SlideShare a Scribd company logo
Diego Mantovani, PhD, FBSE
Lab. Biomaterials and Bioengineering
Dept of Min-Met-Materials Eng.
Research Center, CHU de Québec
Laval University
Innovative Cardiovascular Devices
Biocompatible Nano-Materials
www.lbb.ulaval.ca 2
Outline
Historical/prospective perspective
Nanotechnology for Medical Implants
Advanced Materials with Extreme Properties
Tissue Engineering and Regenerative Medicine
Conclusions
D. Mantovani, 3 www.lbb.ulaval.ca
Life expectancy
D. Mantovani, 4 www.lbb.ulaval.ca
Introduction
D. Mantovani, 5 www.lbb.ulaval.ca
Global challenges for humans
Energy
Food
Medical
Environment
D. Mantovani, 6 www.lbb.ulaval.ca
D. Mantovani, 7 www.lbb.ulaval.ca
D. Mantovani, 8 www.lbb.ulaval.ca
LBB: Sciences in Medicine
Why ?
© www.fda.gov
The Medico-Social Problem:
• Atherosclerosis represents the main cause for 35 to 38 % of total death (North
America & Europe)
• Pharmacological treatment, angioplasty, stent implantation and vessel
replacement constitute the modern surgical approaches
LBB works aim to improve the performances of medical devices, and to
develop and explore the feasibility of new strategies for the replacement
and the regeneration of patient diseased tissue that today are utopia but
tomorrow could generate new treatments and therapies
D. Mantovani, 9 www.lbb.ulaval.ca
Stents: How?
D. Mantovani, 10 www.lbb.ulaval.ca
Clinical Complications
 Restenosis
Re-narrowing or blockage of an artery at the site of treatment leading up to
30% of failure after 3 months of implantation [1]. They cannot be explanted.
 Toxicity and degradation
Corrosion causes
a degradation of the
mechanical properties
of the device [2] and
presents a high risk for
the release of
potentially toxic
metallic compounds [3].
[1] Wieneke, et al., Herz, 2002. 27(6): p. 518-26.
[2] Bertrand, et al., J. of the American College of
Cardiology, 1998. 32 (3): p. 562-571.
[3] Uo, M., et al., Biomaterials, 2001. 22(7): p. 677-85.
D. Mantovani, 11 www.lbb.ulaval.ca
Clinical and Scientific Strategy
A surface modification protocol has been developed
Stainless steel is the material widely used (70 to 75%) for the fabrication of stent
Pretreatment + Plasma deposition of a Teflon-like ultra-thin film
Drug Eluting Stents help to prevent restenosis
Delamination
Cracks
But …
How to graft bioactive molecules to metallic surfaces while
preserving the bioactivity ?
Current Polymer Coatings
Otsuka, Y.;et al, Journal of Invasive Cardiology 2007, 19, 71.
Research Project
Deposit a coating on a stent material -
« biocompatible » adherent, stable and impermeable
 General objective
Deposition of
fluorocarbon
coating via
plasma
Amination of
polymer
coating via
plasma
Attachment of
biomolecules
(phosphorylcholine)
Pretreatment
of stainless
steel
substrate
SS316L
 Resistant to deformation
 Stable in pseudo-physiological medium
 Corrosion inhibitor
D. Mantovani, 14 www.lbb.ulaval.ca
Multistep process
 12.7mm
t = 0.5 mm
• Electropolishing
- To clean the surface
- To minimize the roughness
- To reduce and uniformize the oxide layer thickness
• Acid dipping
- To remove the contaminants due to electropolishing
• Plasma etching (H2 or C2F6 gas precursors)
- To further reduce the oxide layer thickness
1 – Pretreatment
D. Mantovani, 15 www.lbb.ulaval.ca
A procedure was established in our labs to optimize the characteristics of
the electopolished surface.
Haidopoulos et al. (2005). Surf. Coat. Technol. 197(2-3): 278
Achieved Results
Surfaces
AFM Analyses
Topography
As Received
Electropolished
Roughness (102 nm)
D. Mantovani, 16 www.lbb.ulaval.ca
2-Plasma deposition
• Development of a pulsed in-house RF plasma reactor
•C2F6 as gas precursor
•Time of Plasma deposition
•Sample distance to antenna
•Pressure
•Gas flow
•Duty cyle
•Setting of a characterization routine for the deposited film
•Chemical analysis (XPS, FTIR)
•Surface observation (SEM, AFM, contact angle)
Haidopoulos et al (2005). Plasma Process. Polym. 2(5): 424
Haidopoulos et al. (2006) J. Mater. Sci. - Mater. Med. 17, 647
Substrate
At. %
F Cr
As-received Not coated - 6
Coated 52 -
Pre-treated Not coated - 11.8
Coated 52 -
Preliminary results
Optimization of the plasma
parameters
• Objective: Obtain a highly fluorinated and ultra thin film
• F content and chemical binding evaluated by XPS and FTIR
• Thickness measured by ellipsometry
• Pulsed RF glow discharge on flat specimens
– Precursors: C2F6 + 6% H2
– Duty cycle (Ton/ Toff): 5/90 ms
– RF Peak power (13,56 MHz): 150 W
– Total gas flow: 20 sccm
– Pressure: 700 mTorr
– Position: afterglow
Lewis et al. (2008) J. Phys. D: Appl. Phys. 41, 045310
D. Mantovani, 17 www.lbb.ulaval.ca
D. Mantovani, 18 www.lbb.ulaval.ca
3-Film adhesion and cohesion
Establish a procedure to characterize the adhesive and cohesive
properties of the fluoropolymer film after plastic deformation of the
substrate.
Small Punch Test
Lewis et al. (2007). Adhesion Aspects of Thin Films 3: 1
25% plastic
deformation
D. Mantovani, 19 www.lbb.ulaval.ca
Achieved Results
•No metallic compounds by XPS analysis were detected at the surface after the
deformation suggesting that the film did not delaminate or crack.
•The film surface and bulk compositions after deformation were not altered
according to XPS and FTIR analyses.
Sample % F % C % O F/C
No deformation 50.9 ± 0.6 47.4 ± 0.6 1.7 ± 0.5 1.07 ± 0.02
25% deformation 49.6 ± 0.8 47.8 ± 0.5 2.6 ± 0.8 1.04 ± 0.02
Lewis et al. (2007). Adhesion Aspects of Thin Films 3: 1
D. Mantovani, 20 www.lbb.ulaval.ca
SEM
No metallic compounds are detected with XPS
< 1%
25% deformation
Touzin et al. (2010) Mater. Sci. Forum 2009 638-642: 10
Bismuth electrodeposition
 High chemical contrast
by scanning electron
microscopy
 Detectable at very low
concentration by XPS
 Easy to deposit
400 200 0
0
10
20
30
40
C
Intensity(x10
3
photolectrons)
E (binding energy)
25 % deformed substrate
electroplated with Bi at -850 mV
35 nm thick film
100 nm thick film
Bi
XPS spectrum
Holvoet et al. (2010). Electrochim. Acta 55(3): 1042
Corrosion rates
D. Mantovani, 22 www.lbb.ulaval.ca
Corrosion rates (µm/year)
Samples Flat Deformed
As-received SS316L 4.6 ± 0.2 6.6 ± 0.1
Electroplished SS316L 1.1 ± 0.3 4.1 ± 0.6
Coated electropolished
SS316L
0.46 ± 0.01 0.8 ± 0.3
Coated H2 etched SS316L 1.3 ± 0.4 1.9 ± 0.3
Coated X8 etched SS316L 13 ± 2 2.6 ± 0.2
Effect of the interface on the corrosion behaviour of the
coating/substrate system
•Decrease of the corrosion rates for both flat and deformed coated
samples
•Etching effect onto the oxide layer and the corrosion rate
Conclusions
Next
DLC-BASED COATINGS FOR ANTIBACTERIAL
APPLICATIONS
Shifting the paradigm
Degradable metals …
www.ulaval.ca
BIOMATERIALS
Classes:
Metals (corrosion resistant...)
Polymers (synthetic, natural, permanent, degradable ...)
Ceramics
Composites
Glasses
25
www.ulaval.ca
PHASE I:
EXPLORING
MAGNESIUM
ALLOYS
2002-2005
(J Levesque, D Dubé, D Mantovani)
26
www.ulaval.ca 27
J. Lévesque, H. Hermawan, D. Dubé, D. Mantovani, Design of a pseudo-physiological test bench specific to the development
of biodegradable metallic biomaterials, Acta Biomaterialia 2008;4:284-295
Schematic view of a simulated coronary artery test-bench for testing
degradation behaviour of candidate materials for metallic
biodegradable stent
www.ulaval.ca 28
Surface morphology of specimens tested under the different
conditions after 6, 12, 24, 48, 84 and 168 h: (a) static condition, (b)
dynamic condition (s = 0.88 or 4.4 Pa), (c) dynamic cond. (s = 8.8 Pa)
www.ulaval.ca 29
SEM images of the cross-section of surface layers on the specimens tested for 168 h at a
shear stress of (a) 0.88 Pa, (b) 4.4 Pa and (c) 8.8 Pa
www.ulaval.ca
PHASE II:
DEVELOPING
FE-BASED
ALLOYS
2004-ongoing
(co-supervised respectively by Profs. D. Dubé & M. Fiset)
30
a- Fe-based Alloy
DESIGN AND FABRICATION
PROCESSES FOR METALLIC
DEGRADABLE BIOMATERIALS
H. Hermawan, D. Dubé and D. Mantovani
www.ulaval.ca
Fabrication
Starting powders
Step-1: Mixing, 1 h
Step-2:
Compacting, 10 T
Step-3: Sintering, 1200C, 2h, Hydrogen
Step-2 Step-3 Step-4 Step-3+4
Step-4: Cold rolling
Starting powders
Mn
35%
Fe
65%
Lubricant
0.5%
www.ulaval.ca
www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering
Mechanical properties
-yield (MPa)
Fe35Mn = 228
SS316L = 235
e (%)
Fe35Mn = 32
SS316L = 56
E (GPa)
Fe35Mn = 179
SS316L = 193
 The strength of Fe35Mn* is comparable to SS 316L**
 Fe35Mn is ductile enough for stent material
* Densified P/M alloy (annealed); ** Wrought alloy (hot rolled); the tests were performed based on ASTM E8
www.ulaval.ca
www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering
Non-magnetic behaviour
 Fe35Mn has low magnetic susceptibility (non-magnetic)
 It’s magnetic susceptibility is not altered by plastic deform.
The tests were performed by an Alternating Gradient Magnetometer.
