of a 1000 kVA three-phase, low-frequency distribution
transformer (LFT) and an equally rated SST, with respect to volume, weight, losses, and material
costs, where the corresponding data of the SST is partly based on a full-scale prototype design. It
is found that the SST’s costs are at least five times and its losses about three times higher, its
weight similar but its volume reduced to less than 80 %. In addition, an AC/DC application is
also considered, where the comparison turns out in favor of the SST-based concept, since its
losses are only about half compared to the LFT-based system, and the volume and the weight are
reduced to about one third, whereas the material costs advantage of the LFT is much less
pronounced.
KEYWORDS:
1. Induction Motor (IM)
2. Indirect Field-Oriented Control (IFOC)
3. Pulse Width Modulation (PWM)
SOFTWARE: MATLAB/SIMULINK
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
CIRCUIT DIAGRAM:
Fig. 1. Power circuit of one converter cell used in the SST’s MV side phase
stack
EXPERIMENTAL RESULTS:
Fig. 2. MV side output voltage and resulting line current for (a) the cascaded 1000 kVA MV converter, and (b)
corresponding LV side waveforms for one of the 500 kVA LV converter units (cf. Fig. 1(b)) for full-load active
power operation.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
CONCLUSION:
This paper provides a comparison of a 1000 kVA three-phase LFT and an equally rated SST with
respect to material costs, weight, volume and losses. As a direct AC/AC replacement for an LFT,
the SST solution realizes benefits with respect to volume, but on the other hand is significantly
less efficient and has at least five times higher material costs. However, SST-based solutions can
clearly outperform conventional transformers plus LV rectifier systems in modern AC/DC
applications, achieving about half the losses and one third of the weight and volume,
respectively. All in all, SST technology has significant potential also in grid applications,
especially with the Smart Grid being heavily promoted and becoming a reality in the foreseeable
future, which increases the requirements in terms of flexibility, intelligence and controllability.
However, the usefulness of an SST can only be judged in the context of a given application;
there is not a general SST solution that fits every need. Current state-of-the-art LFT technology
evolved during more than a hundred years, and represents therefore a truly experienced
competitor. Thus SSTs, and explicitly also their relation to various application scenarios,
regarding both, technical and economical aspects, should be prominently included in any power
electronics or energy research agenda.
REFERENCES:
[1] W. McMurray, “Power converter circuits having a high frequency link,” U.S. Patent
3,581,212, 1970.
[2] S. D. Sudhoff, “Solid state transformer,” U.S. Patent 5,943,229, 1999.
[3] M. Kang, P. Enjeti, and I. Pitel, “Analysis and design of electronic transformers for electric
power distribution system,” IEEE Trans. Power Electron., vol. 14, no. 6, pp. 1133–1141, 1999.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
[4] M. Manjrekar, R. Kieferndorf, and G. Venkataramanan, “Power electronic transformers for
utility applications,” in Conf. Rec. IEEE Industry Applications Conf., Rome, Italy, 2000, pp.
2496–2502.
[5] L. Heinemann and G. Mauthe, “The universal power electronics based distribution
transformer, an unified approach,” in Proc. 32nd Annu. IEEE Power Electronics Specialists
Conf. (PESC), Vancouver, Canada, 2001, pp. 504–509.

More Related Content

What's hot

A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
Asoka Technologies
 
Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...
Asoka Technologies
 
New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...
Asoka Technologies
 

What's hot (20)

A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
 
A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...
A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...
A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...
 
Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...
 
A Simplified Space Vector Pulse-Width Modulation Scheme for Three-Phase Casca...
A Simplified Space Vector Pulse-Width Modulation Scheme for Three-Phase Casca...A Simplified Space Vector Pulse-Width Modulation Scheme for Three-Phase Casca...
A Simplified Space Vector Pulse-Width Modulation Scheme for Three-Phase Casca...
 
Comparison of Modulation Techniques for Matrix Converter
Comparison of Modulation Techniques for Matrix ConverterComparison of Modulation Techniques for Matrix Converter
Comparison of Modulation Techniques for Matrix Converter
 
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
 
New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...
 
