SlideShare a Scribd company logo
1 of 7
Download to read offline
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
An Efficient High-Step-Up Interleaved DCโ€“DC
Converter with a Common Active Clamp
ABSTRACT:
This paper presents a high-efficiency and high-step up non isolated interleaved dcโ€“dc converter
with a common active clamp circuit. In the presented converter, the coupled-inductor boost
converters are interleaved. A boost converter is used to clamp the voltage stresses of all the
switches in the interleaved converters, caused by the leakage inductances present in the practical
coupled inductors, to a low voltage level. The leakage energies of the interleaved converters are
collected in a clamp capacitor and recycled to the output by the clamp boost converter. The
proposed converter achieves high efficiency because of the recycling of the leakage energies,
reduction of the switch voltage stress, mitigation of the output diodeโ€™s reverse recovery problem,
and interleaving of the converters. Detailed analysis and design of the proposed converter are
carried out. A prototype of the proposed converter is developed, and its experimental results are
presented for validation.
KEYWORDS
1. Active-clamp
2. Boost converter
3. Coupled-inductor boost converter
4. Dcโ€“dc power converter
5. High voltage gain
6. Interleaving
SOFTWARE: MATLAB/SIMULINK
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
CIRCUIT DIAGRAM:
Fig. 1. (a) Parallel diode clamped coupled-inductor boost converter and (b) proposed interleaved coupled-inductor
boost converter with single boost converter clamp (for n = 3).
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
EXPECTED SIMULATION RESULTS:
Fig. 2. (a) Drain-to-source voltage of the switch in a coupled-inductor boost converter without any clamping and (b)
output voltage, clamp voltage and drain to- source voltage of the switch in a coupled-inductor boost converter with
the proposed active-clamp circuit.
.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 3. (a) From top to bottom: total input current of the converter, input currents of the interleaved coupled-inductor
boost converters, and (b) primary current, secondary current, and leakage current in a phase of the interleaved
coupled-inductor boost converters.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 4. (a) Gate pulses to the clamp boost converter and (b) inductor current of the clamp boost converter.
Fig. 5. Gate pulses to the interleaved coupled-inductor boost converters (10 V/div).
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
CONCLUSION:
Coupled-inductor boost converters can be interleaved to achieve high-step-up power conversion
without extreme duty ratio operation while efficiently handling the high-input current. In a
practical coupled-inductor boost converter, the switch is subjected to high voltage stress due to
the leakage inductance present in the non ideal coupled inductor. The presented active clamp
circuit, based on single boost converter, can successfully reduce the voltage stress of the switches
close to the low-level voltage stress offered by an ideal coupled-inductor boost converter. The
common clamp capacitor of this active-clamp circuit collects the leakage energies from all the
coupled-inductor boost converters, and the boost converter recycles the leakage energies to the
output. Detailed analysis of the operation and the performance of the proposed converter were
presented in this paper. It has been found that with the switches of lower voltage rating, the
recovered leakage energy, and the other benefits of an ideal coupled-inductor boost converter
and interleaving, the converter can achieve high efficiency for high-step-up power conversion. A
prototype of the converter was built and tested for validation of the operation and performance of
the proposed converter. The experimental results agree with the analysis of the converter
operation and the calculated efficiency of the converter.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
REFERENCES:
[1] L. Solero, A. Lidozzi, and J. A. Pomilio, โ€œDesign of multiple-input power converter for
hybrid vehicles,โ€ IEEE Trans. Power Electron., vol. 20, no. 5, pp. 107โ€“116, Sep. 2005.
[2] A. A. Ferreira, J. A. Pomilio, G. Spiazzi, and de Araujo Silva, โ€œEnergy management fuzzy
logic supervisory for electric vehicle power supplies system,โ€ IEEE Trans. Power Electron., vol.
20, no. 1, pp. 107โ€“115, Jan. 2008.
[3] A. Emadi, K. Rajashekara, S. S. Williamson, and S. M. Lukic, โ€œTopological overview of
hybrid electric and fuel cell vehicular power system architectures and configurations,โ€ IEEE
Trans. Veh. Technol., vol. 54, no. 3, pp. 763โ€“770, May 2007.
[4] J. Bauman and M. Kazerani, โ€œA comparative study of fuel cell-battery, fuel cell-
ultracapacitor, and fuel cell-battery-ultracapacitor vehicles,โ€ IEEE Trans. Veh. Technol., vol. 57,
no. 2, pp. 760โ€“769, Mar. 2008.
[5] Q. Zhao and F. C. Lee, โ€œHigh-efficiency, high step-up DCโ€“DC converters,โ€ IEEE Trans.
Power Electron., vol. 18, no. 1, pp. 65โ€“73, Jan. 2003.