0.00
0.50
1.00
1.50
0% 5% 15%
Degree of plastic deformation
MagneticSusceptibilty(m
3
/kg)
Fe35Mn
SS316L
www.ulaval.ca 35
Cross sectional profile of polished Fe-Mn specimens: (a) before and (b, c) after 1 week and 3
months of degradation test respectively, and (d, e) etched Fe25Mn and Fe35Mn specimens
after 3 months of degradation test respectively
www.ulaval.ca 36
Concentration of iron and manganese ions in test solution as a function of immersion time
for specimens of Fe25Mn and Fe35Mn alloys measured by the AAS
www.ulaval.ca
Phase II-b
BOTTOM-UP APPROACH
37
M. Moravej, M. Fiset and D. Mantovani
INVESTIGATION OF FABRICATING
BIODEGRADABLE CORONARY IRON STENT
BY ELECTROFORMING
www.ulaval.ca
www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering
Electroforming method
• ASTM B 374 : production or
reproduction of articles by
electrodeposition upon a
mandrel or mould that is
subsequently separated from
the deposit.
Electroforming [1]
[1] J. A. McGeough et al, Annals of the CIRP, 2001
www.ulaval.ca
www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering
Fabrication of pure iron films by
electroforming
•Manufacturing of complex shapes
and surfaces
•Fabrication of parts with different
size, thickness and properties
•Production of high purity materials
•Fabrication of thin walled materials
with dimensional precision
Electrodeposition of stent tubes
directly on a dissolvable cathode with
a bottom-up method
- +
Cathode Anode
Electrolyte
_
+
Cations
Anions
www.ulaval.ca
www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering
Iron electroformed foils
(100 microns)
Surface morphology Cross section
www.ulaval.ca
www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering
Microstructure
Electroformed Fe annealed at 550°C
Average grain size: 2 microns
Fe fabricate by casting annealed at
550°C
Average grain size: 30 microns
www.ulaval.ca
www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering
Degradation rate
Material Electroformed
Fe
E-Fe
annealed
CTT-Fe
annealed
Fe-35Mn
alloy
AM60B-F
Mg alloy
DR
(mm/y)
0.40 0.25 0.14 0.26 2.78
www.ulaval.ca
www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering
Electroformed iron minitube
D= 5 µm D= 25 µm
Electro-formed iron stent
316L stainless
steel stent1
www.ulaval.ca
• Design and development of
• New Fe-based alloys;
• New processes for high purity alloys;
• New processes for bottom-up fabrication of
stents;
• New surface treatments for positively controlling
the corrosion;
D. Mantovani, 44 www.lbb.gmn.ulaval.ca
Ongoing Works
www.lbb.ulaval.ca 45
H. Hermawan, D. Dubé, D. Mantovani. Acta Biomaterialia 6 (2010) 1693–1697
Concept in cardiovascular
applications
www.lbb.ulaval.ca 46
46
Concept in musculoskeletal
applications
Mg Implant
From Frank Witte
www.lbb.gmn.ulaval.ca
1st Berlin
2009
2nd Maratea
2010
3rd Quebec
2011
May 2010
4th Maratea
2012
www.biodegradablemetals.org
Intl Symposium on
Biodegradable Metals
www.lbb.gmn.ulaval.ca
www.lbb.ulaval.ca 49
Génie tissulaire vasculaire
www.lbb.ulaval.ca 50
Les approches
www.lbb.ulaval.ca 51
L’approche par échaffaudage
D. Seifu, A. Purnama, K. Mequanint, D. Mantovani. Nature Cardiology. 2013, in press.
www.lbb.ulaval.ca 52
Méthodologie
www.lbb.ulaval.ca 53
Materials and Methods
1. Mechanical Stimulation System
Flexcell international
corporation
www.lbb.ulaval.ca 54
Collagen Scaffold
SEM
L. Levesque, Advanced Materials Research, 2012
www.lbb.ulaval.ca 55
SEM
Collagen + Cells Dynamic
Condition
L. Levesque, Advanced Materials Research, 2012
www.lbb.ulaval.ca 56
SMCs’ Collagen Production
56
L. Levesque, 9th World Biomaterials Congress, 2012
www.lbb.ulaval.ca 57
Co-culture statique : Qui, quoi et
quand ?
Cellules endothéliales
Cellules musculaires lisses
CRSNG-FONCER, Collaboration avec Jayachandran Kizhakkedathu, UBC
www.lbb.ulaval.ca 58
Co-culture statique : Qui, quoi et quand ?
Gélification (collagène + CML) = 30 min
Maturation gel endothélialisé = 24h
Coloration au Trichrome de Masson
Vert : collagène ; Rouge : cytoplasme ; Noir/brun ; noyau
Tapis de CE
à la surface
du gel
www.lbb.ulaval.ca 59
Co-culture dynamique
La surface du gel va être soumis à une contrainte de cisaillement afin
d’observer l’adhésion des cellules endothéliales et leur orientation dans le
sens du flux.
Système de perfusion avec une pompe Masterflex et une chambre de flux
Ibidi.
www.lbb.ulaval.ca 60
Comment peut-on définir le remodelage ?
 Production de matrice extracellulaire.
 Production de facteurs de croissance.
 Réorientation des cellules
et des fibrilles de collagène
 Amélioration des propriétés mécaniques
 Dégradation des protéines.
www.lbb.ulaval.ca 61
 Culture dynamique 2 semaines
+
Contrainte
de cisaillement
Pression
+
Meilleures
propriétés mécaniques
 Culture statique 2 semaines
Remodelage
par les cellules
Effet des cultures statique et dynamique sur le
remodelage des gels de collagène
Remodelage
par les cellules
www.lbb.ulaval.ca 62
Dispositif expérimental
ÉCHAFAUDAGE
Collagène sans cellules
CONSTRUCTION ARTÉRIELLE
Culture statique 1 SEMAINE
CONSTRUCTION ARTÉRIELLE
Collagène + cellules, t = 0
CONSTRUCTION ARTÉRIELLE
Culture statique 2 SEMAINES
www.lbb.ulaval.ca 63
Combinaison
500 μm
Culture statique– Microscopie de fluorescence
www.ulaval.ca
www.lbb.ulaval.caLaboratory for Biomaterials & Bioengineering
SEM
25 X
www.ulaval.ca
www.lbb.ulaval.caLaboratory for Biomaterials & Bioengineering
SEM
100 X
www.lbb.ulaval.ca 66
Moteur rotatif à
5 tours/min
Réservoir de
milieu de culture
Espaceur en silicone
pour assurer un axe de
rotation constant
Endothélialisation d’une construction
artérielle à base de collagène
Conception d’un bioréacteur à parois rotatives
Bouchon avec filtre
0.22 μm
Roulement à billes
(Ø = 4,7mm)
www.lbb.ulaval.ca 67
Measuring mechanical property
67
Relaxation test of cell seeded tubular construct
using Instron 5848 Microtester, where SLSC9D is
Single Layer Static Culture of 9 Days and
DLSC9D Double Layer Static Culture of 9 Days
www.lbb.ulaval.ca 68
Immunohistochemistry
Red: PSMS with Calponin, Blue: Nuclei, Green: HUVECs with CD31 and actin and collagen Green with
Alex fluor green.
68
www.lbb.ulaval.ca 69
Masson Trichrome staining
69
www.lbb.ulaval.ca 70
SEM
70
www.lbb.ulaval.ca 71
Contrainte(Pa)
Temps (s)
106 cellules/mL
Culture statique
1 semaine
Pas de cellules
Culture statique
2 semaines
 Tests de relaxation en circonférentiel
Culture statique – Propriétés mécaniques
106 cellules/mL
Culture statique
1 semaine
ε = 0,1 ε = 0,2 ε = 0,3
www.lbb.ulaval.ca 72
Laser guided thickness measurement
72
LaserMike 136 Thickness and
external diameter measurement
of cell seeded construct.
www.lbb.ulaval.ca 73
Measuring mechanical properties
ε = 0,1 ε = 0,2 ε = 0,3 ε = 0,4 ε = 0,5 ε = 0,6 ε = 0,7 ε = 0,8
www.lbb.ulaval.ca 74
Measuring mechanical properties
Relaxation test of cell seeded tubular construct using Instron 5848 Microtester,
where SLSC9D is Single Layer Static Culture of 9 Days and DLSC9D Double
Layer Static Culture of 9 Days
www.lbb.ulaval.ca 75
Futur Collagène-Élastine
version 1
Collagène
Résistances aux tissus.
ELP(VPGVG)
HELP(VAPGVG)
Élasticité aux tissus.
 Ce motif est responsable de la prolifération cellulaire et d'autres activités biologiques.
 Des résidus de lysine et de la glutamine présents dans les domaines riche d’alanine permet deux
types de spécifique, réticulation enzymatique, en utilisant la lysyl oxydase et / ou de la
transglutaminase, afin pour obtenir une matrice.
 Capacité d'auto-assemblage et d'auto-organisation dans polymères réticulés avec des propriétés
physiques et mécaniques remarquablement similaires à l'élastine native.
Collagène-HELP
Prof. A. Bandera
www.lbb.ulaval.ca 76
Prof. Marisa Beppu
Structural layer:
mechanical resistance,
elasticity, anti-bacterial
capacity
 Konjac glucomannan
and chitosan
microstructured with
silk fibroin.
Bioactive layer :
growth factor stimulation,
re-epithelialization, drug
release
Dressings high biological performance
 Collagen or gelatin,
cells and drugs
www.lbb.ulaval.ca 77
Conclusions
Structures d’échafaudages avec
ensemencement de cellules VS
structures d’échafaudages a base de
cellules!
Un cycle de culture est la clef pour
emmener les cellules a structurer le
tissus régénéré
www.lbb.ulaval.ca 78
“The Human Being can do all things if He will”
www.lbb.ulaval.ca 79
www.lbb.ulaval.ca 80
80
www.lbb.ulaval.ca 81
Remerciements
www.lbb.ulaval.ca 82
Our students are our force
• 4 associate researchers, 6 (24 depuis 2000) post-
docs, 18 (47) PhD and 3 (48) MSc students, from 13
(32) countries, speaking more than (23) languages
and representing (7) religions, constitute the LBB;
In this mixture of identities, cultures and
nationalities we found each day the inspiration
required to push innovation in surgery and in the
connected fields;
• 40 % of our students hold a merit scholarship;

