SlideShare a Scribd company logo
GRAVITATIONAL WAVES
and
BINARY SYSTEMS (lecture 1)
Thibault Damour
Institut des Hautes Etudes Scientifiques
Waves on the lake: the astrophysics behind gravitational waves
Lake Como School of Advanced Studies - May 28 - June 1, 2018,
Como, Italy
14 SEPT 2015: TWO LIGO GW DETECTORS
Virgo (IT)LIGO Hanford LIGO Livingston
3
November	1915
1
Karl S chwarzschild
22	December	1915
2
GRAVITATIONAL WAVES: EINSTEIN JUNE 1916, JANUARY 1918
gij = δij + hij
hij: transverse, traceless and
propagates at v=c 3
Basics of Gravitational Waves
In linearized GR (Einstein 1916,1918):
Two Transverse-Traceless (TT) tensor polarizations propagating at v=c
€
hij = h+(xi x j − yi y j ) + h×(xi y j + yi x j )
€
gij = δij + hij
L
L
=
1
2
hijni
nj
Lowest-order generation:
quadrupole formula
The long history of gravitational waves (GW)W)
• Einstein1916-18: quadrupolar radiation in linearized thy
• Eddington 1924: doubts for binary systems
• Einstein-Rosen 1936: doubts in exact theory
• Landau-Lifshitz 1941, Fock 1955: binary systems OK
• Choquet-Bruhat 1952: mathematical proof
• Infeld, Bondi, Pirani circa 1957: doubts about GWs
• Bondi, Sachs, Penrose ca 1960: structure at infinity
• Weber ca 1960: pioneering the detection of GWs
• Peters-Mathews 1963, Peters 1964: GWs and binary systems
• Dyson 1963: intense GW flash from coalescing compact binary
• 1970s: theoretical developments linked to Weber’s annoucement
• 1979: Taylor’s announcement of GW damping in binary pulsar
• 1980s: theoretical developts on binary EOM and GW damping
• 1990s: theoretical developts motivated by LIGO/Virgo
9
Joseph Weber (1919-2000)
Understands (helped by Marcel Riesz)
the reality of GWs
Develops the theory of GW detectors
(during a sabbatical at the IAS, invited
by Freeman Dyson in 1955)
Constructs resonant GW detectors ~ 1960
Conceives interferometric detectors
The Creator of the Field of GW Astronomy
Initial idea: [ Weber] Gertsenshtein-Pustovoit 1962
First implementation: Forward ~ 1970
First detailed noise analysis: Rainer Weiss 1972
First search of GW signals: Levine-Hall, Levine-Stebbins 1972
Development of sensitive interferometric detectors ~ 1980’s
Garching: Billing H, Maischberger K, Ruediger A, Schilling R, Schnupp L, Winkler, W 1979;
Shoemaker D et al 1988
Glasgow: Drever, Hough, Pugh, Edelstein, Ward, Ford, Robertson 1979
Caltech: Drever et al 1981
France: Brillet, Man, Vinet 1982
Italy: Giazzoto
Drivers/Managers: Thorne, Barish, …
Laser Interferometer GW Detectors
11
JJJ. H. Taylor
s
0 0.5 1 1.5 2 2.5
0
0.5
1
1.5
2
2.5
r
!
mA
mB
PSR B1534+12
"
.
P
.
s
0 0.5 1 1.5 2 2.5
0
0.5
1
1.5
2
2.5
mA
mB
P
.
xB
/xA
r
!
PSR J0737#3039
$SO
"
.
0 0.5 1 1.5 2 2.5
0
0.5
1
1.5
2
2.5 "
.
mA
mB
s % 1
P
.
!
PSR B1913+16
sscint
0 0.5 1 1.5 2 2.5
0
0.5
1
1.5
2
2.5
mA
mB
P
.
!
PSR J1141#6545
"
.
Russell Hulse Joseph Taylor
Binary pulsars: proof of radiative and strong-field gravity + existence of
coalescing NS binaries
Damour-Deruelle’81 Damour’82
EOM (v/c)^5
LIGO-Virgo data analysis
Various levels of search and analysis:
online/offline ; unmodelled searches/matched-filter searches
online: triggers
offline: searches + significance assessment of candidate signals
+ parameter estimation
Online trigger searches:
CoherentWaveBurst Time-frequency
(Wilson, Meyer, Daubechies-Jaffard-Journe, Klimenko et al.)
Omicron-LALInference sine-Gaussians
Gabor-type wavelet analysis (Gabor,…,Lynch et al.)
Matched-filter:
PyCBC (f-domain), gstLAL (t-domain)
Offline data analysis:
Generic transient searches
Binary coalescence searches
Here: focus on matched-filter definition
(crucial for high SNR, significance assessment, and parameter estimation)
GW150914, GW151226, GW170104, GW170814,…:
incredibly small signals lost in the broad-band noise
output|htemplate⇥ =
df
Sn(f)
o(f)htemplate(f)Matched Filtering
GW150914, from LIGO open data
GW151226 from LIGO open data
hmax
GW ⇠ 10 21
⇠ 10 3
hbroadband
LIGO
L/L = 10 21
! L ⇠ 10 9
atom !
Ltot
⇠ F
L L
L
⇠ 1011
h ⇠ 10 10
fringe
GW170104 from LIGO open data
14
Rµ⌫ = 0
ds2
= gµ⌫(x ) dxµ
dx⌫
= 0
Pioneering the GWs from coalescing compact binaries
Freeman Dyson 1963, using Einstein 1918 + Landau-Lifshitz 1951 (+ Peters ’64)
first vision of an intense GW flash from coalescing binary NS
2 4 6 8 10
0.2
0.4
0.6
0.8
1.0
2 4 6 8 10
-0.6
-0.4
-0.2
0.2
0.4
Challenge: describe the intense flash of
GWs emitted by the last orbits and the merger
of a binary BH, when v~c and r~GM/c^2
16
Perturbative
theory
of motion
Perturbative theory
of gravitational
radiation
Motion of
two BHs
BH QNMs
Mathematical
Relativity
BH QNMs
Resummation
EOB
EOB[NR]
Numerical
Relativity
IMRPhenomD=Phen[EOB+NR]
ROM(EOB[NR])
PN (nonresummed)
M < 4M
Long History of the GR Problem of Motion
Einstein 1912 : geodesic principle
Einstein 1913-1916 post-Minkowskian
Einstein, Droste : post-Newtonian
Weakly self-gravitating bodies:
Einstein-Grossmann ’13,
1916 post-Newtonian: Droste, Lorentz, Einstein (visiting Leiden), De Sitter ;
Lorentz-Droste ‘17, Chazy ‘28, Levi-Civita ’37 ….,
Eddington’ 21, …, Lichnerowicz ‘39, Fock ‘39, Papapetrou ‘51,
… Dixon ‘64, Bailey-Israël ‘75, Ehlers-Rudolph ‘77….
Challenge: Motion of Strongly Self-gravitating Bodies (NS, BH)
8
• Multi-chart approach and matched asymptotic expansions:
necessary for strongly self-gravitating bodies (NS, BH)
Manasse (Wheeler) ‘63, Demianski-Grishchuk ‘74, D’Eath ‘75,