More Related Content

What's hot

Single-Stage Power-Factor-Correction Circuit with Flyback Converter to Drive ...
Single-Stage Power-Factor-Correction Circuit with Flyback Converter to Drive ...Single-Stage Power-Factor-Correction Circuit with Flyback Converter to Drive ...
Single-Stage Power-Factor-Correction Circuit with Flyback Converter to Drive ...
Asoka Technologies
ย 
Design and analysis of an on board electric vehicle charger for wide battery ...
Design and analysis of an on board electric vehicle charger for wide battery ...Design and analysis of an on board electric vehicle charger for wide battery ...
Design and analysis of an on board electric vehicle charger for wide battery ...
Asoka Technologies
ย 
Model predictive-based shunt active power filter with a new reference current...
Model predictive-based shunt active power filter with a new reference current...Model predictive-based shunt active power filter with a new reference current...
Model predictive-based shunt active power filter with a new reference current...
Asoka Technologies
ย 
Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...
Asoka Technologies
ย 

What's hot (20)

Single-Stage Power-Factor-Correction Circuit with Flyback Converter to Drive ...
Single-Stage Power-Factor-Correction Circuit with Flyback Converter to Drive ...Single-Stage Power-Factor-Correction Circuit with Flyback Converter to Drive ...
Single-Stage Power-Factor-Correction Circuit with Flyback Converter to Drive ...
ย 
Design and analysis of an on board electric vehicle charger for wide battery ...
Design and analysis of an on board electric vehicle charger for wide battery ...Design and analysis of an on board electric vehicle charger for wide battery ...
Design and analysis of an on board electric vehicle charger for wide battery ...
ย 
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
ย 
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
ย 
Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...
Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...
Combination Analysis and Switching Method of a Cascaded H-Bridge Multilevel I...
ย 
A Unity Power Factor Converter with Isolation for Electric Vehicle Battery Ch...
A Unity Power Factor Converter with Isolation for Electric Vehicle Battery Ch...A Unity Power Factor Converter with Isolation for Electric Vehicle Battery Ch...
A Unity Power Factor Converter with Isolation for Electric Vehicle Battery Ch...
ย 
Control of a Three-Phase Hybrid Converter for a PV Charging Station
Control of a Three-Phase Hybrid Converter for a PV Charging StationControl of a Three-Phase Hybrid Converter for a PV Charging Station
Control of a Three-Phase Hybrid Converter for a PV Charging Station
ย 
High efficiency asymmetric forward-flyback converter for wide output power range
High efficiency asymmetric forward-flyback converter for wide output power rangeHigh efficiency asymmetric forward-flyback converter for wide output power range
High efficiency asymmetric forward-flyback converter for wide output power range
ย 
Novel Zero-Current Switching Current-Fed Half-Bridge Isolated Dc/Dc Converter...
Novel Zero-Current Switching Current-Fed Half-Bridge Isolated Dc/Dc Converter...Novel Zero-Current Switching Current-Fed Half-Bridge Isolated Dc/Dc Converter...
Novel Zero-Current Switching Current-Fed Half-Bridge Isolated Dc/Dc Converter...
ย 
Comparison of Modulation Techniques for Matrix Converter
Comparison of Modulation Techniques for Matrix ConverterComparison of Modulation Techniques for Matrix Converter
Comparison of Modulation Techniques for Matrix Converter
ย 
Performance enhancement of actively controlled hybrid dc microgrid incorporat...
Performance enhancement of actively controlled hybrid dc microgrid incorporat...Performance enhancement of actively controlled hybrid dc microgrid incorporat...
Performance enhancement of actively controlled hybrid dc microgrid incorporat...
ย 
A New Switched-Capacitor Five-Level Inverter Suitable for Transformerless Gri...
A New Switched-Capacitor Five-Level Inverter Suitable for Transformerless Gri...A New Switched-Capacitor Five-Level Inverter Suitable for Transformerless Gri...
A New Switched-Capacitor Five-Level Inverter Suitable for Transformerless Gri...
ย 
Project list 2020
Project list 2020 Project list 2020
Project list 2020
ย 
A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...
A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...
A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multi-L...
ย 
Critical Current Control (C3) and Modeling of a Buck Based LED Driver with Po...
Critical Current Control (C3) and Modeling of a Buck Based LED Driver with Po...Critical Current Control (C3) and Modeling of a Buck Based LED Driver with Po...
Critical Current Control (C3) and Modeling of a Buck Based LED Driver with Po...
ย 
Model predictive-based shunt active power filter with a new reference current...
Model predictive-based shunt active power filter with a new reference current...Model predictive-based shunt active power filter with a new reference current...
Model predictive-based shunt active power filter with a new reference current...
ย 
An efficient modified cuk converter with fuzzy based maximum power point trac...
An efficient modified cuk converter with fuzzy based maximum power point trac...An efficient modified cuk converter with fuzzy based maximum power point trac...
An efficient modified cuk converter with fuzzy based maximum power point trac...
ย 
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
ย 
Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...
ย 
An f p q droop control in cascaded-type microgrid
An f p q droop control in cascaded-type microgridAn f p q droop control in cascaded-type microgrid
An f p q droop control in cascaded-type microgrid
ย 