More Related Content

What's hot

Atomization of reduced graphene oxide ultra thin film for transparent electro...
Atomization of reduced graphene oxide ultra thin film for transparent electro...Atomization of reduced graphene oxide ultra thin film for transparent electro...
Atomization of reduced graphene oxide ultra thin film for transparent electro...
Conference Papers
 
Green synthesis
Green synthesisGreen synthesis
Green synthesis
christy joy
 
Cu doped to zno
Cu doped to znoCu doped to zno
Cu doped to zno
alisanim2
 
Surface Modification of Nanoparticles for Biomedical Applications
Surface Modification of Nanoparticles for Biomedical ApplicationsSurface Modification of Nanoparticles for Biomedical Applications
Surface Modification of Nanoparticles for Biomedical Applications
Reset_co
 
Characterization of Manganese doped ZnO (MZO) thin films by Spin Coating Tech...
Characterization of Manganese doped ZnO (MZO) thin films by Spin Coating Tech...Characterization of Manganese doped ZnO (MZO) thin films by Spin Coating Tech...
Characterization of Manganese doped ZnO (MZO) thin films by Spin Coating Tech...
IOSR Journals
 
Preparation of ZnO Nanostructures by Solvothermail Method
Preparation of ZnO Nanostructures by Solvothermail MethodPreparation of ZnO Nanostructures by Solvothermail Method
Preparation of ZnO Nanostructures by Solvothermail Method
Hai Yen Dang
 
Metal organic Frameworks for sensor application
Metal organic Frameworks for sensor applicationMetal organic Frameworks for sensor application
Metal organic Frameworks for sensor application
ABHISHEK KATOCH
 
Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...
Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...
Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...
eSAT Journals
 
Grds conferences icst and icbelsh (6)
Grds conferences icst and icbelsh (6)Grds conferences icst and icbelsh (6)
Grds conferences icst and icbelsh (6)
Global R & D Services
 
Synethsis method
Synethsis methodSynethsis method
Synethsis method
abdul latif
 
BIOSYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLE USING FICUS RELI...
BIOSYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLE USING FICUS RELI...BIOSYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLE USING FICUS RELI...
BIOSYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLE USING FICUS RELI...
Arvind Singh Heer
 
Effect of Exchangeable Cations on Bentonite Swelling Characteristics of Geosy...
Effect of Exchangeable Cations on Bentonite Swelling Characteristics of Geosy...Effect of Exchangeable Cations on Bentonite Swelling Characteristics of Geosy...
Effect of Exchangeable Cations on Bentonite Swelling Characteristics of Geosy...
drboon
 
Komposit 2
Komposit 2Komposit 2
Komposit 2
Riyan Angela
 
ZnO Nanoparticles Impacts
ZnO Nanoparticles ImpactsZnO Nanoparticles Impacts
ZnO Nanoparticles Impacts
Shantanu Singh
 
B1070919
B1070919B1070919
B1070919
IJERD Editor
 
synthesis of doped chromium oxide nanoparticles
synthesis of doped chromium oxide nanoparticlessynthesis of doped chromium oxide nanoparticles
synthesis of doped chromium oxide nanoparticles
Gaurav Yogesh
 
Final Presentation on Iron Nanoparticles_Prajwal (1)
Final Presentation on Iron Nanoparticles_Prajwal (1)Final Presentation on Iron Nanoparticles_Prajwal (1)
Final Presentation on Iron Nanoparticles_Prajwal (1)
Prajwal Bahukhandi
 
Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...
Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...
Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...
Jagpreet Singh
 
Synthesis, characterization and role of zero valent iron nanoparticle in remo...
Synthesis, characterization and role of zero valent iron nanoparticle in remo...Synthesis, characterization and role of zero valent iron nanoparticle in remo...
Synthesis, characterization and role of zero valent iron nanoparticle in remo...
sadalltime
 

What's hot (19)

Atomization of reduced graphene oxide ultra thin film for transparent electro...
Atomization of reduced graphene oxide ultra thin film for transparent electro...Atomization of reduced graphene oxide ultra thin film for transparent electro...
Atomization of reduced graphene oxide ultra thin film for transparent electro...
 
Green synthesis
Green synthesisGreen synthesis
Green synthesis
 
Cu doped to zno
Cu doped to znoCu doped to zno
Cu doped to zno
 
Surface Modification of Nanoparticles for Biomedical Applications
Surface Modification of Nanoparticles for Biomedical ApplicationsSurface Modification of Nanoparticles for Biomedical Applications
Surface Modification of Nanoparticles for Biomedical Applications
 
Characterization of Manganese doped ZnO (MZO) thin films by Spin Coating Tech...
Characterization of Manganese doped ZnO (MZO) thin films by Spin Coating Tech...Characterization of Manganese doped ZnO (MZO) thin films by Spin Coating Tech...
Characterization of Manganese doped ZnO (MZO) thin films by Spin Coating Tech...
 
Preparation of ZnO Nanostructures by Solvothermail Method
Preparation of ZnO Nanostructures by Solvothermail MethodPreparation of ZnO Nanostructures by Solvothermail Method
Preparation of ZnO Nanostructures by Solvothermail Method
 
Metal organic Frameworks for sensor application
Metal organic Frameworks for sensor applicationMetal organic Frameworks for sensor application
Metal organic Frameworks for sensor application
 
Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...
Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...
Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...
 
Grds conferences icst and icbelsh (6)
Grds conferences icst and icbelsh (6)Grds conferences icst and icbelsh (6)
Grds conferences icst and icbelsh (6)
 
Synethsis method
Synethsis methodSynethsis method
Synethsis method
 
BIOSYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLE USING FICUS RELI...
BIOSYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLE USING FICUS RELI...BIOSYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLE USING FICUS RELI...
BIOSYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLE USING FICUS RELI...
 