Kates ‘80, Damour ‘82
Useful even for weakly self-gravitating bodies, i.e.“relativistic celestial
mechanics”, Brumberg-Kopeikin ’89, Damour-Soffel-Xu ‘91-94
Practical Techniques for Computing the Motion of Compact Bodies (NS or BH)
9
Skeletonization : point-masses (Mathisson ’31)
delta-functions in GR : Infeld ’54, Infeld-Plebanski ’60
justified by Matched Asymptotic Expansions ( « Effacing Principle » Damour ’83)
QFT’s analytic (Riesz ’49) or dimensional regularization (Bollini-Giambiagi ’72,
t’Hooft-Veltman ’72) imported in GR (Damour ’80, Damour-Jaranowski-Schäfer
’01, …)
Feynman-like diagrams and
« Effective Field Theory » techniques
Bertotti-Plebanski ’60,
Damour-Esposito-Farèse ’96,
Goldberger-Rothstein ’06, Porto ‘06, Gilmore-Ross’ 08, Levi ’10,
Foffa-Sturani ’11 ‘13, Levi-Steinhoff ‘14, ‘15
USING QUANTUM IDEAS TO
ADVANCE CLASSICAL DYNAMICS
20
Diagrammatic techniques in gravity computations
Regularization and renormalization for dealing with
(classical) point masses
Use of quantum scattering amplitudes in classical gravity
A quantum-inspired correspondence in
binary Black Hole dynamics: EOB formalism
One-loop effects in a Black Hole background
Integrals, periods, motives, …..
g = ⌘ + h
S(h, T) =
Z ✓
1
2
h⇤h + @@hhh + ... + (h + hh + ...)T
◆
⇤h = T + ... ! h = G T + ...
Sred(T) =
1
2
T G T + V3(G T, G T, G T) + ...
Reduced (Fokker 1929) Action for Conservative Dynamics
Needs gauge-fixed* action and time-symmetric Green function G.
*E.g. Arnowitt-Deser-Misner Hamiltonian formalism or harmonic coordinates.
Perturbatively solving (in dimension D=4 - eps) Einstein’s equations
to get the equations of motion and the action for the conservative dynamics
Beyond 1-loop order needs to use PN-expanded Green function for explicit computations.
Introduces IR divergences on top of the UV divergences linked to the point-particle description.
UV is (essentially) finite in dim.reg. and IR is linked to 4PN non-locality (Blanchet-Damour ’88).
⇤ 1
= (
1
c2
@2
t ) 1
= 1
+
1
c2
@2
t
2
+ ...
Use PN-expanded
Green function:
Post-Newtonian Equations of Motion [2-body, wo spins]
10
• 1PN (including v2 /c2) [Lorentz-Droste ’17], Einstein-Infeld-Hoffmann ’38
• 2PN (inc. v4 /c4) Ohta-Okamura-Kimura-Hiida ‘74, Damour-Deruelle ’81
Damour ’82, Schäfer ’85, Kopeikin ‘85
• 2.5 PN (inc. v5 /c5) Damour-Deruelle ‘81, Damour ‘82, Schäfer ’85,
Kopeikin ‘85
• 3 PN (inc. v6 /c6) Jaranowski-Schäfer ‘98, Blanchet-Faye ‘00,
Damour-Jaranowski-Schäfer ‘01, Itoh-Futamase ‘03,
Blanchet-Damour-Esposito-Farèse’ 04, Foffa-Sturani ‘11
• 3.5 PN (inc. v7 /c7) Iyer-Will ’93, Jaranowski-Schäfer ‘97, Pati-Will ‘02,
Königsdörffer-Faye-Schäfer ‘03, Nissanke-Blanchet ‘05, Itoh ‘09
• 4PN (inc. v8 /c8) Jaranowski-Schäfer ’13, Foffa-Sturani ’13,’16
Bini-Damour ’13, Damour-Jaranowski-Schäfer ’14, Bernard et al’16
New feature : non-locality in time
2-body Taylor-expanded N + 1PN + 2PN Hamiltonian
11
2-body Taylor-expanded 3PN Hamiltonian [DJS 01]
12
2-body Taylor-expanded 4PN Hamiltonian [DJS, 2014]
13
25
Perturbative Theory of the Generation of Gravitational Radiation
Einstein ’16, ’18 (+ Landau-Lifshitz 41, and Fock ’55) : h+, hx and quadrupole
formula
Relativistic, multipolar extensions of LO quadrupole radiation :
Sachs-Bergmann ’58, Sachs ’61, Mathews ’62, Peters-Mathews ’63, Pirani '64
Campbell-Morgan ’71,
Campbell et al ’75,
nonlinear effects:
Bonnor-Rotenberg ’66,
Epstein-Wagoner-Will ’75-76
Thorne ’80, .., Will et al 00
MPM Formalism:
Blanchet-Damour ’86,
Damour-Iyer ’91,
Blanchet ’95 ‘98
Combines multipole exp. ,
Post Minkowkian exp.,
analytic continuation,
and PN matching
Perturbative computation of GW flux from binary system
• lowest order : Einstein 1918 Peters-Mathews 63
• 1 + (v2 /c2) : Wagoner-Will 76
• … + (v3 /c3) : Blanchet-Damour 92, Wiseman 93
• … + (v4 /c4) : Blanchet-Damour-Iyer Will-Wiseman 95
• … + (v5 /c5) : Blanchet 96
• … + (v6 /c6) : Blanchet-Damour-Esposito-Farèse-Iyer 2004
• … + (v7 /c7) : Blanchet
x =
⇣v
c
⌘2
=
✓
G(m1 + m2)⌦
c3
◆2
3
=
✓
⇡G(m1 + m2)f
c3
◆2
3
⌫ =
m1m2
(m1 + m2)2
Analytical GW Templates for BBH Coalescences ?
Cutler et al. ’93:
« slow convergence of PN »
Brady-Creighton-Thorne’98:
« inability of current computational
techniques to evolve a BBH through its last
~10 orbits of inspiral » and to compute the
merger
Damour-Iyer-Sathyaprakash’98:
use resummation methods for E and F
Buonanno-Damour ’99-00:
novel, resummed approach:
Effective-One-Body
analytical formalism
PN corrections to Einstein’s quadrupole frequency « chirping »
from PN-improved balance equation dE(f)/dt = - F(f)
d
d ln f
=
!2
d!/dt
= QN
!
bQ!
QN
! =
5 c5
48 ⌫ v5
; bQ! = 1 + c2
⇣v
c
⌘2
+ c3
⇣v
c
⌘3
+ · · ·
v
c
=
✓
⇡G(m1 + m2)f
c3
◆1
3
⌫ =
m1m2
(m1 + m2)2
29
Effective One Body (EOB) Method)
Buonanno-Damour 1999, 2000; Damour-Jaranowski-Schaefer 2000; Damour 2001; Damour-Nagar 2007; Damour-Iyer-Nagar 2009
Predictions as early as 2000 :
continued transition, non adiabaticity, first complete waveform, final spin (OK within 10%), final
mass
Resummation of perturbative PN results description of the coalescence
+ addition of ringdown (Vishveshwara 70, Davis-Ruffini-Tiomno 1972)
Buonanno-Damour 2000
EOB: resumming the dynamics of a two-body system (m_1,m_2,S_1,S_2)
in terms of the dynamics of a particle of mass mu and spin S*
moving in some effective metric g(M,S)