Similar to An efficient high step-up interleaved dc dc converter with a common active clamp

Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...
Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...
Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...
Asoka Technologies
ย 
New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...
Asoka Technologies
ย 
A New Design Method of an LCL Filter Applied in Active DC-Traction Substations
A New Design Method of an LCL Filter Applied in Active DC-Traction SubstationsA New Design Method of an LCL Filter Applied in Active DC-Traction Substations
A New Design Method of an LCL Filter Applied in Active DC-Traction Substations
Asoka Technologies
ย 
Design and hardware implementation considerations of modified multilevel casc...
Design and hardware implementation considerations of modified multilevel casc...Design and hardware implementation considerations of modified multilevel casc...
Design and hardware implementation considerations of modified multilevel casc...
Asoka Technologies
ย 
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
Asoka Technologies
ย 

Similar to An efficient high step-up interleaved dc dc converter with a common active clamp (20)

Analysis of 12 pulse phase control ac dc converter
Analysis of 12 pulse phase control ac dc converterAnalysis of 12 pulse phase control ac dc converter
Analysis of 12 pulse phase control ac dc converter
ย 
Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...
Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...
Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters w...
ย 
Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...
Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...
Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...
ย 
High step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converterHigh step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converter
ย 
Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...
Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...
Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter w...
ย 
A 5-level High Efficiency Low Cost Hybrid Neutral Point Clamped Transformerle...
A 5-level High Efficiency Low Cost Hybrid Neutral Point Clamped Transformerle...A 5-level High Efficiency Low Cost Hybrid Neutral Point Clamped Transformerle...
A 5-level High Efficiency Low Cost Hybrid Neutral Point Clamped Transformerle...
ย 
A solar power generation system with a seven level inverter
A solar power generation system with a seven level inverterA solar power generation system with a seven level inverter
A solar power generation system with a seven level inverter
ย 
A comparison of soft switched dc to dc converters for electrolyzer application
 A comparison of soft switched dc to dc converters for electrolyzer application A comparison of soft switched dc to dc converters for electrolyzer application
A comparison of soft switched dc to dc converters for electrolyzer application
ย 
New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...New ac dc power factor correction architecture suitable for high frequency op...
New ac dc power factor correction architecture suitable for high frequency op...
ย 
Design and simulation of single phase five-level symmetrical cascaded h-bridg...
Design and simulation of single phase five-level symmetrical cascaded h-bridg...Design and simulation of single phase five-level symmetrical cascaded h-bridg...
Design and simulation of single phase five-level symmetrical cascaded h-bridg...
ย 
Single phase active power filtering method using diode-rectifier-fed motor drive
Single phase active power filtering method using diode-rectifier-fed motor driveSingle phase active power filtering method using diode-rectifier-fed motor drive
Single phase active power filtering method using diode-rectifier-fed motor drive
ย 
A New Design Method of an LCL Filter Applied in Active DC-Traction Substations
A New Design Method of an LCL Filter Applied in Active DC-Traction SubstationsA New Design Method of an LCL Filter Applied in Active DC-Traction Substations
A New Design Method of an LCL Filter Applied in Active DC-Traction Substations
ย 
Three Phase Single Stage Isolated Cuk based PFC Converter
Three Phase Single Stage Isolated Cuk based PFC ConverterThree Phase Single Stage Isolated Cuk based PFC Converter
Three Phase Single Stage Isolated Cuk based PFC Converter
ย 
Design and hardware implementation considerations of modified multilevel casc...
Design and hardware implementation considerations of modified multilevel casc...Design and hardware implementation considerations of modified multilevel casc...
Design and hardware implementation considerations of modified multilevel casc...
ย 
Front end buck rectifier with reduced filter size and single-loop control
Front end buck rectifier with reduced filter size and single-loop controlFront end buck rectifier with reduced filter size and single-loop control
Front end buck rectifier with reduced filter size and single-loop control
ย 
Three phase unidirectional rectifiers with open-end source and cascaded float...
Three phase unidirectional rectifiers with open-end source and cascaded float...Three phase unidirectional rectifiers with open-end source and cascaded float...
Three phase unidirectional rectifiers with open-end source and cascaded float...
ย 
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
ย 
Power quality enhancement in residential smart grids through power factor cor...
Power quality enhancement in residential smart grids through power factor cor...Power quality enhancement in residential smart grids through power factor cor...
Power quality enhancement in residential smart grids through power factor cor...
ย 
Mppt with single dcโ€“dc converter and inverter for grid connected hybrid wind-...
Mppt with single dcโ€“dc converter and inverter for grid connected hybrid wind-...Mppt with single dcโ€“dc converter and inverter for grid connected hybrid wind-...
Mppt with single dcโ€“dc converter and inverter for grid connected hybrid wind-...
ย 
Nine-level Asymmetrical Single Phase Multilevel Inverter Topology with Low sw...
Nine-level Asymmetrical Single Phase Multilevel Inverter Topology with Low sw...Nine-level Asymmetrical Single Phase Multilevel Inverter Topology with Low sw...
Nine-level Asymmetrical Single Phase Multilevel Inverter Topology with Low sw...
ย 

