SlideShare a Scribd company logo
The Biermann Lectures: 
Adventures in Theoretical Astrophysics 
I: The Physics of Galaxy Cluster Plasmas 
Eliot Quataert (UC Berkeley) 
w/ Mike McCourt, Ian Parrish, Prateek Sharma 
Perseu`s (optical) Hydra A (x-ray)
The Biermann Lectures: 
Adventures in Theoretical Astrophysics 
• analytic theory + sims w/ students, postdocs 
• work on a range of problems: ‘model building’ & studying key processes 
• Compact Object Astrophysics 
• gamma-ray bursts, transients, accretion theory, the Galactic Center 
• Galaxy Formation 
• massive black hole growth, galactic winds, ‘feedback’, star formation in galaxies 
• Plasma Astrophysics 
• plasma instabilities (disks, galaxy clusters, ...), plasma turbulence (incl solar wind) 
• Stellar Astrophysics 
• stellar seismology, tides
The Biermann Lectures: 
Adventures in Theoretical Astrophysics 
I: The Physics of Galaxy Cluster Plasmas 
Eliot Quataert (UC Berkeley) 
w/ Mike McCourt, Ian Parrish, Prateek Sharma 
Perseu`s (optical) Hydra A (x-ray)
Clusters of Galaxies 
• largest gravitationally bound objects: 
Mvir ~ 1014-15 M⊙ 
Rvir ~ 1-3 Mpc 
• ~ 84% dark matter; ~ 14 % plasma; ~ 2% stars (102-3 galaxies) 
• on exponential tail of the mass function: potential cosmological probe 
• host the most massive galaxies (~ 1012 M⊙) and black holes (~ 109-10 M⊙) 
x-ray 
(thermal plasma) 
optical 
(stars) 
radio (BH & 
relativistic plasma) 
~ 0.1 Rvir
Hot Plasma in Clusters 
Lx ~ 1043-46 erg s-1 
n ~ 10-4-1 cm-3 
T ~ 1-15 keV 
Mgas ~ 1013-14 M⊙ 
large electron mean free path: 
➞ thermal conduction impt 
n, T ➞ radiative cooling 
impt in cluster cores
Galaxy Clusters: a Key to Understanding 
Massive Galaxy Formation 
in ~ 2/3 of cluster cores, 
tcool << age of Universe 
absent a heat source: 
Ṁcool ~ 100-1000 M⊙ yr-1 
Not Observed 
Ṁstar << Ṁcool 
no sufficiently large 
reservoirs of cold gas 
X-ray Spectra: Tmin ~ 1/3 <T> 
Age of 
Universe 
Observed 
Clusters 
central cooling time (Myr) 
Cavagnolo et al. 
Lack of cooling gas ➔ A heat 
source! AGN, conduction, ....
Galaxy Clusters: a Key to Understanding 
Massive Galaxy Formation 
understanding the thermal evolution of clusters 
requires progress on: 
- heating, turbulence, heat transport over ~ 4π, interaction btw hot & cold gas, CRs, ... 
start with the basics: convection & thermal instability 
Hα emissio`n in Perseus
Hydrodynamic Convection 
• Schwarzschild criterion for convection: ds/dz < 0 
• Motions slow & adiabatic: pressure equil, s ~ const 
solar interior: tsound ~ hr << tbuoyancy ~ month << tdiffusion ~ 104 yr 
gravity 
high s 
background fluid 
convectively unstable 
low entropy (s)
Cluster Entropy Profiles 
Radius (Rvir) 
Schwarzschild criterion ➔ clusters are stable 
Entropy 
Piffaretti et al. 2005 
ds/dr > 0
Anisotropic Thermal Conduction in Cluster Plasmas 
electron mean free path: 
ρe 
ρe: electron 
⇒ conduction is energetically impt Larmor radius 
le >> ρe ⇒ heat transport is anisotropic, primarily along B 
momentum transport is also anisotropic
The Magnetothermal Instability (MTI) 
Balbus 2000, 2001; Parrish & Stone 2005, 2007; Quataert 2008; McCourt+ 2011 
cold 
g 
hot 
thermal conduction time 
<< buoyancy time 
weak B-field 
no dynamical effect; 
only channels heat flow 
convectively 
unstable 
(dT/dz < 0) 
growth time 
~ dyn. time
The MTI 
cold 
g 
hot 
instability saturates 
by generating sustained 
convection & amplifying 