Effective metric for non-spinning bodies: a nu-deformation of Schwarzschild
ds2
e↵ = A(r; ⌫) dt2
+ B(r; ⌫) dr2
+ r2
d✓2
+ sin2
✓ d'2
µ =
m1m2
m1 + m2
M = m1 + m2 ⌫ =
µ
M
=
m1m2
(m1 + m2)2
33
Spinning EOB effective Hamiltonian
He↵ = Horb + Hso
S = S1 + S2 ; S⇤ =
m2
m1
S1 +
m1
m2
S2 ,
r3
GPN
S = 2
5
8
⌫u
27
8
⌫p2
r + ⌫
✓
51
4
u2 21
2
up2
r +
5
8
p4
r
◆
+ ⌫2
✓
1
8
u2
+
23
8
up2
r +
35
8
p4
r
◆
r3
GPN
S⇤
=
3
2
9
8
u
15
8
p2
r + ⌫
✓
3
4
u
9
4
p2
r
◆
27
16
u2
+
69
16
up2
r +
35
16
p4
r + ⌫
✓
39
4
u2 9
4
up2
r +
5
2
p4
r
◆
+⌫2
✓
3
16
u2
+
57
16
up2
r +
45
16
p4
r
◆
Gyrogravitomagnetic ratios (when neglecting spin^2 effects)
! HEOB = Mc2
s
1 + 2⌫
✓
He↵
µc2
1
◆
hringdown
⇤m (t) =
N
C+
N e
+
N (t tm)
hEOB
m = (tm t)hinsplunge
m (t) + (t tm)hringdown
m (t)
EOB
First complete waveforms for BBH coalescences: analytical EOB
Non-spinning BHs
Buonanno-Damour 2000
Spinning BHs
Buonanno-Chen-Damour
Nov 2005:
« to show the
promise
of a purely
analytical
EOB-based
approach »
36
Numerical Relativity (NR)
Mathematical foundations :
Darmois 27, Lichnerowicz 43, Choquet-Bruhat 52-
Breakthrough:
Pretorius 2005: generalized harmonic coordinates
(Friedrich,Garfinkle); constraint damping (Brodbeck
et al., Gundlach et al., Pretorius, Lindblom et al.); excision;
Moving punctures:
Campanelli-Lousto-Maronetti-Zlochover 2006
Baker-Centrella-Choi-Koppitz-van Meter 2006
The first EOB vs NR comparison
Buonanno-Cook-Pretorius 2007
Numerical Relativity Waveform (Caltech-Cornell, SXS)
[PRL 111 (2013) 241104]
But each NR waveform takes ~ 1 month, while 250.000
templates were needed and used...
•www.blackholes.org
SXS COLLABORATION NR CATALOG
40
EOB[NR]: Damour-Gourgoulhon-Grandclement ’02, Damour-Nagar ’07-16, Buonnano-Pan-Taracchini-….’07-16
NR-completed resummed 5PN EOB radial A potential
4PN analytically complete + 5 PN logarithmic term in the A(u, nu) function,
With u = GM/R and nu = m1 m2 / (m1 + m2)^2
[Damour 09, Blanchet et al 10, Barack-Damour-Sago 10, Le Tiec et al 11, Barausse et al 11, Akcay et al 12, Bini-
Damour 13, Damour-Jaranowski-Schäfer 14, Nagar-Damour-Reisswig-Pollney 15]
« We think, however, that a suitable ‘‘numerically fitted’’ and, if possible, ‘‘analytically extended’’ EOB Hamiltonian
should be able to fit the needs of upcoming GW detectors. » (TD 2001)
here Damour-Nagar-Bernuzzi ’13, Nagar-etal ’16; alternative: Taracchini et al ’14, Bohe et al ‘17
u =
GM
c2 R
⌫ =
m1m2
(m1 + m2)2
MAIN RADIAL EOB POTENTIAL A(R)
43
r=M
0 1 2 3 4 5 6 7
A(r)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
EOB: 5PNlog
EOB: SEOBNRv2
Schwarzschild
EOB - 3PN
LR - EOB 5PNlog
LR - SEOBNRv2
LR - schwarzschild
LR-EOB-3PN
A(r)
m1=m2 case
EOB[NR]
EOB[3PN]
Schwarzschild
EOB / NR Comparison
Inspiral + « plunge »
Ringing BH
Two orbiting point-masses:
Resummed dynamics
Peak emitted power ~ 3 x 10^56 erg/s ~ 0.001 c^5/G
45
MATCHED FILTERING SEARCH AND DATA ANALYSIS
O1: precomputed bank of ~ 200 000 EOB templates for inspiralling and coalescing BBH
GW waveforms: m1, m2, chi1=S1/m1^2, chi2=S2/m2^2 for m1+m2> 4Msun; + ~ 50 000 PN
inspiralling templates for m1+m2< 4 Msun;
O2: ~ 325 000 EOB templates + 75 000 PN templates
Search template bank made of
SpinningEOB[NR] templates
(Buonanno-Damour99,Damour’01…,Taracchini et
al. 14) in ROM form (Puerrer et al.’14);
Recently improved (Bohé et al ’17) by including
leading 4PN terms (Bini-Damour ’13), spin-
dependent terms (Pan-Buonnano et al. ’13), and
calibrating against 141 NR simulations.
[post-computed NR waveform for GW151226 took three
months and 70 000 CPU hours !]
+ bank of Phenom[EOB+NR] templates
(Ajith…'07, Hannam…'14, Husa…’16, Khan…’16)
46
A POSTERIORI WAVEFORM CHECKS USING NR SIMULATIONS
GW150914
Abbott et al 16a
GW151226
Abbott et al 16b
SXS simulation
took three months and 70 000 CPU hours !
GW150914 vs EOB[NR]
GW151226: only detected via accurate matched filters
48
GW170817 NSNS COALESCENCE + GRB + FIREWORKS
49
Tidal extension of EOB (TEOB) [Damour-Nagar 09]
A(r) = A0
r + Atidal
(r)
Atidal
(r) = ⇥T
2 u6
1 + ¯1u + ¯2u2
+ . . .
⇥
+ . . .
TEOB[NR] A(R) potential (Bernuzzi et al. 2015)
MULTI-MESSENGER + PROBING THE NUCLEAR EOS FROM LATE
INSPIRAL TIDAL EFFECTS IN NSNS OR BHNS
(Damour-Nagar-Villain, Agathos-DelPozzo-vandenBroeek, Bernuzzi et al, Hotokezaka et al.,…)
GW DETECTORS IN SPACE LISA
Here also analytical methods (completed by numerical ones)
will be important: Gravitational Self-Force program: m1 << m2
• Analytical high-PN results : Blanchet-Detweiler-LeTiec-Whiting ’10,
Damour ’10, Blanchet et al ’10, LeTiec et al ’12, Bini-Damour ’13-15,
Kavanagh-Ottewill-Wardell ’15
• (gauge-invariant) Numerical results : Detweiler ’08, Barack-Sago ’09,
Blanchet-Detweiler-LeTiec-Whiting ’10, Barack-Damour-Sago ’10, Shah-
Friedman-Keidl ’12, Dolan et al ’14, Nolan et al ’15, …
• Analytical PN results from high-precision (hundreds to thousands of
digits !) numerical results : Shah-Friedman-Whiting ’14, Johnson-McDaniel-
Shah-Whiting ’15
EOB[SF] program:
import high PN-SF results
in EOB (Bini-Damour ’15,
Kavanagh et al ’15,
Akcay, van de Meent,
Hopper, ……)
EOB
PN NR
PM
SF
LIGO’s bank of search templates
O1: 200 000 EOB + 50 000 PN
O2: 325 000 EOB + 75 000 PN
v ⌧ c
R GM/c2
v ⇠ c
R ⇠ GM/c2
but NR simulation
for GW151226
took 3 months and
70 000 CPU hours
R GM/c2
BH
perturbation
m1 ⌧ m2
QFT
perturbation
theory
LISA’s templates
via EOB[SF] ?
STRING
perturbation
theory
Quantum Scattering Amplitudes