Effect of Exchangeable Cations on Bentonite Swelling Characteristics of Geosy...
Effect of Exchangeable Cations on Bentonite Swelling Characteristics of Geosy...Effect of Exchangeable Cations on Bentonite Swelling Characteristics of Geosy...
Effect of Exchangeable Cations on Bentonite Swelling Characteristics of Geosy...
 
Komposit 2
Komposit 2Komposit 2
Komposit 2
 
ZnO Nanoparticles Impacts
ZnO Nanoparticles ImpactsZnO Nanoparticles Impacts
ZnO Nanoparticles Impacts
 
B1070919
B1070919B1070919
B1070919
 
synthesis of doped chromium oxide nanoparticles
synthesis of doped chromium oxide nanoparticlessynthesis of doped chromium oxide nanoparticles
synthesis of doped chromium oxide nanoparticles
 
Final Presentation on Iron Nanoparticles_Prajwal (1)
Final Presentation on Iron Nanoparticles_Prajwal (1)Final Presentation on Iron Nanoparticles_Prajwal (1)
Final Presentation on Iron Nanoparticles_Prajwal (1)
 
Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...
Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...
Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...
 
Synthesis, characterization and role of zero valent iron nanoparticle in remo...
Synthesis, characterization and role of zero valent iron nanoparticle in remo...Synthesis, characterization and role of zero valent iron nanoparticle in remo...
Synthesis, characterization and role of zero valent iron nanoparticle in remo...
 

Viewers also liked

Ldb Convergenze Parallele_caminiti_01
Ldb Convergenze Parallele_caminiti_01Ldb Convergenze Parallele_caminiti_01
Ldb Convergenze Parallele_caminiti_01laboratoridalbasso
 
Ldb Convergenze Parallele_06
Ldb Convergenze Parallele_06Ldb Convergenze Parallele_06
Ldb Convergenze Parallele_06
laboratoridalbasso
 
Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11
laboratoridalbasso
 
Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01
laboratoridalbasso
 
Ldb Convergenze Parallele_mazzara_01
Ldb Convergenze Parallele_mazzara_01Ldb Convergenze Parallele_mazzara_01
Ldb Convergenze Parallele_mazzara_01laboratoridalbasso
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01
laboratoridalbasso
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01
laboratoridalbasso
 
Ldb Convergenze Parallele_stanziola_01
Ldb Convergenze Parallele_stanziola_01Ldb Convergenze Parallele_stanziola_01
Ldb Convergenze Parallele_stanziola_01laboratoridalbasso
 
Ldb Convergenze Parallele_De barros_03
Ldb Convergenze Parallele_De barros_03Ldb Convergenze Parallele_De barros_03
Ldb Convergenze Parallele_De barros_03
laboratoridalbasso
 
Ldb Convergenze Parallele_15
Ldb Convergenze Parallele_15Ldb Convergenze Parallele_15
Ldb Convergenze Parallele_15
laboratoridalbasso
 
Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01laboratoridalbasso
 
Ldb Convergenze Parallele_trueblood_02
Ldb Convergenze Parallele_trueblood_02Ldb Convergenze Parallele_trueblood_02
Ldb Convergenze Parallele_trueblood_02
laboratoridalbasso
 
Ldb Convergenze Parallele_16
Ldb Convergenze Parallele_16Ldb Convergenze Parallele_16
Ldb Convergenze Parallele_16
laboratoridalbasso
 
Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01laboratoridalbasso
 
Ldb Convergenze Parallele_Mantovani_01
Ldb Convergenze Parallele_Mantovani_01Ldb Convergenze Parallele_Mantovani_01
Ldb Convergenze Parallele_Mantovani_01
laboratoridalbasso
 
Ldb Convergenze Parallele_sozzolabbasso_01
Ldb Convergenze Parallele_sozzolabbasso_01Ldb Convergenze Parallele_sozzolabbasso_01
Ldb Convergenze Parallele_sozzolabbasso_01
laboratoridalbasso
 
Ldb Convergenze Parallele_13
Ldb Convergenze Parallele_13Ldb Convergenze Parallele_13
Ldb Convergenze Parallele_13
laboratoridalbasso
 
Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01
laboratoridalbasso
 
Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02
laboratoridalbasso
 

Viewers also liked (20)

Ldb Convergenze Parallele_caminiti_01
Ldb Convergenze Parallele_caminiti_01Ldb Convergenze Parallele_caminiti_01
Ldb Convergenze Parallele_caminiti_01
 
Ldb Convergenze Parallele_06
Ldb Convergenze Parallele_06Ldb Convergenze Parallele_06
Ldb Convergenze Parallele_06
 
Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11
 
Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01
 
Ldb Convergenze Parallele_mazzara_01
Ldb Convergenze Parallele_mazzara_01Ldb Convergenze Parallele_mazzara_01
Ldb Convergenze Parallele_mazzara_01
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01
 
Ldb Convergenze Parallele_14
Ldb Convergenze Parallele_14Ldb Convergenze Parallele_14
Ldb Convergenze Parallele_14
 
Ldb Convergenze Parallele_stanziola_01
Ldb Convergenze Parallele_stanziola_01Ldb Convergenze Parallele_stanziola_01
Ldb Convergenze Parallele_stanziola_01
 
Ldb Convergenze Parallele_De barros_03
Ldb Convergenze Parallele_De barros_03Ldb Convergenze Parallele_De barros_03
Ldb Convergenze Parallele_De barros_03
 
Ldb Convergenze Parallele_15
Ldb Convergenze Parallele_15Ldb Convergenze Parallele_15
Ldb Convergenze Parallele_15
 
Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01
 
Ldb Convergenze Parallele_trueblood_02
Ldb Convergenze Parallele_trueblood_02Ldb Convergenze Parallele_trueblood_02
Ldb Convergenze Parallele_trueblood_02
 
Ldb Convergenze Parallele_16
Ldb Convergenze Parallele_16Ldb Convergenze Parallele_16
Ldb Convergenze Parallele_16
 
Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01
 
Ldb Convergenze Parallele_Mantovani_01
Ldb Convergenze Parallele_Mantovani_01Ldb Convergenze Parallele_Mantovani_01
Ldb Convergenze Parallele_Mantovani_01
 
Ldb Convergenze Parallele_sozzolabbasso_01
Ldb Convergenze Parallele_sozzolabbasso_01Ldb Convergenze Parallele_sozzolabbasso_01
Ldb Convergenze Parallele_sozzolabbasso_01
 
Ldb Convergenze Parallele_13
Ldb Convergenze Parallele_13Ldb Convergenze Parallele_13
Ldb Convergenze Parallele_13
 
Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01
 
Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02
 

Similar to Ldb Convergenze Parallele_Mantovani_03

Michael Ward poster final
Michael Ward poster finalMichael Ward poster final
Michael Ward poster final
Michael Ward
 
2014 polymer activation by reducing agent absorption as a flexible tool for t...
2014 polymer activation by reducing agent absorption as a flexible tool for t...2014 polymer activation by reducing agent absorption as a flexible tool for t...
2014 polymer activation by reducing agent absorption as a flexible tool for t...
Alexandra Bautista
 
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
paperpublications3
 
Perovskite Solar Cells
Perovskite Solar CellsPerovskite Solar Cells
Perovskite Solar Cells
University of Michigan
 
Innovation Technology for Water Desalination Based on RO-NF Membrane
Innovation Technology for Water Desalination Based on RO-NF MembraneInnovation Technology for Water Desalination Based on RO-NF Membrane
Innovation Technology for Water Desalination Based on RO-NF Membrane
Abdallah M. Ashraf
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerations
cdtpv
 
Brandt wc lasers med sci 2012
Brandt wc lasers med sci 2012Brandt wc lasers med sci 2012
Brandt wc lasers med sci 2012
Eduardo Souza-Junior
 
AATCC poster - Toivola
AATCC poster - ToivolaAATCC poster - Toivola
AATCC poster - Toivola
Ryan Toivola
 
Acs 2009 3 22 Final
Acs 2009 3 22 FinalAcs 2009 3 22 Final
Acs 2009 3 22 Final
jihuac
 
Paper id 21201429
Paper id 21201429Paper id 21201429
Paper id 21201429
IJRAT
 
Pentacene organic thin-film transistors on flexible paper and glass substrates
Pentacene organic thin-film transistors on flexible paper and glass substratesPentacene organic thin-film transistors on flexible paper and glass substrates
Pentacene organic thin-film transistors on flexible paper and glass substrates
Adam Zocco
 
Rosa alejandra lukaszew a review of the thin film techniques potentially ap...
Rosa alejandra lukaszew   a review of the thin film techniques potentially ap...Rosa alejandra lukaszew   a review of the thin film techniques potentially ap...
Rosa alejandra lukaszew a review of the thin film techniques potentially ap...
thinfilmsworkshop
 
Rosa alejandra lukaszew a review of the thin film techniques potentially ap...
Rosa alejandra lukaszew   a review of the thin film techniques potentially ap...Rosa alejandra lukaszew   a review of the thin film techniques potentially ap...
Rosa alejandra lukaszew a review of the thin film techniques potentially ap...
thinfilmsworkshop
 