More from Asoka Technologies

Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...
Asoka Technologies
ย 
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Asoka Technologies
ย 
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Asoka Technologies
ย 
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Asoka Technologies
ย 
Implementation of solar pv battery and diesel generator based electric vehic...
Implementation of solar pv  battery and diesel generator based electric vehic...Implementation of solar pv  battery and diesel generator based electric vehic...
Implementation of solar pv battery and diesel generator based electric vehic...
Asoka Technologies
ย 
Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...
Asoka Technologies
ย 
Control and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv systemControl and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv system
Asoka Technologies
ย 
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
Asoka Technologies
ย 

More from Asoka Technologies (20)

Solar pv charging station for electric vehicles
Solar pv charging station for electric vehiclesSolar pv charging station for electric vehicles
Solar pv charging station for electric vehicles
ย 
Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...
ย 
Reliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV systemReliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV system
ย 
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
ย 
Power optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehiclePower optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehicle
ย 
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
ย 
Power flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipcPower flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipc
ย 
Multifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms controlMultifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms control
ย 
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
ย 
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
ย 
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
ย 
Implementation of solar pv battery and diesel generator based electric vehic...
Implementation of solar pv  battery and diesel generator based electric vehic...Implementation of solar pv  battery and diesel generator based electric vehic...
Implementation of solar pv battery and diesel generator based electric vehic...
ย 
Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...
ย 
Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...
ย 
Application of Artificial Neural Networks for Shunt APF Control
Application of Artificial Neural Networks for Shunt APF ControlApplication of Artificial Neural Networks for Shunt APF Control
Application of Artificial Neural Networks for Shunt APF Control
ย 
Control strategy of pmsg based wind energy conversion system under strong win...
Control strategy of pmsg based wind energy conversion system under strong win...Control strategy of pmsg based wind energy conversion system under strong win...
Control strategy of pmsg based wind energy conversion system under strong win...
ย 
Control and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv systemControl and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv system
ย 
Application of boost converter to increase the speed range of dual stator win...
Application of boost converter to increase the speed range of dual stator win...Application of boost converter to increase the speed range of dual stator win...
Application of boost converter to increase the speed range of dual stator win...
ย 
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
ย 
A low voltage ride-through strategy using mixed potential function for three-...
A low voltage ride-through strategy using mixed potential function for three-...A low voltage ride-through strategy using mixed potential function for three-...
A low voltage ride-through strategy using mixed potential function for three-...
ย 

Recently uploaded

Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
sivaprakash250
ย 
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
ย 

Recently uploaded (20)

Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
ย 
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
ย 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ย 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
ย 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
ย 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
ย 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
ย 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
ย 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
ย 
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
ย 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
ย 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
ย 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
ย 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
ย 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
ย 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
ย 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
ย 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
ย 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
ย 