More Related Content

What's hot

Gravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault DamourGravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault Damour
Lake Como School of Advanced Studies
 
Binary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis LehnerBinary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis Lehner
Lake Como School of Advanced Studies
 
Caldwellcolloquium
CaldwellcolloquiumCaldwellcolloquium
Caldwellcolloquium
Zhaksylyk Kazykenov
 
www.gravity.psu.edu/events/conferences/inaugural/t... www.gravity.psu.edu/e...
www.gravity.psu.edu/events/conferences/inaugural/t... 	 www.gravity.psu.edu/e...www.gravity.psu.edu/events/conferences/inaugural/t... 	 www.gravity.psu.edu/e...
www.gravity.psu.edu/events/conferences/inaugural/t... www.gravity.psu.edu/e...MedicineAndHealthCancer
 
Starobinsky astana 2017
Starobinsky astana 2017Starobinsky astana 2017
Starobinsky astana 2017
Baurzhan Alzhanov
 
"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. Bilic"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. Bilic
SEENET-MTP
 
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
Rene Kotze
 
Biermann AstroPhysic
Biermann AstroPhysicBiermann AstroPhysic
Biermann AstroPhysic
Atner Yegorov
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
JeremyHeyl
 
Binary pulsars as tools to study gravity
Binary pulsars as tools to study gravityBinary pulsars as tools to study gravity
Binary pulsars as tools to study gravity
CosmoAIMS Bassett
 
Applications of Analogue Gravity Techniques
Applications of Analogue Gravity TechniquesApplications of Analogue Gravity Techniques
Applications of Analogue Gravity TechniquesPratik Tarafdar
 
[PDF] Geneva2017 - Testing Strong Equivalence Principle with Pulsars
[PDF] Geneva2017 - Testing Strong Equivalence Principle with Pulsars[PDF] Geneva2017 - Testing Strong Equivalence Principle with Pulsars
[PDF] Geneva2017 - Testing Strong Equivalence Principle with Pulsars
Lijing Shao
 
Ecl astana 28_september_2017_shrt
Ecl astana 28_september_2017_shrtEcl astana 28_september_2017_shrt
Ecl astana 28_september_2017_shrt
Zhaksylyk Kazykenov
 
D. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologyD. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in Cosmology
SEENET-MTP
 
Testing dark energy as a function of scale
Testing dark energy as a function of scaleTesting dark energy as a function of scale
Testing dark energy as a function of scale
CosmoAIMS Bassett
 
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic NucleiPhotoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
Ashkbiz Danehkar
 
Ultra-fast Outflows from Active Galactic Nuclei of Seyfert I Galaxies
Ultra-fast Outflows from Active Galactic Nuclei of Seyfert I GalaxiesUltra-fast Outflows from Active Galactic Nuclei of Seyfert I Galaxies
Ultra-fast Outflows from Active Galactic Nuclei of Seyfert I Galaxies
Ashkbiz Danehkar
 
Relativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGNRelativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGN
Ashkbiz Danehkar
 
Chandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast Outflow
Chandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast OutflowChandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast Outflow
Chandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast Outflow
Ashkbiz Danehkar
 

What's hot (20)

Gravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault DamourGravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault Damour
 
Binary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis LehnerBinary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis Lehner
 
Caldwellcolloquium
CaldwellcolloquiumCaldwellcolloquium
Caldwellcolloquium
 
www.gravity.psu.edu/events/conferences/inaugural/t... www.gravity.psu.edu/e...
www.gravity.psu.edu/events/conferences/inaugural/t... 	 www.gravity.psu.edu/e...www.gravity.psu.edu/events/conferences/inaugural/t... 	 www.gravity.psu.edu/e...
www.gravity.psu.edu/events/conferences/inaugural/t... www.gravity.psu.edu/e...
 
Starobinsky astana 2017
Starobinsky astana 2017Starobinsky astana 2017
Starobinsky astana 2017
 
"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. Bilic"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. Bilic
 
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
 
Biermann AstroPhysic
Biermann AstroPhysicBiermann AstroPhysic
Biermann AstroPhysic
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
 
Binary pulsars as tools to study gravity
Binary pulsars as tools to study gravityBinary pulsars as tools to study gravity
Binary pulsars as tools to study gravity
 
Applications of Analogue Gravity Techniques
Applications of Analogue Gravity TechniquesApplications of Analogue Gravity Techniques
Applications of Analogue Gravity Techniques
 
[PDF] Geneva2017 - Testing Strong Equivalence Principle with Pulsars
[PDF] Geneva2017 - Testing Strong Equivalence Principle with Pulsars[PDF] Geneva2017 - Testing Strong Equivalence Principle with Pulsars
[PDF] Geneva2017 - Testing Strong Equivalence Principle with Pulsars
 
Ecl astana 28_september_2017_shrt
Ecl astana 28_september_2017_shrtEcl astana 28_september_2017_shrt
Ecl astana 28_september_2017_shrt
 
D. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologyD. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in Cosmology
 
Testing dark energy as a function of scale
Testing dark energy as a function of scaleTesting dark energy as a function of scale
Testing dark energy as a function of scale
 
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic NucleiPhotoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
 
Ultra-fast Outflows from Active Galactic Nuclei of Seyfert I Galaxies
Ultra-fast Outflows from Active Galactic Nuclei of Seyfert I GalaxiesUltra-fast Outflows from Active Galactic Nuclei of Seyfert I Galaxies
Ultra-fast Outflows from Active Galactic Nuclei of Seyfert I Galaxies
 
Relativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGNRelativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGN
 
Biermann clusters
Biermann clustersBiermann clusters
Biermann clusters
 
Chandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast Outflow
Chandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast OutflowChandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast Outflow
Chandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast Outflow
 

Similar to Gravitational Waves and Binary Systems (1) - Thibault Damour

Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
Claudio Attaccalite
 
Enric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre SolitónEnric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre Solitón
Fundación Ramón Areces
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
RAHEELA Khan
 
tkn_Lec_26 (1).pdf
tkn_Lec_26 (1).pdftkn_Lec_26 (1).pdf
tkn_Lec_26 (1).pdf
ShayonMitra
 
Studies on Thin-shells and Thin-shellWormholes
Studies on Thin-shells and Thin-shellWormholesStudies on Thin-shells and Thin-shellWormholes
Studies on Thin-shells and Thin-shellWormholes
Eastern Mediterranean University
 
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
NANO266 - Lecture 1 - Introduction to Quantum MechanicsNANO266 - Lecture 1 - Introduction to Quantum Mechanics
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
University of California, San Diego
 
Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solids
Claudio Attaccalite
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear optics
Claudio Attaccalite
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
Solo Hermelin
 
MM2020-AV
MM2020-AVMM2020-AV
MM2020-AV
ArianVezvaee
 
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic FieldsBrandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
thinfilmsworkshop
 
heat capacity.ppt
heat capacity.pptheat capacity.ppt
heat capacity.ppt
Merwyn Jasper D Reuben
 
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
SOCIEDAD JULIO GARAVITO
 
A short introduction to massive gravity... or ... Can one give a mass to the ...
A short introduction to massive gravity... or ... Can one give a mass to the ...A short introduction to massive gravity... or ... Can one give a mass to the ...
A short introduction to massive gravity... or ... Can one give a mass to the ...
CosmoAIMS Bassett
 
Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2
Claudio Attaccalite
 
Observation of gravitational waves from a binary black hole merger
Observation of gravitational waves from a binary black hole mergerObservation of gravitational waves from a binary black hole merger
Observation of gravitational waves from a binary black hole merger
Sérgio Sacani
 
From Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationFrom Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological Reionization
CosmoAIMS Bassett
 
Cosmology and Numbers jfK
Cosmology and Numbers jfKCosmology and Numbers jfK
Cosmology and Numbers jfKDr Jim Kelly
 

Similar to Gravitational Waves and Binary Systems (1) - Thibault Damour (20)

Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
Enric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre SolitónEnric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre Solitón
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
tkn_Lec_26 (1).pdf
tkn_Lec_26 (1).pdftkn_Lec_26 (1).pdf
tkn_Lec_26 (1).pdf
 
Studies on Thin-shells and Thin-shellWormholes
Studies on Thin-shells and Thin-shellWormholesStudies on Thin-shells and Thin-shellWormholes
Studies on Thin-shells and Thin-shellWormholes
 
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
NANO266 - Lecture 1 - Introduction to Quantum MechanicsNANO266 - Lecture 1 - Introduction to Quantum Mechanics
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
 
Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solids
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear optics
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
MM2020-AV
MM2020-AVMM2020-AV
MM2020-AV
 
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic FieldsBrandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
 
heat capacity.ppt
heat capacity.pptheat capacity.ppt
heat capacity.ppt
 
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
Apartes de la Charla: ASTROFÍSICA RELATIVISTA – FOCUS: ASTROFÍSICA DE ONDAS G...
 
A short introduction to massive gravity... or ... Can one give a mass to the ...
A short introduction to massive gravity... or ... Can one give a mass to the ...A short introduction to massive gravity... or ... Can one give a mass to the ...
A short introduction to massive gravity... or ... Can one give a mass to the ...
 
Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2
 
PhysRevLett.116.061102
PhysRevLett.116.061102PhysRevLett.116.061102
PhysRevLett.116.061102
 
Observation of gravitational waves from a binary black hole merger
Observation of gravitational waves from a binary black hole mergerObservation of gravitational waves from a binary black hole merger
Observation of gravitational waves from a binary black hole merger
 
From Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationFrom Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological Reionization
 
gravitywaves
gravitywavesgravitywaves
gravitywaves
 
Cosmology and Numbers jfK
Cosmology and Numbers jfKCosmology and Numbers jfK
Cosmology and Numbers jfK
 

More from Lake Como School of Advanced Studies

LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
Lake Como School of Advanced Studies
 
Gravitational waves data analysis - Walter Del Pozzo
Gravitational waves data analysis - Walter Del PozzoGravitational waves data analysis - Walter Del Pozzo
Gravitational waves data analysis - Walter Del Pozzo
Lake Como School of Advanced Studies
 
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...
Lake Como School of Advanced Studies
 
Space based Gravitational Wave Observations II - M Hewitson
Space based Gravitational Wave Observations II  - M HewitsonSpace based Gravitational Wave Observations II  - M Hewitson
Space based Gravitational Wave Observations II - M Hewitson
Lake Como School of Advanced Studies
 
Space based Gravitational Wave Observations III - M Hewitson
Space based Gravitational Wave Observations III - M HewitsonSpace based Gravitational Wave Observations III - M Hewitson
Space based Gravitational Wave Observations III - M Hewitson
Lake Como School of Advanced Studies
 
Ground based GW dedetctors - Giovanni Losurdo
Ground based GW dedetctors - Giovanni LosurdoGround based GW dedetctors - Giovanni Losurdo
Ground based GW dedetctors - Giovanni Losurdo
Lake Como School of Advanced Studies
 
Econophysics VII: Credits and the Instability of the Financial System - Thoma...
Econophysics VII: Credits and the Instability of the Financial System - Thoma...Econophysics VII: Credits and the Instability of the Financial System - Thoma...
Econophysics VII: Credits and the Instability of the Financial System - Thoma...
Lake Como School of Advanced Studies
 
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...
Lake Como School of Advanced Studies
 
Econophysics V: Market States and Subtleties of Correlations - Thomas Guhr
Econophysics V: Market  States and Subtleties of Correlations - Thomas GuhrEconophysics V: Market  States and Subtleties of Correlations - Thomas Guhr
Econophysics V: Market States and Subtleties of Correlations - Thomas Guhr
Lake Como School of Advanced Studies
 
Econophysics III: Financial Correlations and Portfolio Optimization - Thomas ...
Econophysics III: Financial Correlations and Portfolio Optimization - Thomas ...Econophysics III: Financial Correlations and Portfolio Optimization - Thomas ...
Econophysics III: Financial Correlations and Portfolio Optimization - Thomas ...
Lake Como School of Advanced Studies
 
Econophysics II: Detailed Look at Stock Markets and Trading - Thomas Guhr
Econophysics II: Detailed Look at Stock Markets and Trading - Thomas GuhrEconophysics II: Detailed Look at Stock Markets and Trading - Thomas Guhr
Econophysics II: Detailed Look at Stock Markets and Trading - Thomas Guhr
Lake Como School of Advanced Studies
 
Econophysics I: Basic Concepts - Thomas Guhr
Econophysics I: Basic Concepts - Thomas GuhrEconophysics I: Basic Concepts - Thomas Guhr
Econophysics I: Basic Concepts - Thomas Guhr
Lake Como School of Advanced Studies
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Lake Como School of Advanced Studies
 
LISA Pathfinder: the complexity of free fall - Michele Armano
LISA Pathfinder: the complexity of free fall - Michele ArmanoLISA Pathfinder: the complexity of free fall - Michele Armano
LISA Pathfinder: the complexity of free fall - Michele Armano
Lake Como School of Advanced Studies
 
Quantum chaos in clean many-body systems - Tomaž Prosen
Quantum chaos in clean many-body systems - Tomaž ProsenQuantum chaos in clean many-body systems - Tomaž Prosen
Quantum chaos in clean many-body systems - Tomaž Prosen
Lake Como School of Advanced Studies
 
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Lake Como School of Advanced Studies
 
Mathematical models of human cooperation - Matjaž Perc
Mathematical models of  human cooperation - Matjaž Perc Mathematical models of  human cooperation - Matjaž Perc
Mathematical models of human cooperation - Matjaž Perc
Lake Como School of Advanced Studies
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
Lake Como School of Advanced Studies
 
How telomeres protect the ends of our chromosomes - Jack Griffith
How telomeres protect the ends of our chromosomes - Jack Griffith How telomeres protect the ends of our chromosomes - Jack Griffith
How telomeres protect the ends of our chromosomes - Jack Griffith
Lake Como School of Advanced Studies
 
Dynamics of developmental fate decisions - Luís A. Nunes Amaral
Dynamics of developmental fate decisions - Luís A. Nunes AmaralDynamics of developmental fate decisions - Luís A. Nunes Amaral
Dynamics of developmental fate decisions - Luís A. Nunes Amaral
Lake Como School of Advanced Studies
 

More from Lake Como School of Advanced Studies (20)

LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
 
Gravitational waves data analysis - Walter Del Pozzo
Gravitational waves data analysis - Walter Del PozzoGravitational waves data analysis - Walter Del Pozzo
Gravitational waves data analysis - Walter Del Pozzo
 
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...
 
Space based Gravitational Wave Observations II - M Hewitson
Space based Gravitational Wave Observations II  - M HewitsonSpace based Gravitational Wave Observations II  - M Hewitson
Space based Gravitational Wave Observations II - M Hewitson
 
Space based Gravitational Wave Observations III - M Hewitson
Space based Gravitational Wave Observations III - M HewitsonSpace based Gravitational Wave Observations III - M Hewitson
Space based Gravitational Wave Observations III - M Hewitson
 
Ground based GW dedetctors - Giovanni Losurdo
Ground based GW dedetctors - Giovanni LosurdoGround based GW dedetctors - Giovanni Losurdo
Ground based GW dedetctors - Giovanni Losurdo
 
Econophysics VII: Credits and the Instability of the Financial System - Thoma...
Econophysics VII: Credits and the Instability of the Financial System - Thoma...Econophysics VII: Credits and the Instability of the Financial System - Thoma...
Econophysics VII: Credits and the Instability of the Financial System - Thoma...
 
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...
 
Econophysics V: Market States and Subtleties of Correlations - Thomas Guhr
Econophysics V: Market  States and Subtleties of Correlations - Thomas GuhrEconophysics V: Market  States and Subtleties of Correlations - Thomas Guhr
Econophysics V: Market States and Subtleties of Correlations - Thomas Guhr
 
Econophysics III: Financial Correlations and Portfolio Optimization - Thomas ...
Econophysics III: Financial Correlations and Portfolio Optimization - Thomas ...Econophysics III: Financial Correlations and Portfolio Optimization - Thomas ...
Econophysics III: Financial Correlations and Portfolio Optimization - Thomas ...
 