the magnetic field 
(analogous to hydro convection) 
B-field lines & Temp 
McCourt+ 2011
The MTI in Clusters 
MTI unstable 
r ≳ 100 kpc 
Piffaretti et al. 2005 
cool core cluster temperature profile 
Radius (Rvir) 
T/<T> 
Global Cluster Simulation 
(not cosmological) 
Mach #s ~ 0.3-0.6! 
largest near ~ Rvir 
(impt for X-ray, SZ 
mass measurements)
The Heat Flux-Driven Buoyancy Instability (HBI) 
Quataert 2008; Parrish & Quataert 2008 
hot 
cold 
g, Qz 
weak 
B 
heat flux 
converging & 
diverging 
heat flux 
⇒ 
conductive 
heating & 
cooling 
for dT/dz > 0 
upwardly displaced 
fluid heats up 
& rises, bends 
field more, .... 
convectively 
unstable
The HBI 
magnetic field lines 
HBI saturates largely by rearranging B-field & 
suppressing heat flow in direction of gravity 
Parrish & Quataert 2008 
hot 
cold 
g, Qz 
heat flux
Global Cluster Simulations 
• 3D MHD w/ cooling, anisotropic conduction 
• non-cosmological: isolated cluster core (≲ 200 kpc) 
• HBI → conduction cannot halt the cooling catastrophe 
t=0 t=1.6 Gyr T (keV) 
t=4.8 Gyr t=9.5 Gyr 
Temperature 
(color) & 
magnetic field 
direction 
(unit vectors) 
Parrish et al. 2009 
initial radial 
field for 
visualization 
(same results w/ 
tangled fields)
New Forms of Convection in Cluster Plasmas 
cool core cluster temperature profile 
MTI 
r ≳ 100 kpc 
HBI 
r ≲ 100 kpc 
Piffaretti et al. 2005 
Radius (Rvir) 
T/<T> 
~ 200 kpc 
The Entire Cluster is Convectively Unstable 
a number of other astrophysical applications ... instabilities only suppressed by 1. strong B 
(e.g., solar corona) or 2. isotropic heat transport >> anisotropic transport (e.g., solar interior)
Galaxy Clusters: a Key to Understanding 
Massive Galaxy Formation 
• Cluster cores: tcool << tHubble But most of the gas isn’t cooling 
• Lack of cooling gas ➔ A heat source must balance radiative losses 
• Plausible source of heating: an AGN in the cluster’s central galaxy 
Hydra A 
Observationally, Energy Required to 
Inflate Bubbles/Jets ~ LX of hot ICM 
Why this ‘Feedback’ is more 
subtle than you thought: 
Local Thermal (In)Stability
there is some cool, dense gas observed in many clusters 
Fabian et al. 2008 
Hα emission (‘filaments’) in Perseus
Cavagnolo et al. 2008 
Evidence for Cool, Dense Gas 
Ubiquitous in ‘Cool-Core’ Clusters 
Cluster Central ‘Entropy’ (K0 = kT/n2/3) 
Hα emission spatially 
extended in many cases 
McDonald+ 2010 
molecular gas (CO, HCN) 
star formation & AGN 
activity (radio power) 
also correlate w/ 
short cooling times 
Hα emission 
high n, faster cooling low n, slower cooling 
origin of cold gas? 
role of cold gas in 
feedback/heating cycle?
Conjecture: Signature of Local Thermal 
Instability in a Globally Stable System 
Global Thermal Balance ≠ Local Thermal Balance 
<Heating> ~ <Cooling> ⇒ no cooling flow 
Heating ≠ Cooling locally ⇒ local thermal instability 
Subtle physics w/ critical implications for multiphase gas in 
clusters & the feedback cycle that regulates ICM properties 
(analogous to the ISM of galaxies)
Htg vs. Cooling in Cluster Plasmas 
competition btw cooling & gravity: key parameter tcool/tff 
significant dense gas via 
thermal instability iff 
tcool/tff ≲ few 
g 
rapid cooling: δρ/ρ non-linear ⇒ multiphase structure slow cooling: δρ/ρ ~ linear ⇒ no extended multiphase structure 
Cartesian sims (movies ~ 10 tcool) 
toy model w/ htg ∋ H(r) ~ <ℒ>(r) 
no B-fields or conduction
Htg vs. Cooling in Cluster Plasmas 