OFET Preparation by Lithography and Thin Film Depositions Process
OFET Preparation by Lithography and Thin Film Depositions ProcessOFET Preparation by Lithography and Thin Film Depositions Process
OFET Preparation by Lithography and Thin Film Depositions Process
TELKOMNIKA JOURNAL
 
Surface modification techniques in biomedical sector
Surface modification techniques in biomedical sectorSurface modification techniques in biomedical sector
Surface modification techniques in biomedical sector
Sum K
 
Highly efficient organic devices.
Highly efficient organic devices.Highly efficient organic devices.
Highly efficient organic devices.
Sociedade Brasileira de Pesquisa em Materiais
 
Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.
Sociedade Brasileira de Pesquisa em Materiais
 
A.F. Ismail (presentation)
A.F. Ismail (presentation)A.F. Ismail (presentation)
A.F. Ismail (presentation)
Elektro_UMBO
 
Roadshow2014 - presentazione Giovanna Fragneto (4 giugno 2014)
Roadshow2014 - presentazione Giovanna Fragneto (4 giugno 2014)Roadshow2014 - presentazione Giovanna Fragneto (4 giugno 2014)
Roadshow2014 - presentazione Giovanna Fragneto (4 giugno 2014)
Roadshow2014
 
HBCU Presentation: Impact of RoHS Legislation on the High Performance Industry
HBCU Presentation: Impact of RoHS Legislation on the High Performance IndustryHBCU Presentation: Impact of RoHS Legislation on the High Performance Industry
HBCU Presentation: Impact of RoHS Legislation on the High Performance Industry
Career Communications Group
 

Similar to Ldb Convergenze Parallele_Mantovani_03 (20)

Michael Ward poster final
Michael Ward poster finalMichael Ward poster final
Michael Ward poster final
 
2014 polymer activation by reducing agent absorption as a flexible tool for t...
2014 polymer activation by reducing agent absorption as a flexible tool for t...2014 polymer activation by reducing agent absorption as a flexible tool for t...
2014 polymer activation by reducing agent absorption as a flexible tool for t...
 
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
 
Perovskite Solar Cells
Perovskite Solar CellsPerovskite Solar Cells
Perovskite Solar Cells
 
Innovation Technology for Water Desalination Based on RO-NF Membrane
Innovation Technology for Water Desalination Based on RO-NF MembraneInnovation Technology for Water Desalination Based on RO-NF Membrane
Innovation Technology for Water Desalination Based on RO-NF Membrane
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerations
 
Brandt wc lasers med sci 2012
Brandt wc lasers med sci 2012Brandt wc lasers med sci 2012
Brandt wc lasers med sci 2012
 
AATCC poster - Toivola
AATCC poster - ToivolaAATCC poster - Toivola
AATCC poster - Toivola
 
Acs 2009 3 22 Final
Acs 2009 3 22 FinalAcs 2009 3 22 Final
Acs 2009 3 22 Final
 
Paper id 21201429
Paper id 21201429Paper id 21201429
Paper id 21201429
 
Pentacene organic thin-film transistors on flexible paper and glass substrates
Pentacene organic thin-film transistors on flexible paper and glass substratesPentacene organic thin-film transistors on flexible paper and glass substrates
Pentacene organic thin-film transistors on flexible paper and glass substrates
 
Rosa alejandra lukaszew a review of the thin film techniques potentially ap...
Rosa alejandra lukaszew   a review of the thin film techniques potentially ap...Rosa alejandra lukaszew   a review of the thin film techniques potentially ap...
Rosa alejandra lukaszew a review of the thin film techniques potentially ap...
 
Rosa alejandra lukaszew a review of the thin film techniques potentially ap...
Rosa alejandra lukaszew   a review of the thin film techniques potentially ap...Rosa alejandra lukaszew   a review of the thin film techniques potentially ap...
Rosa alejandra lukaszew a review of the thin film techniques potentially ap...
 
OFET Preparation by Lithography and Thin Film Depositions Process
OFET Preparation by Lithography and Thin Film Depositions ProcessOFET Preparation by Lithography and Thin Film Depositions Process
OFET Preparation by Lithography and Thin Film Depositions Process
 
Surface modification techniques in biomedical sector
Surface modification techniques in biomedical sectorSurface modification techniques in biomedical sector
Surface modification techniques in biomedical sector
 
Highly efficient organic devices.
Highly efficient organic devices.Highly efficient organic devices.
Highly efficient organic devices.
 
Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.
 
A.F. Ismail (presentation)
A.F. Ismail (presentation)A.F. Ismail (presentation)
A.F. Ismail (presentation)
 
Roadshow2014 - presentazione Giovanna Fragneto (4 giugno 2014)
Roadshow2014 - presentazione Giovanna Fragneto (4 giugno 2014)Roadshow2014 - presentazione Giovanna Fragneto (4 giugno 2014)
Roadshow2014 - presentazione Giovanna Fragneto (4 giugno 2014)
 
HBCU Presentation: Impact of RoHS Legislation on the High Performance Industry
HBCU Presentation: Impact of RoHS Legislation on the High Performance IndustryHBCU Presentation: Impact of RoHS Legislation on the High Performance Industry
HBCU Presentation: Impact of RoHS Legislation on the High Performance Industry
 

More from laboratoridalbasso

Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz
laboratoridalbasso
 
Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01
laboratoridalbasso
 
Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02
laboratoridalbasso
 
Ldb neetneedeu panetta 08
Ldb neetneedeu panetta 08 Ldb neetneedeu panetta 08
Ldb neetneedeu panetta 08
laboratoridalbasso
 
Ldb neetneedeu panetta 07
Ldb neetneedeu panetta 07 Ldb neetneedeu panetta 07
Ldb neetneedeu panetta 07
laboratoridalbasso
 
Ldb neetneedeu panetta 06
Ldb neetneedeu panetta 06 Ldb neetneedeu panetta 06
Ldb neetneedeu panetta 06
laboratoridalbasso
 
Ldb neetneedeu panetta 05
Ldb neetneedeu panetta 05 Ldb neetneedeu panetta 05
Ldb neetneedeu panetta 05
laboratoridalbasso
 
Ldb neetneedeu panetta 04
Ldb neetneedeu panetta 04 Ldb neetneedeu panetta 04
Ldb neetneedeu panetta 04
laboratoridalbasso
 
Ldb neetneedeu panetta 03
Ldb neetneedeu panetta 03 Ldb neetneedeu panetta 03
Ldb neetneedeu panetta 03
laboratoridalbasso
 
Ldb neetneedeu cavalhro 01
Ldb neetneedeu cavalhro 01Ldb neetneedeu cavalhro 01
Ldb neetneedeu cavalhro 01
laboratoridalbasso
 
Ldb neetneedeu panetta 01
Ldb neetneedeu panetta 01 Ldb neetneedeu panetta 01
Ldb neetneedeu panetta 01
laboratoridalbasso
 
Ldb neetneedeu_mola 01
Ldb neetneedeu_mola 01Ldb neetneedeu_mola 01
Ldb neetneedeu_mola 01
laboratoridalbasso
 
Ldb neetneedeu panetta 02
Ldb neetneedeu panetta 02Ldb neetneedeu panetta 02
Ldb neetneedeu panetta 02
laboratoridalbasso
 
Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02
laboratoridalbasso
 
Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01
laboratoridalbasso
 
Ldb Asola Non Verba_Attanasio
Ldb Asola Non Verba_AttanasioLdb Asola Non Verba_Attanasio
Ldb Asola Non Verba_Attanasio
laboratoridalbasso
 
#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Action#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Action
laboratoridalbasso
 
Tre anni di Laboratori dal Basso
Tre anni di Laboratori dal BassoTre anni di Laboratori dal Basso
Tre anni di Laboratori dal Basso
laboratoridalbasso
 
Ldb valecoricerca_lentini_web
Ldb valecoricerca_lentini_webLdb valecoricerca_lentini_web
Ldb valecoricerca_lentini_web
laboratoridalbasso
 
Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3
laboratoridalbasso
 

More from laboratoridalbasso (20)

Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz
 
Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01
 
Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02
 
Ldb neetneedeu panetta 08
Ldb neetneedeu panetta 08 Ldb neetneedeu panetta 08
Ldb neetneedeu panetta 08
 
Ldb neetneedeu panetta 07
Ldb neetneedeu panetta 07 Ldb neetneedeu panetta 07
Ldb neetneedeu panetta 07
 
Ldb neetneedeu panetta 06
Ldb neetneedeu panetta 06 Ldb neetneedeu panetta 06
Ldb neetneedeu panetta 06
 
Ldb neetneedeu panetta 05
Ldb neetneedeu panetta 05 Ldb neetneedeu panetta 05
Ldb neetneedeu panetta 05
 
Ldb neetneedeu panetta 04
Ldb neetneedeu panetta 04 Ldb neetneedeu panetta 04
Ldb neetneedeu panetta 04
 