An efficient high step-up interleaved dc dc converter with a common active clamp

  • 1. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 An Efficient High-Step-Up Interleaved DCโ€“DC Converter with a Common Active Clamp ABSTRACT: This paper presents a high-efficiency and high-step up non isolated interleaved dcโ€“dc converter with a common active clamp circuit. In the presented converter, the coupled-inductor boost converters are interleaved. A boost converter is used to clamp the voltage stresses of all the switches in the interleaved converters, caused by the leakage inductances present in the practical coupled inductors, to a low voltage level. The leakage energies of the interleaved converters are collected in a clamp capacitor and recycled to the output by the clamp boost converter. The proposed converter achieves high efficiency because of the recycling of the leakage energies, reduction of the switch voltage stress, mitigation of the output diodeโ€™s reverse recovery problem, and interleaving of the converters. Detailed analysis and design of the proposed converter are carried out. A prototype of the proposed converter is developed, and its experimental results are presented for validation. KEYWORDS 1. Active-clamp 2. Boost converter 3. Coupled-inductor boost converter 4. Dcโ€“dc power converter 5. High voltage gain 6. Interleaving SOFTWARE: MATLAB/SIMULINK
  • 2. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 CIRCUIT DIAGRAM: Fig. 1. (a) Parallel diode clamped coupled-inductor boost converter and (b) proposed interleaved coupled-inductor boost converter with single boost converter clamp (for n = 3).
  • 3. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 EXPECTED SIMULATION RESULTS: Fig. 2. (a) Drain-to-source voltage of the switch in a coupled-inductor boost converter without any clamping and (b) output voltage, clamp voltage and drain to- source voltage of the switch in a coupled-inductor boost converter with the proposed active-clamp circuit. .
  • 4. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 3. (a) From top to bottom: total input current of the converter, input currents of the interleaved coupled-inductor boost converters, and (b) primary current, secondary current, and leakage current in a phase of the interleaved coupled-inductor boost converters.
  • 5. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 4. (a) Gate pulses to the clamp boost converter and (b) inductor current of the clamp boost converter. Fig. 5. Gate pulses to the interleaved coupled-inductor boost converters (10 V/div).
  • 6. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 CONCLUSION: Coupled-inductor boost converters can be interleaved to achieve high-step-up power conversion without extreme duty ratio operation while efficiently handling the high-input current. In a practical coupled-inductor boost converter, the switch is subjected to high voltage stress due to the leakage inductance present in the non ideal coupled inductor. The presented active clamp circuit, based on single boost converter, can successfully reduce the voltage stress of the switches close to the low-level voltage stress offered by an ideal coupled-inductor boost converter. The common clamp capacitor of this active-clamp circuit collects the leakage energies from all the coupled-inductor boost converters, and the boost converter recycles the leakage energies to the output. Detailed analysis of the operation and the performance of the proposed converter were presented in this paper. It has been found that with the switches of lower voltage rating, the recovered leakage energy, and the other benefits of an ideal coupled-inductor boost converter and interleaving, the converter can achieve high efficiency for high-step-up power conversion. A prototype of the converter was built and tested for validation of the operation and performance of the proposed converter. The experimental results agree with the analysis of the converter operation and the calculated efficiency of the converter.
  • 7. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 REFERENCES: [1] L. Solero, A. Lidozzi, and J. A. Pomilio, โ€œDesign of multiple-input power converter for hybrid vehicles,โ€ IEEE Trans. Power Electron., vol. 20, no. 5, pp. 107โ€“116, Sep. 2005. [2] A. A. Ferreira, J. A. Pomilio, G. Spiazzi, and de Araujo Silva, โ€œEnergy management fuzzy logic supervisory for electric vehicle power supplies system,โ€ IEEE Trans. Power Electron., vol. 20, no. 1, pp. 107โ€“115, Jan. 2008. [3] A. Emadi, K. Rajashekara, S. S. Williamson, and S. M. Lukic, โ€œTopological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,โ€ IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 763โ€“770, May 2007. [4] J. Bauman and M. Kazerani, โ€œA comparative study of fuel cell-battery, fuel cell- ultracapacitor, and fuel cell-battery-ultracapacitor vehicles,โ€ IEEE Trans. Veh. Technol., vol. 57, no. 2, pp. 760โ€“769, Mar. 2008. [5] Q. Zhao and F. C. Lee, โ€œHigh-efficiency, high step-up DCโ€“DC converters,โ€ IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65โ€“73, Jan. 2003.