competition btw cooling & gravity: key parameter tcool/tff 
slow cooling, tcool/tff ≳ few 
thermal instability amplifies density perturbations 
but blobs sheared apart before δρ/ρ ~ 1 
⇒ no multiphase structure 
tcool/tff 
δρ/ρ|rms (after ~ 10 tcool) 
~ linear 
multiphase 
analytically !" 
" ! 
tff 
tcool
Htg vs. Cooling in Cluster Plasmas 
competition btw cooling & gravity: key parameter tcool/tff 
tcool/tff = 1/10 
tcool/tff = 1 
tcool/tff = 10 
t/tcool 
slow cooling, tcool/tff ≳ few 
thermal instability amplifies density perturbations 
but blobs sheared apart before δρ/ρ ~ 1 
⇒ no multiphase structure 
analytically !" 
" ! 
tff 
tcool 
Net cooling rate & inflow to small radii 
strongly suppressed only if tcool/tff ≳ few 
˙M 
˙M 
CF ! 
! 
tff 
tcool 
"2 
" 1
global cluster sim (NFW halo) 
min(tcool/tff) ~ 10 
log[mass density ρ] 
Global Cluster Sims 
Criterion for multiphase structure: 
tcool/tff ≲ 10 
somewhat less stringent than cartesian bec. 
of compression during inflow in spherical systems
Htg vs. Cooling in Cluster Plasmas 
• Thermal Instability w/ Realistic Physics ⇒ Cold Filaments 
(not cold blobs) 
• Realistic = B-fields, anisotropic conduction/viscosity, & cosmic-rays 
• filaments typically aligned along local B-field 
• CR pressure significant in filaments 
g 
B0 
more rapid conduction 
log10[ρ/ρ0] in local Cartesian sim
Cavagnolo et al. 2008 
Evidence for Cool, Dense Gas 
Ubiquitous in Cool-Core Clusters 
Cluster Central ‘Entropy’ (K0 = kT/n2/3) 
star formation & AGN 
activity also correlated 
w/ K0 ≲ 30 keV cm2 
Hα emission 
30 keV cm2 
consistent w/ predictions 
for multiphase structure 
from thermal instability 
tcool 
tff ! 5 
(K/30 keVcm2)3/2 
T1/2 
keV !−22.8 (tff/100 Myr)
Clusters in both ACCEPT & McDonald+2010 Hα survey 
min(tcool/tff) at ~ 10-30 kpc ~ observed radii of filaments
Feedback & the Self-Regulation of Cluster Properties 
initial central 
entropy (keV cm2) 
axisymmetric global cluster sims (NFW halo) 
in global thermal equilibrium (H ~ ℒ) 
Net cooling rate & inflow to small radii 
strongly suppressed only if tcool/tff ≳ few-10, 
˙M 
˙M 
CF ! 
! 
tff 
tcool 
"2 
" 1 
1 
10 
30 
100 
If Heating ~ εṀc2 
(AGN, SNe, ...) 
⇒ clusters self-regulate to 
min(tcool/tff) ~ 10 
min(entropy) ~ 10-30 keV cm2 
Ṁ (Msun yr-1) at ~ kpc
Feedback & the Self-Regulation of Cluster Properties 
1 
10 
30 
If Heating ~ εṀc2 (AGN, SNe, ...) ⇒ clusters self-regulate to 
min(tcool/tff) ~ 10 
(weakly dependent on details of heating; 
intrinsically multi-D physics -- not in 1D models)
Feedback & the Self-Regulation of Cluster Properties 
observed central cooling 
times peak at ~ 5-10 tff 
consistent w/ ‘feedback’ 
loop in which is Ṁ induced 
by local thermal instability 
Age of 
Universe 
~ tff 
Observed 
Clusters 
central cooling time (Myr) 
Cavagnolo et al. 
‘cool-core’ 
clusters
The Thermal Physics of 
Galaxy Cluster Plasmas 
• Clusters are convectively unstable at all radii! 
• induced by anisotropic thermal conduction (accept no substitute) 
• these mediate heat transport in clusters & drive turbulence at all radii 
• Clusters are in ~ global thermal equilibrium, but are locally unstable 
• Local TI: competition btw cooling & gravity: tcool/tff 
• tcool/tff ≲ 10 ⇒ significant multi-phase structure 
• Ṁ << ṀCF iff tcool/tff ≳ 3-10 (i.e, not too much dense gas via TI) 
• feedback ⇒ min(tcool/tff) ~ 10, K0 ~ 30 keV cm2: consistent w/ data 
Next Time