Stability enhancement of wind power system by using energy capacitor system
Stability enhancement of wind power system by using energy capacitor systemStability enhancement of wind power system by using energy capacitor system
Stability enhancement of wind power system by using energy capacitor system
 
The Application of Electric Spring in Grid-Connected Photovoltaic System
The Application of Electric Spring in Grid-Connected Photovoltaic SystemThe Application of Electric Spring in Grid-Connected Photovoltaic System
The Application of Electric Spring in Grid-Connected Photovoltaic System
 
Reliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV systemReliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV system
 
Multiconverter Unified Power Quality Conditioning System Using Artificial Neu...
Multiconverter Unified Power Quality Conditioning System Using Artificial Neu...Multiconverter Unified Power Quality Conditioning System Using Artificial Neu...
Multiconverter Unified Power Quality Conditioning System Using Artificial Neu...
 
Control strategy for power flow management in a pv system supplying dc loads
Control strategy for power flow management in a pv system supplying dc loadsControl strategy for power flow management in a pv system supplying dc loads
Control strategy for power flow management in a pv system supplying dc loads
 
A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Mic...
A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Mic...A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Mic...
A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Mic...
 
An integrated boost resonant converter for photovoltaic applications
An integrated boost resonant converter for photovoltaic applicationsAn integrated boost resonant converter for photovoltaic applications
An integrated boost resonant converter for photovoltaic applications
 
Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...
Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...
Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...
 
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
 
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
 
A Simple Active and Reactive Power Control for Applications of Single-Phase E...
A Simple Active and Reactive Power Control for Applications of Single-Phase E...A Simple Active and Reactive Power Control for Applications of Single-Phase E...
A Simple Active and Reactive Power Control for Applications of Single-Phase E...
 
Power flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipcPower flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipc
 
Mppt with single dc–dc converter and inverter for grid connected hybrid wind-...
Mppt with single dc–dc converter and inverter for grid connected hybrid wind-...Mppt with single dc–dc converter and inverter for grid connected hybrid wind-...
Mppt with single dc–dc converter and inverter for grid connected hybrid wind-...
 

Similar to Volume weight cost comparison of a 1 mva 10 kv 400v solid state against a conventional low-frequency distribution transformer

High frequency ac-link pv inverter
High frequency ac-link pv inverterHigh frequency ac-link pv inverter
High frequency ac-link pv inverter
Asoka Technologies
 
A New Design Method of an LCL Filter Applied in Active DC-Traction Substations
A New Design Method of an LCL Filter Applied in Active DC-Traction SubstationsA New Design Method of an LCL Filter Applied in Active DC-Traction Substations
A New Design Method of an LCL Filter Applied in Active DC-Traction Substations
Asoka Technologies
 
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Asoka Technologies
 
At245 seven level shunt active power filter
At245 seven level shunt active power filterAt245 seven level shunt active power filter
At245 seven level shunt active power filter
Asoka Technologies
 

Similar to Volume weight cost comparison of a 1 mva 10 kv 400v solid state against a conventional low-frequency distribution transformer (20)

High frequency ac-link pv inverter
High frequency ac-link pv inverterHigh frequency ac-link pv inverter
High frequency ac-link pv inverter
 
An advanced multilevel converter topology with Reduced switching elements
An advanced multilevel converter topology with Reduced switching elementsAn advanced multilevel converter topology with Reduced switching elements
An advanced multilevel converter topology with Reduced switching elements
 
A transformerless grid connected photovoltaic inverter with switched capacitors
A transformerless grid connected photovoltaic inverter with switched capacitorsA transformerless grid connected photovoltaic inverter with switched capacitors
A transformerless grid connected photovoltaic inverter with switched capacitors
 
Three phase unidirectional rectifiers with open-end source and cascaded float...
Three phase unidirectional rectifiers with open-end source and cascaded float...Three phase unidirectional rectifiers with open-end source and cascaded float...
Three phase unidirectional rectifiers with open-end source and cascaded float...
 
A New Design Method of an LCL Filter Applied in Active DC-Traction Substations
A New Design Method of an LCL Filter Applied in Active DC-Traction SubstationsA New Design Method of an LCL Filter Applied in Active DC-Traction Substations
A New Design Method of an LCL Filter Applied in Active DC-Traction Substations
 
A New Circuit of Modular Multilevel Inverter for Grid-Connected Photovoltaic ...
A New Circuit of Modular Multilevel Inverter for Grid-Connected Photovoltaic ...A New Circuit of Modular Multilevel Inverter for Grid-Connected Photovoltaic ...
A New Circuit of Modular Multilevel Inverter for Grid-Connected Photovoltaic ...
 
Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...
Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...
Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...
 