Econophysics II: Detailed Look at Stock Markets and Trading - Thomas Guhr
Econophysics II: Detailed Look at Stock Markets and Trading - Thomas GuhrEconophysics II: Detailed Look at Stock Markets and Trading - Thomas Guhr
Econophysics II: Detailed Look at Stock Markets and Trading - Thomas Guhr
 
Econophysics I: Basic Concepts - Thomas Guhr
Econophysics I: Basic Concepts - Thomas GuhrEconophysics I: Basic Concepts - Thomas Guhr
Econophysics I: Basic Concepts - Thomas Guhr
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
 
LISA Pathfinder: the complexity of free fall - Michele Armano
LISA Pathfinder: the complexity of free fall - Michele ArmanoLISA Pathfinder: the complexity of free fall - Michele Armano
LISA Pathfinder: the complexity of free fall - Michele Armano
 
Quantum chaos in clean many-body systems - Tomaž Prosen
Quantum chaos in clean many-body systems - Tomaž ProsenQuantum chaos in clean many-body systems - Tomaž Prosen
Quantum chaos in clean many-body systems - Tomaž Prosen
 
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
 
Mathematical models of human cooperation - Matjaž Perc
Mathematical models of  human cooperation - Matjaž Perc Mathematical models of  human cooperation - Matjaž Perc
Mathematical models of human cooperation - Matjaž Perc
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
How telomeres protect the ends of our chromosomes - Jack Griffith
How telomeres protect the ends of our chromosomes - Jack Griffith How telomeres protect the ends of our chromosomes - Jack Griffith
How telomeres protect the ends of our chromosomes - Jack Griffith
 
Dynamics of developmental fate decisions - Luís A. Nunes Amaral
Dynamics of developmental fate decisions - Luís A. Nunes AmaralDynamics of developmental fate decisions - Luís A. Nunes Amaral
Dynamics of developmental fate decisions - Luís A. Nunes Amaral
 

Recently uploaded

plant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptxplant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptx
yusufzako14
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
pablovgd
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
insect morphology and physiology of insect
insect morphology and physiology of insectinsect morphology and physiology of insect
insect morphology and physiology of insect
anitaento25
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
Scintica Instrumentation
 
FAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsFAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable Predictions
Michel Dumontier
 
Penicillin...........................pptx
Penicillin...........................pptxPenicillin...........................pptx
Penicillin...........................pptx
Cherry
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
IvanMallco1
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
AADYARAJPANDEY1
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
muralinath2
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
Health Advances
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
anitaento25
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
ossaicprecious19
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 

Recently uploaded (20)

plant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptxplant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptx
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
insect morphology and physiology of insect
insect morphology and physiology of insectinsect morphology and physiology of insect
insect morphology and physiology of insect
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
 
FAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsFAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable Predictions
 
Penicillin...........................pptx
Penicillin...........................pptxPenicillin...........................pptx
Penicillin...........................pptx
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 