Ldb neetneedeu panetta 03
Ldb neetneedeu panetta 03 Ldb neetneedeu panetta 03
Ldb neetneedeu panetta 03
 
Ldb neetneedeu cavalhro 01
Ldb neetneedeu cavalhro 01Ldb neetneedeu cavalhro 01
Ldb neetneedeu cavalhro 01
 
Ldb neetneedeu panetta 01
Ldb neetneedeu panetta 01 Ldb neetneedeu panetta 01
Ldb neetneedeu panetta 01
 
Ldb neetneedeu_mola 01
Ldb neetneedeu_mola 01Ldb neetneedeu_mola 01
Ldb neetneedeu_mola 01
 
Ldb neetneedeu panetta 02
Ldb neetneedeu panetta 02Ldb neetneedeu panetta 02
Ldb neetneedeu panetta 02
 
Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02
 
Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01
 
Ldb Asola Non Verba_Attanasio
Ldb Asola Non Verba_AttanasioLdb Asola Non Verba_Attanasio
Ldb Asola Non Verba_Attanasio
 
#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Action#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Action
 
Tre anni di Laboratori dal Basso
Tre anni di Laboratori dal BassoTre anni di Laboratori dal Basso
Tre anni di Laboratori dal Basso
 
Ldb valecoricerca_lentini_web
Ldb valecoricerca_lentini_webLdb valecoricerca_lentini_web
Ldb valecoricerca_lentini_web
 
Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3
 

Recently uploaded

VYAPAR TRENDS JUNE-2024 e-EDITION (VOL-2, ISSUE-05)
VYAPAR TRENDS JUNE-2024 e-EDITION (VOL-2, ISSUE-05)VYAPAR TRENDS JUNE-2024 e-EDITION (VOL-2, ISSUE-05)
VYAPAR TRENDS JUNE-2024 e-EDITION (VOL-2, ISSUE-05)
ftiiassociation
 
1比1定做(aub毕业证书)伯恩茅斯艺术大学毕业证硕士学历证书原版一模一样
1比1定做(aub毕业证书)伯恩茅斯艺术大学毕业证硕士学历证书原版一模一样1比1定做(aub毕业证书)伯恩茅斯艺术大学毕业证硕士学历证书原版一模一样
1比1定做(aub毕业证书)伯恩茅斯艺术大学毕业证硕士学历证书原版一模一样
es4hjcss
 
Basic electronics electrical and engineering unit 5 notes
Basic electronics electrical and engineering unit 5  notesBasic electronics electrical and engineering unit 5  notes
Basic electronics electrical and engineering unit 5 notes
YasraAyman
 
1:1制作英国伦敦大学毕业证(london毕业证书)学历学位证书原版一模一样
1:1制作英国伦敦大学毕业证(london毕业证书)学历学位证书原版一模一样1:1制作英国伦敦大学毕业证(london毕业证书)学历学位证书原版一模一样
1:1制作英国伦敦大学毕业证(london毕业证书)学历学位证书原版一模一样
es4hjcss
 
一比一原版(ud毕业证书)丹佛大学毕业证如何办理
一比一原版(ud毕业证书)丹佛大学毕业证如何办理一比一原版(ud毕业证书)丹佛大学毕业证如何办理
一比一原版(ud毕业证书)丹佛大学毕业证如何办理
degswa
 
一比一原版(BCU毕业证)伯明翰城市大学毕业证如何办理
一比一原版(BCU毕业证)伯明翰城市大学毕业证如何办理一比一原版(BCU毕业证)伯明翰城市大学毕业证如何办理
一比一原版(BCU毕业证)伯明翰城市大学毕业证如何办理
fecmz
 
一比一原版(UAL毕业证)伦敦艺术大学毕业证如何办理
一比一原版(UAL毕业证)伦敦艺术大学毕业证如何办理一比一原版(UAL毕业证)伦敦艺术大学毕业证如何办理
一比一原版(UAL毕业证)伦敦艺术大学毕业证如何办理
ocqunu
 
一比一原版(ucsf毕业证书)加利福尼亚大学旧金山分校毕业证如何办理
一比一原版(ucsf毕业证书)加利福尼亚大学旧金山分校毕业证如何办理一比一原版(ucsf毕业证书)加利福尼亚大学旧金山分校毕业证如何办理
一比一原版(ucsf毕业证书)加利福尼亚大学旧金山分校毕业证如何办理
degswa
 

Recently uploaded (8)

VYAPAR TRENDS JUNE-2024 e-EDITION (VOL-2, ISSUE-05)
VYAPAR TRENDS JUNE-2024 e-EDITION (VOL-2, ISSUE-05)VYAPAR TRENDS JUNE-2024 e-EDITION (VOL-2, ISSUE-05)
VYAPAR TRENDS JUNE-2024 e-EDITION (VOL-2, ISSUE-05)
 
1比1定做(aub毕业证书)伯恩茅斯艺术大学毕业证硕士学历证书原版一模一样
1比1定做(aub毕业证书)伯恩茅斯艺术大学毕业证硕士学历证书原版一模一样1比1定做(aub毕业证书)伯恩茅斯艺术大学毕业证硕士学历证书原版一模一样
1比1定做(aub毕业证书)伯恩茅斯艺术大学毕业证硕士学历证书原版一模一样
 
Basic electronics electrical and engineering unit 5 notes
Basic electronics electrical and engineering unit 5  notesBasic electronics electrical and engineering unit 5  notes
Basic electronics electrical and engineering unit 5 notes
 
1:1制作英国伦敦大学毕业证(london毕业证书)学历学位证书原版一模一样
1:1制作英国伦敦大学毕业证(london毕业证书)学历学位证书原版一模一样1:1制作英国伦敦大学毕业证(london毕业证书)学历学位证书原版一模一样
1:1制作英国伦敦大学毕业证(london毕业证书)学历学位证书原版一模一样
 
一比一原版(ud毕业证书)丹佛大学毕业证如何办理
一比一原版(ud毕业证书)丹佛大学毕业证如何办理一比一原版(ud毕业证书)丹佛大学毕业证如何办理
一比一原版(ud毕业证书)丹佛大学毕业证如何办理
 
一比一原版(BCU毕业证)伯明翰城市大学毕业证如何办理
一比一原版(BCU毕业证)伯明翰城市大学毕业证如何办理一比一原版(BCU毕业证)伯明翰城市大学毕业证如何办理
一比一原版(BCU毕业证)伯明翰城市大学毕业证如何办理
 
一比一原版(UAL毕业证)伦敦艺术大学毕业证如何办理
一比一原版(UAL毕业证)伦敦艺术大学毕业证如何办理一比一原版(UAL毕业证)伦敦艺术大学毕业证如何办理
一比一原版(UAL毕业证)伦敦艺术大学毕业证如何办理
 
一比一原版(ucsf毕业证书)加利福尼亚大学旧金山分校毕业证如何办理
一比一原版(ucsf毕业证书)加利福尼亚大学旧金山分校毕业证如何办理一比一原版(ucsf毕业证书)加利福尼亚大学旧金山分校毕业证如何办理
一比一原版(ucsf毕业证书)加利福尼亚大学旧金山分校毕业证如何办理
 