A New Switched-Capacitor Five-Level Inverter Suitable for Transformerless Gri...
A New Switched-Capacitor Five-Level Inverter Suitable for Transformerless Gri...A New Switched-Capacitor Five-Level Inverter Suitable for Transformerless Gri...
A New Switched-Capacitor Five-Level Inverter Suitable for Transformerless Gri...
 
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
 
Adaptive Hysteresis Band Current Control for Transformer-less Single-Phase PV...
Adaptive Hysteresis Band Current Control for Transformer-less Single-Phase PV...Adaptive Hysteresis Band Current Control for Transformer-less Single-Phase PV...
Adaptive Hysteresis Band Current Control for Transformer-less Single-Phase PV...
 
Front end buck rectifier with reduced filter size and single-loop control
Front end buck rectifier with reduced filter size and single-loop controlFront end buck rectifier with reduced filter size and single-loop control
Front end buck rectifier with reduced filter size and single-loop control
 
Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...
Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...
Modified cascaded h bridge multilevel inverter for hybrid renewable energy ap...
 
A Simple Active and Reactive Power Control for Applications of Single-Phase E...
A Simple Active and Reactive Power Control for Applications of Single-Phase E...A Simple Active and Reactive Power Control for Applications of Single-Phase E...
A Simple Active and Reactive Power Control for Applications of Single-Phase E...
 
An efficient modified cuk converter with fuzzy based maximum power point trac...
An efficient modified cuk converter with fuzzy based maximum power point trac...An efficient modified cuk converter with fuzzy based maximum power point trac...
An efficient modified cuk converter with fuzzy based maximum power point trac...
 
A 5-level High Efficiency Low Cost Hybrid Neutral Point Clamped Transformerle...
A 5-level High Efficiency Low Cost Hybrid Neutral Point Clamped Transformerle...A 5-level High Efficiency Low Cost Hybrid Neutral Point Clamped Transformerle...
A 5-level High Efficiency Low Cost Hybrid Neutral Point Clamped Transformerle...
 
Modified phase shifted pwm scheme for reliability improvement in cascaded h-b...
Modified phase shifted pwm scheme for reliability improvement in cascaded h-b...Modified phase shifted pwm scheme for reliability improvement in cascaded h-b...
Modified phase shifted pwm scheme for reliability improvement in cascaded h-b...
 
Power quality enhancement in residential smart grids through power factor cor...
Power quality enhancement in residential smart grids through power factor cor...Power quality enhancement in residential smart grids through power factor cor...
Power quality enhancement in residential smart grids through power factor cor...
 
High efficiency asymmetric forward-flyback converter for wide output power range
High efficiency asymmetric forward-flyback converter for wide output power rangeHigh efficiency asymmetric forward-flyback converter for wide output power range
High efficiency asymmetric forward-flyback converter for wide output power range
 
Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...
Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...
Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...
 
At245 seven level shunt active power filter
At245 seven level shunt active power filterAt245 seven level shunt active power filter
At245 seven level shunt active power filter
 

More from Asoka Technologies

Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...
Asoka Technologies
 
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Asoka Technologies
 
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Asoka Technologies
 
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Asoka Technologies
 
Implementation of solar pv battery and diesel generator based electric vehic...
Implementation of solar pv  battery and diesel generator based electric vehic...Implementation of solar pv  battery and diesel generator based electric vehic...
Implementation of solar pv battery and diesel generator based electric vehic...
Asoka Technologies
 
Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...
Asoka Technologies
 
Control and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv systemControl and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv system
Asoka Technologies
 
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
Asoka Technologies
 

More from Asoka Technologies (18)

Solar pv charging station for electric vehicles
Solar pv charging station for electric vehiclesSolar pv charging station for electric vehicles
Solar pv charging station for electric vehicles
 
Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...
 
Power optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehiclePower optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehicle
 
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
 
Multifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms controlMultifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms control
 
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
 
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
 
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
 
Implementation of solar pv battery and diesel generator based electric vehic...
Implementation of solar pv  battery and diesel generator based electric vehic...Implementation of solar pv  battery and diesel generator based electric vehic...
Implementation of solar pv battery and diesel generator based electric vehic...
 
High step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converterHigh step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converter
 
Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...
 
Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...
 
Application of Artificial Neural Networks for Shunt APF Control
Application of Artificial Neural Networks for Shunt APF ControlApplication of Artificial Neural Networks for Shunt APF Control
Application of Artificial Neural Networks for Shunt APF Control
 
Control strategy of pmsg based wind energy conversion system under strong win...
Control strategy of pmsg based wind energy conversion system under strong win...Control strategy of pmsg based wind energy conversion system under strong win...
Control strategy of pmsg based wind energy conversion system under strong win...
 