Gravitational Waves and Binary Systems (1) - Thibault Damour

  • 1. GRAVITATIONAL WAVES and BINARY SYSTEMS (lecture 1) Thibault Damour Institut des Hautes Etudes Scientifiques Waves on the lake: the astrophysics behind gravitational waves Lake Como School of Advanced Studies - May 28 - June 1, 2018, Como, Italy
  • 2. 14 SEPT 2015: TWO LIGO GW DETECTORS Virgo (IT)LIGO Hanford LIGO Livingston
  • 3. 3
  • 6. GRAVITATIONAL WAVES: EINSTEIN JUNE 1916, JANUARY 1918 gij = δij + hij hij: transverse, traceless and propagates at v=c 3
  • 7. Basics of Gravitational Waves In linearized GR (Einstein 1916,1918): Two Transverse-Traceless (TT) tensor polarizations propagating at v=c € hij = h+(xi x j − yi y j ) + h×(xi y j + yi x j ) € gij = δij + hij L L = 1 2 hijni nj Lowest-order generation: quadrupole formula
  • 8. The long history of gravitational waves (GW)W) • Einstein1916-18: quadrupolar radiation in linearized thy • Eddington 1924: doubts for binary systems • Einstein-Rosen 1936: doubts in exact theory • Landau-Lifshitz 1941, Fock 1955: binary systems OK • Choquet-Bruhat 1952: mathematical proof • Infeld, Bondi, Pirani circa 1957: doubts about GWs • Bondi, Sachs, Penrose ca 1960: structure at infinity • Weber ca 1960: pioneering the detection of GWs • Peters-Mathews 1963, Peters 1964: GWs and binary systems • Dyson 1963: intense GW flash from coalescing compact binary • 1970s: theoretical developments linked to Weber’s annoucement • 1979: Taylor’s announcement of GW damping in binary pulsar • 1980s: theoretical developts on binary EOM and GW damping • 1990s: theoretical developts motivated by LIGO/Virgo 9
  • 9. Joseph Weber (1919-2000) Understands (helped by Marcel Riesz) the reality of GWs Develops the theory of GW detectors (during a sabbatical at the IAS, invited by Freeman Dyson in 1955) Constructs resonant GW detectors ~ 1960 Conceives interferometric detectors The Creator of the Field of GW Astronomy
  • 10. Initial idea: [ Weber] Gertsenshtein-Pustovoit 1962 First implementation: Forward ~ 1970 First detailed noise analysis: Rainer Weiss 1972 First search of GW signals: Levine-Hall, Levine-Stebbins 1972 Development of sensitive interferometric detectors ~ 1980’s Garching: Billing H, Maischberger K, Ruediger A, Schilling R, Schnupp L, Winkler, W 1979; Shoemaker D et al 1988 Glasgow: Drever, Hough, Pugh, Edelstein, Ward, Ford, Robertson 1979 Caltech: Drever et al 1981 France: Brillet, Man, Vinet 1982 Italy: Giazzoto Drivers/Managers: Thorne, Barish, … Laser Interferometer GW Detectors
  • 11. 11 JJJ. H. Taylor s 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 r ! mA mB PSR B1534+12 " . P . s 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 mA mB P . xB /xA r ! PSR J0737#3039 $SO " . 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 " . mA mB s % 1 P . ! PSR B1913+16 sscint 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 mA mB P . ! PSR J1141#6545 " . Russell Hulse Joseph Taylor Binary pulsars: proof of radiative and strong-field gravity + existence of coalescing NS binaries Damour-Deruelle’81 Damour’82 EOM (v/c)^5
  • 12. LIGO-Virgo data analysis Various levels of search and analysis: online/offline ; unmodelled searches/matched-filter searches online: triggers offline: searches + significance assessment of candidate signals + parameter estimation Online trigger searches: CoherentWaveBurst Time-frequency (Wilson, Meyer, Daubechies-Jaffard-Journe, Klimenko et al.) Omicron-LALInference sine-Gaussians Gabor-type wavelet analysis (Gabor,…,Lynch et al.) Matched-filter: PyCBC (f-domain), gstLAL (t-domain) Offline data analysis: Generic transient searches Binary coalescence searches Here: focus on matched-filter definition (crucial for high SNR, significance assessment, and parameter estimation)
  • 13. GW150914, GW151226, GW170104, GW170814,…: incredibly small signals lost in the broad-band noise output|htemplate⇥ = df Sn(f) o(f)htemplate(f)Matched Filtering GW150914, from LIGO open data GW151226 from LIGO open data hmax GW ⇠ 10 21 ⇠ 10 3 hbroadband LIGO L/L = 10 21 ! L ⇠ 10 9 atom ! Ltot ⇠ F L L L ⇠ 1011 h ⇠ 10 10 fringe GW170104 from LIGO open data
  • 14. 14 Rµ⌫ = 0 ds2 = gµ⌫(x ) dxµ dx⌫ = 0
  • 15. Pioneering the GWs from coalescing compact binaries Freeman Dyson 1963, using Einstein 1918 + Landau-Lifshitz 1951 (+ Peters ’64) first vision of an intense GW flash from coalescing binary NS 2 4 6 8 10 0.2 0.4 0.6 0.8 1.0 2 4 6 8 10 -0.6 -0.4 -0.2 0.2 0.4 Challenge: describe the intense flash of GWs emitted by the last orbits and the merger of a binary BH, when v~c and r~GM/c^2
  • 16. 16 Perturbative theory of motion Perturbative theory of gravitational radiation Motion of two BHs BH QNMs Mathematical Relativity BH QNMs Resummation EOB EOB[NR] Numerical Relativity IMRPhenomD=Phen[EOB+NR] ROM(EOB[NR]) PN (nonresummed) M < 4M
  • 17. Long History of the GR Problem of Motion Einstein 1912 : geodesic principle Einstein 1913-1916 post-Minkowskian Einstein, Droste : post-Newtonian Weakly self-gravitating bodies: Einstein-Grossmann ’13, 1916 post-Newtonian: Droste, Lorentz, Einstein (visiting Leiden), De Sitter ; Lorentz-Droste ‘17, Chazy ‘28, Levi-Civita ’37 …., Eddington’ 21, …, Lichnerowicz ‘39, Fock ‘39, Papapetrou ‘51, … Dixon ‘64, Bailey-Israël ‘75, Ehlers-Rudolph ‘77….
  • 18. Challenge: Motion of Strongly Self-gravitating Bodies (NS, BH) 8 • Multi-chart approach and matched asymptotic expansions: necessary for strongly self-gravitating bodies (NS, BH) Manasse (Wheeler) ‘63, Demianski-Grishchuk ‘74, D’Eath ‘75, Kates ‘80, Damour ‘82 Useful even for weakly self-gravitating bodies, i.e.“relativistic celestial mechanics”, Brumberg-Kopeikin ’89, Damour-Soffel-Xu ‘91-94
  • 19. Practical Techniques for Computing the Motion of Compact Bodies (NS or BH) 9 Skeletonization : point-masses (Mathisson ’31) delta-functions in GR : Infeld ’54, Infeld-Plebanski ’60 justified by Matched Asymptotic Expansions ( « Effacing Principle » Damour ’83) QFT’s analytic (Riesz ’49) or dimensional regularization (Bollini-Giambiagi ’72, t’Hooft-Veltman ’72) imported in GR (Damour ’80, Damour-Jaranowski-Schäfer ’01, …) Feynman-like diagrams and « Effective Field Theory » techniques Bertotti-Plebanski ’60, Damour-Esposito-Farèse ’96, Goldberger-Rothstein ’06, Porto ‘06, Gilmore-Ross’ 08, Levi ’10, Foffa-Sturani ’11 ‘13, Levi-Steinhoff ‘14, ‘15
  • 20. USING QUANTUM IDEAS TO ADVANCE CLASSICAL DYNAMICS 20 Diagrammatic techniques in gravity computations Regularization and renormalization for dealing with (classical) point masses Use of quantum scattering amplitudes in classical gravity A quantum-inspired correspondence in binary Black Hole dynamics: EOB formalism One-loop effects in a Black Hole background Integrals, periods, motives, …..
  • 21. g = ⌘ + h S(h, T) = Z ✓ 1 2 h⇤h + @@hhh + ... + (h + hh + ...)T ◆ ⇤h = T + ... ! h = G T + ... Sred(T) = 1 2 T G T + V3(G T, G T, G T) + ... Reduced (Fokker 1929) Action for Conservative Dynamics Needs gauge-fixed* action and time-symmetric Green function G. *E.g. Arnowitt-Deser-Misner Hamiltonian formalism or harmonic coordinates. Perturbatively solving (in dimension D=4 - eps) Einstein’s equations to get the equations of motion and the action for the conservative dynamics Beyond 1-loop order needs to use PN-expanded Green function for explicit computations. Introduces IR divergences on top of the UV divergences linked to the point-particle description. UV is (essentially) finite in dim.reg. and IR is linked to 4PN non-locality (Blanchet-Damour ’88). ⇤ 1 = ( 1 c2 @2 t ) 1 = 1 + 1 c2 @2 t 2 + ... Use PN-expanded Green function:
  • 22. Post-Newtonian Equations of Motion [2-body, wo spins] 10 • 1PN (including v2 /c2) [Lorentz-Droste ’17], Einstein-Infeld-Hoffmann ’38 • 2PN (inc. v4 /c4) Ohta-Okamura-Kimura-Hiida ‘74, Damour-Deruelle ’81 Damour ’82, Schäfer ’85, Kopeikin ‘85 • 2.5 PN (inc. v5 /c5) Damour-Deruelle ‘81, Damour ‘82, Schäfer ’85, Kopeikin ‘85 • 3 PN (inc. v6 /c6) Jaranowski-Schäfer ‘98, Blanchet-Faye ‘00, Damour-Jaranowski-Schäfer ‘01, Itoh-Futamase ‘03, Blanchet-Damour-Esposito-Farèse’ 04, Foffa-Sturani ‘11 • 3.5 PN (inc. v7 /c7) Iyer-Will ’93, Jaranowski-Schäfer ‘97, Pati-Will ‘02, Königsdörffer-Faye-Schäfer ‘03, Nissanke-Blanchet ‘05, Itoh ‘09 • 4PN (inc. v8 /c8) Jaranowski-Schäfer ’13, Foffa-Sturani ’13,’16 Bini-Damour ’13, Damour-Jaranowski-Schäfer ’14, Bernard et al’16 New feature : non-locality in time