Ldb Convergenze Parallele_Mantovani_03

  • 1. Diego Mantovani, PhD, FBSE Lab. Biomaterials and Bioengineering Dept of Min-Met-Materials Eng. Research Center, CHU de Québec Laval University Innovative Cardiovascular Devices Biocompatible Nano-Materials
  • 2. www.lbb.ulaval.ca 2 Outline Historical/prospective perspective Nanotechnology for Medical Implants Advanced Materials with Extreme Properties Tissue Engineering and Regenerative Medicine Conclusions
  • 3. D. Mantovani, 3 www.lbb.ulaval.ca
  • 4. Life expectancy D. Mantovani, 4 www.lbb.ulaval.ca
  • 5. Introduction D. Mantovani, 5 www.lbb.ulaval.ca
  • 6. Global challenges for humans Energy Food Medical Environment D. Mantovani, 6 www.lbb.ulaval.ca
  • 7. D. Mantovani, 7 www.lbb.ulaval.ca
  • 8. D. Mantovani, 8 www.lbb.ulaval.ca LBB: Sciences in Medicine Why ? © www.fda.gov The Medico-Social Problem: • Atherosclerosis represents the main cause for 35 to 38 % of total death (North America & Europe) • Pharmacological treatment, angioplasty, stent implantation and vessel replacement constitute the modern surgical approaches LBB works aim to improve the performances of medical devices, and to develop and explore the feasibility of new strategies for the replacement and the regeneration of patient diseased tissue that today are utopia but tomorrow could generate new treatments and therapies
  • 9. D. Mantovani, 9 www.lbb.ulaval.ca Stents: How?
  • 10. D. Mantovani, 10 www.lbb.ulaval.ca Clinical Complications  Restenosis Re-narrowing or blockage of an artery at the site of treatment leading up to 30% of failure after 3 months of implantation [1]. They cannot be explanted.  Toxicity and degradation Corrosion causes a degradation of the mechanical properties of the device [2] and presents a high risk for the release of potentially toxic metallic compounds [3]. [1] Wieneke, et al., Herz, 2002. 27(6): p. 518-26. [2] Bertrand, et al., J. of the American College of Cardiology, 1998. 32 (3): p. 562-571. [3] Uo, M., et al., Biomaterials, 2001. 22(7): p. 677-85.
  • 11. D. Mantovani, 11 www.lbb.ulaval.ca Clinical and Scientific Strategy A surface modification protocol has been developed Stainless steel is the material widely used (70 to 75%) for the fabrication of stent Pretreatment + Plasma deposition of a Teflon-like ultra-thin film Drug Eluting Stents help to prevent restenosis Delamination Cracks But … How to graft bioactive molecules to metallic surfaces while preserving the bioactivity ?
  • 12. Current Polymer Coatings Otsuka, Y.;et al, Journal of Invasive Cardiology 2007, 19, 71.
  • 13. Research Project Deposit a coating on a stent material - « biocompatible » adherent, stable and impermeable  General objective Deposition of fluorocarbon coating via plasma Amination of polymer coating via plasma Attachment of biomolecules (phosphorylcholine) Pretreatment of stainless steel substrate SS316L  Resistant to deformation  Stable in pseudo-physiological medium  Corrosion inhibitor
  • 14. D. Mantovani, 14 www.lbb.ulaval.ca Multistep process  12.7mm t = 0.5 mm • Electropolishing - To clean the surface - To minimize the roughness - To reduce and uniformize the oxide layer thickness • Acid dipping - To remove the contaminants due to electropolishing • Plasma etching (H2 or C2F6 gas precursors) - To further reduce the oxide layer thickness 1 – Pretreatment
  • 15. D. Mantovani, 15 www.lbb.ulaval.ca A procedure was established in our labs to optimize the characteristics of the electopolished surface. Haidopoulos et al. (2005). Surf. Coat. Technol. 197(2-3): 278 Achieved Results Surfaces AFM Analyses Topography As Received Electropolished Roughness (102 nm)
  • 16. D. Mantovani, 16 www.lbb.ulaval.ca 2-Plasma deposition • Development of a pulsed in-house RF plasma reactor •C2F6 as gas precursor •Time of Plasma deposition •Sample distance to antenna •Pressure •Gas flow •Duty cyle •Setting of a characterization routine for the deposited film •Chemical analysis (XPS, FTIR) •Surface observation (SEM, AFM, contact angle) Haidopoulos et al (2005). Plasma Process. Polym. 2(5): 424 Haidopoulos et al. (2006) J. Mater. Sci. - Mater. Med. 17, 647 Substrate At. % F Cr As-received Not coated - 6 Coated 52 - Pre-treated Not coated - 11.8 Coated 52 - Preliminary results
  • 17. Optimization of the plasma parameters • Objective: Obtain a highly fluorinated and ultra thin film • F content and chemical binding evaluated by XPS and FTIR • Thickness measured by ellipsometry • Pulsed RF glow discharge on flat specimens – Precursors: C2F6 + 6% H2 – Duty cycle (Ton/ Toff): 5/90 ms – RF Peak power (13,56 MHz): 150 W – Total gas flow: 20 sccm – Pressure: 700 mTorr – Position: afterglow Lewis et al. (2008) J. Phys. D: Appl. Phys. 41, 045310 D. Mantovani, 17 www.lbb.ulaval.ca
  • 18. D. Mantovani, 18 www.lbb.ulaval.ca 3-Film adhesion and cohesion Establish a procedure to characterize the adhesive and cohesive properties of the fluoropolymer film after plastic deformation of the substrate. Small Punch Test Lewis et al. (2007). Adhesion Aspects of Thin Films 3: 1 25% plastic deformation
  • 19. D. Mantovani, 19 www.lbb.ulaval.ca Achieved Results •No metallic compounds by XPS analysis were detected at the surface after the deformation suggesting that the film did not delaminate or crack. •The film surface and bulk compositions after deformation were not altered according to XPS and FTIR analyses. Sample % F % C % O F/C No deformation 50.9 ± 0.6 47.4 ± 0.6 1.7 ± 0.5 1.07 ± 0.02 25% deformation 49.6 ± 0.8 47.8 ± 0.5 2.6 ± 0.8 1.04 ± 0.02 Lewis et al. (2007). Adhesion Aspects of Thin Films 3: 1
  • 20. D. Mantovani, 20 www.lbb.ulaval.ca SEM No metallic compounds are detected with XPS < 1% 25% deformation Touzin et al. (2010) Mater. Sci. Forum 2009 638-642: 10
  • 21. Bismuth electrodeposition  High chemical contrast by scanning electron microscopy  Detectable at very low concentration by XPS  Easy to deposit 400 200 0 0 10 20 30 40 C Intensity(x10 3 photolectrons) E (binding energy) 25 % deformed substrate electroplated with Bi at -850 mV 35 nm thick film 100 nm thick film Bi XPS spectrum Holvoet et al. (2010). Electrochim. Acta 55(3): 1042
  • 22. Corrosion rates D. Mantovani, 22 www.lbb.ulaval.ca Corrosion rates (µm/year) Samples Flat Deformed As-received SS316L 4.6 ± 0.2 6.6 ± 0.1 Electroplished SS316L 1.1 ± 0.3 4.1 ± 0.6 Coated electropolished SS316L 0.46 ± 0.01 0.8 ± 0.3 Coated H2 etched SS316L 1.3 ± 0.4 1.9 ± 0.3 Coated X8 etched SS316L 13 ± 2 2.6 ± 0.2 Effect of the interface on the corrosion behaviour of the coating/substrate system •Decrease of the corrosion rates for both flat and deformed coated samples •Etching effect onto the oxide layer and the corrosion rate
  • 23. Conclusions Next DLC-BASED COATINGS FOR ANTIBACTERIAL APPLICATIONS
  • 25. www.ulaval.ca BIOMATERIALS Classes: Metals (corrosion resistant...) Polymers (synthetic, natural, permanent, degradable ...) Ceramics Composites Glasses 25
  • 27. www.ulaval.ca 27 J. Lévesque, H. Hermawan, D. Dubé, D. Mantovani, Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials, Acta Biomaterialia 2008;4:284-295 Schematic view of a simulated coronary artery test-bench for testing degradation behaviour of candidate materials for metallic biodegradable stent
  • 28. www.ulaval.ca 28 Surface morphology of specimens tested under the different conditions after 6, 12, 24, 48, 84 and 168 h: (a) static condition, (b) dynamic condition (s = 0.88 or 4.4 Pa), (c) dynamic cond. (s = 8.8 Pa)
  • 29. www.ulaval.ca 29 SEM images of the cross-section of surface layers on the specimens tested for 168 h at a shear stress of (a) 0.88 Pa, (b) 4.4 Pa and (c) 8.8 Pa
  • 31. a- Fe-based Alloy DESIGN AND FABRICATION PROCESSES FOR METALLIC DEGRADABLE BIOMATERIALS H. Hermawan, D. Dubé and D. Mantovani
  • 32. www.ulaval.ca Fabrication Starting powders Step-1: Mixing, 1 h Step-2: Compacting, 10 T Step-3: Sintering, 1200C, 2h, Hydrogen Step-2 Step-3 Step-4 Step-3+4 Step-4: Cold rolling Starting powders Mn 35% Fe 65% Lubricant 0.5%
  • 33. www.ulaval.ca www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering Mechanical properties -yield (MPa) Fe35Mn = 228 SS316L = 235 e (%) Fe35Mn = 32 SS316L = 56 E (GPa) Fe35Mn = 179 SS316L = 193  The strength of Fe35Mn* is comparable to SS 316L**  Fe35Mn is ductile enough for stent material * Densified P/M alloy (annealed); ** Wrought alloy (hot rolled); the tests were performed based on ASTM E8
  • 34. www.ulaval.ca www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering Non-magnetic behaviour  Fe35Mn has low magnetic susceptibility (non-magnetic)  It’s magnetic susceptibility is not altered by plastic deform. The tests were performed by an Alternating Gradient Magnetometer. 0.00 0.50 1.00 1.50 0% 5% 15% Degree of plastic deformation MagneticSusceptibilty(m 3 /kg) Fe35Mn SS316L