More Related Content

What's hot

Free convection
Free convectionFree convection
Free convection
selvakumar948
 
Planetary Atmospheres I
Planetary Atmospheres IPlanetary Atmospheres I
Planetary Atmospheres I
Renée Condori Apaza
 
Observations of Gamma-Ray Bursts with the Fermi-Large Area Telescope
Observations of Gamma-Ray Bursts with the Fermi-Large Area TelescopeObservations of Gamma-Ray Bursts with the Fermi-Large Area Telescope
Observations of Gamma-Ray Bursts with the Fermi-Large Area Telescope
Vlasios Vasileiou
 
Gravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault DamourGravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault Damour
Lake Como School of Advanced Studies
 
Thermodynamics -Basic concepts
 Thermodynamics -Basic concepts Thermodynamics -Basic concepts
Thermodynamics -Basic concepts
selvakumar948
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
JeremyHeyl
 
One-dimensional conduction-with_no_heat_generation
One-dimensional conduction-with_no_heat_generationOne-dimensional conduction-with_no_heat_generation
One-dimensional conduction-with_no_heat_generation
tmuliya
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copyYuri Melliza
 
QTPIE and water (Part 1)
QTPIE and water (Part 1)QTPIE and water (Part 1)
QTPIE and water (Part 1)
Jiahao Chen
 
Chapter 2
Chapter 2 Chapter 2
Chapter 2
Yuri Melliza
 
Heat conduction equation
Heat conduction equationHeat conduction equation
Heat conduction equation
Yashawantha K M
 
Tectonics lecture 04
Tectonics lecture 04Tectonics lecture 04
Tectonics lecture 04
shailesh kumar
 
ME 12 F1 (MODULE 1)
ME 12 F1 (MODULE 1)ME 12 F1 (MODULE 1)
ME 12 F1 (MODULE 1)
Yuri Melliza
 
Fins
FinsFins
Thermodynamics lecture 2
Thermodynamics lecture 2Thermodynamics lecture 2
Thermodynamics lecture 2Archit Gadhok
 
Nitrogen Chemistry in Disffuse Interstellar Medium
Nitrogen Chemistry in Disffuse Interstellar MediumNitrogen Chemistry in Disffuse Interstellar Medium
Nitrogen Chemistry in Disffuse Interstellar Medium
Prince Tiwari
 
One dimensional heat conduction equation
One dimensional heat conduction equationOne dimensional heat conduction equation
One dimensional heat conduction equation
মনোয়ারুল এহসান
 
General Heat Conduction Equation
General Heat Conduction EquationGeneral Heat Conduction Equation
General Heat Conduction Equation
aramesh2003
 

What's hot (20)

Free convection
Free convectionFree convection
Free convection
 
Planetary Atmospheres I
Planetary Atmospheres IPlanetary Atmospheres I
Planetary Atmospheres I
 
Dr.Philos._Trial_Lecture_Committee_Given_Topic
Dr.Philos._Trial_Lecture_Committee_Given_TopicDr.Philos._Trial_Lecture_Committee_Given_Topic
Dr.Philos._Trial_Lecture_Committee_Given_Topic
 
Observations of Gamma-Ray Bursts with the Fermi-Large Area Telescope
Observations of Gamma-Ray Bursts with the Fermi-Large Area TelescopeObservations of Gamma-Ray Bursts with the Fermi-Large Area Telescope
Observations of Gamma-Ray Bursts with the Fermi-Large Area Telescope
 
Gravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault DamourGravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault Damour
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Thermodynamics -Basic concepts
 Thermodynamics -Basic concepts Thermodynamics -Basic concepts
Thermodynamics -Basic concepts
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
 
One-dimensional conduction-with_no_heat_generation
One-dimensional conduction-with_no_heat_generationOne-dimensional conduction-with_no_heat_generation
One-dimensional conduction-with_no_heat_generation
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copy
 
QTPIE and water (Part 1)
QTPIE and water (Part 1)QTPIE and water (Part 1)
QTPIE and water (Part 1)
 
Chapter 2
Chapter 2 Chapter 2
Chapter 2
 
Heat conduction equation
Heat conduction equationHeat conduction equation
Heat conduction equation
 