Control and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv systemControl and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv system
 
Application of boost converter to increase the speed range of dual stator win...
Application of boost converter to increase the speed range of dual stator win...Application of boost converter to increase the speed range of dual stator win...
Application of boost converter to increase the speed range of dual stator win...
 
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
 
A low voltage ride-through strategy using mixed potential function for three-...
A low voltage ride-through strategy using mixed potential function for three-...A low voltage ride-through strategy using mixed potential function for three-...
A low voltage ride-through strategy using mixed potential function for three-...
 

Recently uploaded

VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Recently uploaded (20)

Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdf
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 

Volume weight cost comparison of a 1 mva 10 kv 400v solid state against a conventional low-frequency distribution transformer

  • 1. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Volume/Weight/Cost Comparison of a 1MVA 10 kV/400V Solid-State against a Conventional Low-Frequency Distribution Transformer ABSTRACT: Solid-State Transformers (SSTs) are an emergent topic in the context of the Smart Grid paradigm, where SSTs could replace conventional passive transformers to add flexibility and controllability, such as power routing capabilities or reactive power compensation, to the grid. This paper presents a comparison of a 1000 kVA three-phase, low-frequency distribution transformer (LFT) and an equally rated SST, with respect to volume, weight, losses, and material costs, where the corresponding data of the SST is partly based on a full-scale prototype design. It is found that the SST’s costs are at least five times and its losses about three times higher, its weight similar but its volume reduced to less than 80 %. In addition, an AC/DC application is also considered, where the comparison turns out in favor of the SST-based concept, since its losses are only about half compared to the LFT-based system, and the volume and the weight are reduced to about one third, whereas the material costs advantage of the LFT is much less pronounced. KEYWORDS: 1. Induction Motor (IM) 2. Indirect Field-Oriented Control (IFOC) 3. Pulse Width Modulation (PWM) SOFTWARE: MATLAB/SIMULINK
  • 2. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 CIRCUIT DIAGRAM: Fig. 1. Power circuit of one converter cell used in the SST’s MV side phase stack EXPERIMENTAL RESULTS: Fig. 2. MV side output voltage and resulting line current for (a) the cascaded 1000 kVA MV converter, and (b) corresponding LV side waveforms for one of the 500 kVA LV converter units (cf. Fig. 1(b)) for full-load active power operation.
  • 3. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 CONCLUSION: This paper provides a comparison of a 1000 kVA three-phase LFT and an equally rated SST with respect to material costs, weight, volume and losses. As a direct AC/AC replacement for an LFT, the SST solution realizes benefits with respect to volume, but on the other hand is significantly less efficient and has at least five times higher material costs. However, SST-based solutions can clearly outperform conventional transformers plus LV rectifier systems in modern AC/DC applications, achieving about half the losses and one third of the weight and volume, respectively. All in all, SST technology has significant potential also in grid applications, especially with the Smart Grid being heavily promoted and becoming a reality in the foreseeable future, which increases the requirements in terms of flexibility, intelligence and controllability. However, the usefulness of an SST can only be judged in the context of a given application; there is not a general SST solution that fits every need. Current state-of-the-art LFT technology evolved during more than a hundred years, and represents therefore a truly experienced competitor. Thus SSTs, and explicitly also their relation to various application scenarios, regarding both, technical and economical aspects, should be prominently included in any power electronics or energy research agenda. REFERENCES: [1] W. McMurray, “Power converter circuits having a high frequency link,” U.S. Patent 3,581,212, 1970. [2] S. D. Sudhoff, “Solid state transformer,” U.S. Patent 5,943,229, 1999. [3] M. Kang, P. Enjeti, and I. Pitel, “Analysis and design of electronic transformers for electric power distribution system,” IEEE Trans. Power Electron., vol. 14, no. 6, pp. 1133–1141, 1999.
  • 4. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 [4] M. Manjrekar, R. Kieferndorf, and G. Venkataramanan, “Power electronic transformers for utility applications,” in Conf. Rec. IEEE Industry Applications Conf., Rome, Italy, 2000, pp. 2496–2502. [5] L. Heinemann and G. Mauthe, “The universal power electronics based distribution transformer, an unified approach,” in Proc. 32nd Annu. IEEE Power Electronics Specialists Conf. (PESC), Vancouver, Canada, 2001, pp. 504–509.