  • 35. www.ulaval.ca 35 Cross sectional profile of polished Fe-Mn specimens: (a) before and (b, c) after 1 week and 3 months of degradation test respectively, and (d, e) etched Fe25Mn and Fe35Mn specimens after 3 months of degradation test respectively
  • 36. www.ulaval.ca 36 Concentration of iron and manganese ions in test solution as a function of immersion time for specimens of Fe25Mn and Fe35Mn alloys measured by the AAS
  • 37. www.ulaval.ca Phase II-b BOTTOM-UP APPROACH 37 M. Moravej, M. Fiset and D. Mantovani INVESTIGATION OF FABRICATING BIODEGRADABLE CORONARY IRON STENT BY ELECTROFORMING
  • 38. www.ulaval.ca www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering Electroforming method • ASTM B 374 : production or reproduction of articles by electrodeposition upon a mandrel or mould that is subsequently separated from the deposit. Electroforming [1] [1] J. A. McGeough et al, Annals of the CIRP, 2001
  • 39. www.ulaval.ca www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering Fabrication of pure iron films by electroforming •Manufacturing of complex shapes and surfaces •Fabrication of parts with different size, thickness and properties •Production of high purity materials •Fabrication of thin walled materials with dimensional precision Electrodeposition of stent tubes directly on a dissolvable cathode with a bottom-up method - + Cathode Anode Electrolyte _ + Cations Anions
  • 40. www.ulaval.ca www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering Iron electroformed foils (100 microns) Surface morphology Cross section
  • 41. www.ulaval.ca www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering Microstructure Electroformed Fe annealed at 550°C Average grain size: 2 microns Fe fabricate by casting annealed at 550°C Average grain size: 30 microns
  • 42. www.ulaval.ca www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering Degradation rate Material Electroformed Fe E-Fe annealed CTT-Fe annealed Fe-35Mn alloy AM60B-F Mg alloy DR (mm/y) 0.40 0.25 0.14 0.26 2.78
  • 43. www.ulaval.ca www.lbb.gmn.ulaval.caLaboratory for Biomaterials & Bioengineering Electroformed iron minitube D= 5 µm D= 25 µm Electro-formed iron stent 316L stainless steel stent1
  • 44. www.ulaval.ca • Design and development of • New Fe-based alloys; • New processes for high purity alloys; • New processes for bottom-up fabrication of stents; • New surface treatments for positively controlling the corrosion; D. Mantovani, 44 www.lbb.gmn.ulaval.ca Ongoing Works
  • 45. www.lbb.ulaval.ca 45 H. Hermawan, D. Dubé, D. Mantovani. Acta Biomaterialia 6 (2010) 1693–1697 Concept in cardiovascular applications
  • 46. www.lbb.ulaval.ca 46 46 Concept in musculoskeletal applications Mg Implant From Frank Witte
  • 47. www.lbb.gmn.ulaval.ca 1st Berlin 2009 2nd Maratea 2010 3rd Quebec 2011 May 2010 4th Maratea 2012 www.biodegradablemetals.org Intl Symposium on Biodegradable Metals
  • 51. www.lbb.ulaval.ca 51 L’approche par échaffaudage D. Seifu, A. Purnama, K. Mequanint, D. Mantovani. Nature Cardiology. 2013, in press.
  • 53. www.lbb.ulaval.ca 53 Materials and Methods 1. Mechanical Stimulation System Flexcell international corporation
  • 54. www.lbb.ulaval.ca 54 Collagen Scaffold SEM L. Levesque, Advanced Materials Research, 2012
  • 55. www.lbb.ulaval.ca 55 SEM Collagen + Cells Dynamic Condition L. Levesque, Advanced Materials Research, 2012
  • 56. www.lbb.ulaval.ca 56 SMCs’ Collagen Production 56 L. Levesque, 9th World Biomaterials Congress, 2012
  • 57. www.lbb.ulaval.ca 57 Co-culture statique : Qui, quoi et quand ? Cellules endothéliales Cellules musculaires lisses CRSNG-FONCER, Collaboration avec Jayachandran Kizhakkedathu, UBC
  • 58. www.lbb.ulaval.ca 58 Co-culture statique : Qui, quoi et quand ? Gélification (collagène + CML) = 30 min Maturation gel endothélialisé = 24h Coloration au Trichrome de Masson Vert : collagène ; Rouge : cytoplasme ; Noir/brun ; noyau Tapis de CE à la surface du gel
  • 59. www.lbb.ulaval.ca 59 Co-culture dynamique La surface du gel va être soumis à une contrainte de cisaillement afin d’observer l’adhésion des cellules endothéliales et leur orientation dans le sens du flux. Système de perfusion avec une pompe Masterflex et une chambre de flux Ibidi.
  • 60. www.lbb.ulaval.ca 60 Comment peut-on définir le remodelage ?  Production de matrice extracellulaire.  Production de facteurs de croissance.  Réorientation des cellules et des fibrilles de collagène  Amélioration des propriétés mécaniques  Dégradation des protéines.
  • 61. www.lbb.ulaval.ca 61  Culture dynamique 2 semaines + Contrainte de cisaillement Pression + Meilleures propriétés mécaniques  Culture statique 2 semaines Remodelage par les cellules Effet des cultures statique et dynamique sur le remodelage des gels de collagène Remodelage par les cellules
  • 62. www.lbb.ulaval.ca 62 Dispositif expérimental ÉCHAFAUDAGE Collagène sans cellules CONSTRUCTION ARTÉRIELLE Culture statique 1 SEMAINE CONSTRUCTION ARTÉRIELLE Collagène + cellules, t = 0 CONSTRUCTION ARTÉRIELLE Culture statique 2 SEMAINES
  • 63. www.lbb.ulaval.ca 63 Combinaison 500 μm Culture statique– Microscopie de fluorescence
  • 66. www.lbb.ulaval.ca 66 Moteur rotatif à 5 tours/min Réservoir de milieu de culture Espaceur en silicone pour assurer un axe de rotation constant Endothélialisation d’une construction artérielle à base de collagène Conception d’un bioréacteur à parois rotatives Bouchon avec filtre 0.22 μm Roulement à billes (Ø = 4,7mm)
  • 67. www.lbb.ulaval.ca 67 Measuring mechanical property 67 Relaxation test of cell seeded tubular construct using Instron 5848 Microtester, where SLSC9D is Single Layer Static Culture of 9 Days and DLSC9D Double Layer Static Culture of 9 Days
  • 68. www.lbb.ulaval.ca 68 Immunohistochemistry Red: PSMS with Calponin, Blue: Nuclei, Green: HUVECs with CD31 and actin and collagen Green with Alex fluor green. 68
  • 71. www.lbb.ulaval.ca 71 Contrainte(Pa) Temps (s) 106 cellules/mL Culture statique 1 semaine Pas de cellules Culture statique 2 semaines  Tests de relaxation en circonférentiel Culture statique – Propriétés mécaniques 106 cellules/mL Culture statique 1 semaine ε = 0,1 ε = 0,2 ε = 0,3
  • 72. www.lbb.ulaval.ca 72 Laser guided thickness measurement 72 LaserMike 136 Thickness and external diameter measurement of cell seeded construct.
  • 73. www.lbb.ulaval.ca 73 Measuring mechanical properties ε = 0,1 ε = 0,2 ε = 0,3 ε = 0,4 ε = 0,5 ε = 0,6 ε = 0,7 ε = 0,8
  • 74. www.lbb.ulaval.ca 74 Measuring mechanical properties Relaxation test of cell seeded tubular construct using Instron 5848 Microtester, where SLSC9D is Single Layer Static Culture of 9 Days and DLSC9D Double Layer Static Culture of 9 Days
  • 75. www.lbb.ulaval.ca 75 Futur Collagène-Élastine version 1 Collagène Résistances aux tissus. ELP(VPGVG) HELP(VAPGVG) Élasticité aux tissus.  Ce motif est responsable de la prolifération cellulaire et d'autres activités biologiques.  Des résidus de lysine et de la glutamine présents dans les domaines riche d’alanine permet deux types de spécifique, réticulation enzymatique, en utilisant la lysyl oxydase et / ou de la transglutaminase, afin pour obtenir une matrice.  Capacité d'auto-assemblage et d'auto-organisation dans polymères réticulés avec des propriétés physiques et mécaniques remarquablement similaires à l'élastine native. Collagène-HELP Prof. A. Bandera
  • 76. www.lbb.ulaval.ca 76 Prof. Marisa Beppu Structural layer: mechanical resistance, elasticity, anti-bacterial capacity  Konjac glucomannan and chitosan microstructured with silk fibroin. Bioactive layer : growth factor stimulation, re-epithelialization, drug release Dressings high biological performance  Collagen or gelatin, cells and drugs
  • 77. www.lbb.ulaval.ca 77 Conclusions Structures d’échafaudages avec ensemencement de cellules VS structures d’échafaudages a base de cellules! Un cycle de culture est la clef pour emmener les cellules a structurer le tissus régénéré
  • 78. www.lbb.ulaval.ca 78 “The Human Being can do all things if He will”
  • 82. www.lbb.ulaval.ca 82 Our students are our force • 4 associate researchers, 6 (24 depuis 2000) post- docs, 18 (47) PhD and 3 (48) MSc students, from 13 (32) countries, speaking more than (23) languages and representing (7) religions, constitute the LBB; In this mixture of identities, cultures and nationalities we found each day the inspiration required to push innovation in surgery and in the connected fields; • 40 % of our students hold a merit scholarship;