  • 23. 2-body Taylor-expanded N + 1PN + 2PN Hamiltonian 11
  • 24. 2-body Taylor-expanded 3PN Hamiltonian [DJS 01] 12
  • 25. 2-body Taylor-expanded 4PN Hamiltonian [DJS, 2014] 13
  • 26. 25
  • 27. Perturbative Theory of the Generation of Gravitational Radiation Einstein ’16, ’18 (+ Landau-Lifshitz 41, and Fock ’55) : h+, hx and quadrupole formula Relativistic, multipolar extensions of LO quadrupole radiation : Sachs-Bergmann ’58, Sachs ’61, Mathews ’62, Peters-Mathews ’63, Pirani '64 Campbell-Morgan ’71, Campbell et al ’75, nonlinear effects: Bonnor-Rotenberg ’66, Epstein-Wagoner-Will ’75-76 Thorne ’80, .., Will et al 00 MPM Formalism: Blanchet-Damour ’86, Damour-Iyer ’91, Blanchet ’95 ‘98 Combines multipole exp. , Post Minkowkian exp., analytic continuation, and PN matching
  • 28. Perturbative computation of GW flux from binary system • lowest order : Einstein 1918 Peters-Mathews 63 • 1 + (v2 /c2) : Wagoner-Will 76 • … + (v3 /c3) : Blanchet-Damour 92, Wiseman 93 • … + (v4 /c4) : Blanchet-Damour-Iyer Will-Wiseman 95 • … + (v5 /c5) : Blanchet 96 • … + (v6 /c6) : Blanchet-Damour-Esposito-Farèse-Iyer 2004 • … + (v7 /c7) : Blanchet x = ⇣v c ⌘2 = ✓ G(m1 + m2)⌦ c3 ◆2 3 = ✓ ⇡G(m1 + m2)f c3 ◆2 3 ⌫ = m1m2 (m1 + m2)2
  • 29. Analytical GW Templates for BBH Coalescences ? Cutler et al. ’93: « slow convergence of PN » Brady-Creighton-Thorne’98: « inability of current computational techniques to evolve a BBH through its last ~10 orbits of inspiral » and to compute the merger Damour-Iyer-Sathyaprakash’98: use resummation methods for E and F Buonanno-Damour ’99-00: novel, resummed approach: Effective-One-Body analytical formalism PN corrections to Einstein’s quadrupole frequency « chirping » from PN-improved balance equation dE(f)/dt = - F(f) d d ln f = !2 d!/dt = QN ! bQ! QN ! = 5 c5 48 ⌫ v5 ; bQ! = 1 + c2 ⇣v c ⌘2 + c3 ⇣v c ⌘3 + · · · v c = ✓ ⇡G(m1 + m2)f c3 ◆1 3 ⌫ = m1m2 (m1 + m2)2
  • 30. 29
  • 31. Effective One Body (EOB) Method) Buonanno-Damour 1999, 2000; Damour-Jaranowski-Schaefer 2000; Damour 2001; Damour-Nagar 2007; Damour-Iyer-Nagar 2009 Predictions as early as 2000 : continued transition, non adiabaticity, first complete waveform, final spin (OK within 10%), final mass Resummation of perturbative PN results description of the coalescence + addition of ringdown (Vishveshwara 70, Davis-Ruffini-Tiomno 1972) Buonanno-Damour 2000
  • 32. EOB: resumming the dynamics of a two-body system (m_1,m_2,S_1,S_2) in terms of the dynamics of a particle of mass mu and spin S* moving in some effective metric g(M,S) Effective metric for non-spinning bodies: a nu-deformation of Schwarzschild ds2 e↵ = A(r; ⌫) dt2 + B(r; ⌫) dr2 + r2 d✓2 + sin2 ✓ d'2 µ = m1m2 m1 + m2 M = m1 + m2 ⌫ = µ M = m1m2 (m1 + m2)2
  • 33. 33 Spinning EOB effective Hamiltonian He↵ = Horb + Hso S = S1 + S2 ; S⇤ = m2 m1 S1 + m1 m2 S2 , r3 GPN S = 2 5 8 ⌫u 27 8 ⌫p2 r + ⌫ ✓ 51 4 u2 21 2 up2 r + 5 8 p4 r ◆ + ⌫2 ✓ 1 8 u2 + 23 8 up2 r + 35 8 p4 r ◆ r3 GPN S⇤ = 3 2 9 8 u 15 8 p2 r + ⌫ ✓ 3 4 u 9 4 p2 r ◆ 27 16 u2 + 69 16 up2 r + 35 16 p4 r + ⌫ ✓ 39 4 u2 9 4 up2 r + 5 2 p4 r ◆ +⌫2 ✓ 3 16 u2 + 57 16 up2 r + 45 16 p4 r ◆ Gyrogravitomagnetic ratios (when neglecting spin^2 effects) ! HEOB = Mc2 s 1 + 2⌫ ✓ He↵ µc2 1 ◆
  • 34. hringdown ⇤m (t) = N C+ N e + N (t tm) hEOB m = (tm t)hinsplunge m (t) + (t tm)hringdown m (t) EOB
  • 35. First complete waveforms for BBH coalescences: analytical EOB Non-spinning BHs Buonanno-Damour 2000 Spinning BHs Buonanno-Chen-Damour Nov 2005: « to show the promise of a purely analytical EOB-based approach »
  • 36. 36
  • 37. Numerical Relativity (NR) Mathematical foundations : Darmois 27, Lichnerowicz 43, Choquet-Bruhat 52- Breakthrough: Pretorius 2005: generalized harmonic coordinates (Friedrich,Garfinkle); constraint damping (Brodbeck et al., Gundlach et al., Pretorius, Lindblom et al.); excision; Moving punctures: Campanelli-Lousto-Maronetti-Zlochover 2006 Baker-Centrella-Choi-Koppitz-van Meter 2006
  • 38. The first EOB vs NR comparison Buonanno-Cook-Pretorius 2007
  • 39. Numerical Relativity Waveform (Caltech-Cornell, SXS)
  • 40. [PRL 111 (2013) 241104] But each NR waveform takes ~ 1 month, while 250.000 templates were needed and used... •www.blackholes.org SXS COLLABORATION NR CATALOG
  • 41. 40 EOB[NR]: Damour-Gourgoulhon-Grandclement ’02, Damour-Nagar ’07-16, Buonnano-Pan-Taracchini-….’07-16
  • 42. NR-completed resummed 5PN EOB radial A potential 4PN analytically complete + 5 PN logarithmic term in the A(u, nu) function, With u = GM/R and nu = m1 m2 / (m1 + m2)^2 [Damour 09, Blanchet et al 10, Barack-Damour-Sago 10, Le Tiec et al 11, Barausse et al 11, Akcay et al 12, Bini- Damour 13, Damour-Jaranowski-Schäfer 14, Nagar-Damour-Reisswig-Pollney 15] « We think, however, that a suitable ‘‘numerically fitted’’ and, if possible, ‘‘analytically extended’’ EOB Hamiltonian should be able to fit the needs of upcoming GW detectors. » (TD 2001) here Damour-Nagar-Bernuzzi ’13, Nagar-etal ’16; alternative: Taracchini et al ’14, Bohe et al ‘17 u = GM c2 R ⌫ = m1m2 (m1 + m2)2
  • 43. MAIN RADIAL EOB POTENTIAL A(R) 43 r=M 0 1 2 3 4 5 6 7 A(r) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 EOB: 5PNlog EOB: SEOBNRv2 Schwarzschild EOB - 3PN LR - EOB 5PNlog LR - SEOBNRv2 LR - schwarzschild LR-EOB-3PN A(r) m1=m2 case EOB[NR] EOB[3PN] Schwarzschild
  • 44. EOB / NR Comparison Inspiral + « plunge » Ringing BH Two orbiting point-masses: Resummed dynamics Peak emitted power ~ 3 x 10^56 erg/s ~ 0.001 c^5/G
  • 45. 45 MATCHED FILTERING SEARCH AND DATA ANALYSIS O1: precomputed bank of ~ 200 000 EOB templates for inspiralling and coalescing BBH GW waveforms: m1, m2, chi1=S1/m1^2, chi2=S2/m2^2 for m1+m2> 4Msun; + ~ 50 000 PN inspiralling templates for m1+m2< 4 Msun; O2: ~ 325 000 EOB templates + 75 000 PN templates Search template bank made of SpinningEOB[NR] templates (Buonanno-Damour99,Damour’01…,Taracchini et al. 14) in ROM form (Puerrer et al.’14); Recently improved (Bohé et al ’17) by including leading 4PN terms (Bini-Damour ’13), spin- dependent terms (Pan-Buonnano et al. ’13), and calibrating against 141 NR simulations. [post-computed NR waveform for GW151226 took three months and 70 000 CPU hours !] + bank of Phenom[EOB+NR] templates (Ajith…'07, Hannam…'14, Husa…’16, Khan…’16)
  • 46. 46 A POSTERIORI WAVEFORM CHECKS USING NR SIMULATIONS GW150914 Abbott et al 16a GW151226 Abbott et al 16b SXS simulation took three months and 70 000 CPU hours !
  • 48. GW151226: only detected via accurate matched filters 48
  • 49. GW170817 NSNS COALESCENCE + GRB + FIREWORKS 49 Tidal extension of EOB (TEOB) [Damour-Nagar 09] A(r) = A0 r + Atidal (r) Atidal (r) = ⇥T 2 u6 1 + ¯1u + ¯2u2 + . . . ⇥ + . . . TEOB[NR] A(R) potential (Bernuzzi et al. 2015) MULTI-MESSENGER + PROBING THE NUCLEAR EOS FROM LATE INSPIRAL TIDAL EFFECTS IN NSNS OR BHNS (Damour-Nagar-Villain, Agathos-DelPozzo-vandenBroeek, Bernuzzi et al, Hotokezaka et al.,…)
  • 50. GW DETECTORS IN SPACE LISA Here also analytical methods (completed by numerical ones) will be important: Gravitational Self-Force program: m1 << m2 • Analytical high-PN results : Blanchet-Detweiler-LeTiec-Whiting ’10, Damour ’10, Blanchet et al ’10, LeTiec et al ’12, Bini-Damour ’13-15, Kavanagh-Ottewill-Wardell ’15 • (gauge-invariant) Numerical results : Detweiler ’08, Barack-Sago ’09, Blanchet-Detweiler-LeTiec-Whiting ’10, Barack-Damour-Sago ’10, Shah- Friedman-Keidl ’12, Dolan et al ’14, Nolan et al ’15, … • Analytical PN results from high-precision (hundreds to thousands of digits !) numerical results : Shah-Friedman-Whiting ’14, Johnson-McDaniel- Shah-Whiting ’15 EOB[SF] program: import high PN-SF results in EOB (Bini-Damour ’15, Kavanagh et al ’15, Akcay, van de Meent, Hopper, ……)
  • 51. EOB PN NR PM SF LIGO’s bank of search templates O1: 200 000 EOB + 50 000 PN O2: 325 000 EOB + 75 000 PN v ⌧ c R GM/c2 v ⇠ c R ⇠ GM/c2 but NR simulation for GW151226 took 3 months and 70 000 CPU hours R GM/c2 BH perturbation m1 ⌧ m2 QFT perturbation theory LISA’s templates via EOB[SF] ? STRING perturbation theory Quantum Scattering Amplitudes