Tectonics lecture 04
Tectonics lecture 04Tectonics lecture 04
Tectonics lecture 04
 
ME 12 F1 (MODULE 1)
ME 12 F1 (MODULE 1)ME 12 F1 (MODULE 1)
ME 12 F1 (MODULE 1)
 
Fins
FinsFins
Fins
 
Thermodynamics lecture 2
Thermodynamics lecture 2Thermodynamics lecture 2
Thermodynamics lecture 2
 
Nitrogen Chemistry in Disffuse Interstellar Medium
Nitrogen Chemistry in Disffuse Interstellar MediumNitrogen Chemistry in Disffuse Interstellar Medium
Nitrogen Chemistry in Disffuse Interstellar Medium
 
One dimensional heat conduction equation
One dimensional heat conduction equationOne dimensional heat conduction equation
One dimensional heat conduction equation
 
General Heat Conduction Equation
General Heat Conduction EquationGeneral Heat Conduction Equation
General Heat Conduction Equation
 

Similar to Biermann clusters

68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
ICREA
 
New Constraints on Warm Dark Matter from the Lyman-α Forest Power Spectrum
New Constraints on Warm Dark Matter from the Lyman-α Forest Power SpectrumNew Constraints on Warm Dark Matter from the Lyman-α Forest Power Spectrum
New Constraints on Warm Dark Matter from the Lyman-α Forest Power Spectrum
Sérgio Sacani
 
Biermann feedback
Biermann feedbackBiermann feedback
Biermann feedback
Atner Yegorov
 
The Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy ClustersThe Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy Clusters
John ZuHone
 
03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt
somnathmahapatra6
 
2011 padova
2011 padova2011 padova
Heat transfer modes
Heat transfer modesHeat transfer modes
Heat transfer modes
arivazhaganrajangam
 
Cmb part1
Cmb part1Cmb part1
BME 303 - Lesson 7 - Phase Transformation.pdf
BME 303 - Lesson 7 - Phase Transformation.pdfBME 303 - Lesson 7 - Phase Transformation.pdf
BME 303 - Lesson 7 - Phase Transformation.pdf
atlestmunni
 
Lecture 7 pseudogap
Lecture 7 pseudogapLecture 7 pseudogap
Lecture 7 pseudogapAllenHermann
 
BoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdfBoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdf
DrSanjaySingh13
 
Georgeta Ungureanu final Phd
Georgeta Ungureanu final PhdGeorgeta Ungureanu final Phd
Georgeta Ungureanu final Phd
Georgeta Ungureanu
 
Heat_in_the_Eavdvdvdvfvdvdvdfvfdvfdvfrth.ppt
Heat_in_the_Eavdvdvdvfvdvdvdfvfdvfdvfrth.pptHeat_in_the_Eavdvdvdvfvdvdvdfvfdvfdvfrth.ppt
Heat_in_the_Eavdvdvdvfvdvdvdfvfdvfdvfrth.ppt
hamda100
 
Phase transformation
Phase transformationPhase transformation
Phase transformation
temkin abdlkader
 
statistical physics assignment help
statistical physics assignment helpstatistical physics assignment help
statistical physics assignment help
Statistics Homework Helper
 
lect9_geodyn_convect [Compatibility Mode] [Repaired].ppt
lect9_geodyn_convect [Compatibility Mode] [Repaired].pptlect9_geodyn_convect [Compatibility Mode] [Repaired].ppt
lect9_geodyn_convect [Compatibility Mode] [Repaired].ppt
cjoypingaron
 

Similar to Biermann clusters (20)

68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
 
New Constraints on Warm Dark Matter from the Lyman-α Forest Power Spectrum
New Constraints on Warm Dark Matter from the Lyman-α Forest Power SpectrumNew Constraints on Warm Dark Matter from the Lyman-α Forest Power Spectrum
New Constraints on Warm Dark Matter from the Lyman-α Forest Power Spectrum
 
Biermann feedback
Biermann feedbackBiermann feedback
Biermann feedback
 
YSchutz_PPTWin
YSchutz_PPTWinYSchutz_PPTWin
YSchutz_PPTWin
 
The Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy ClustersThe Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy Clusters
 
03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt
 
2011 padova
2011 padova2011 padova
2011 padova
 
Heat transfer modes
Heat transfer modesHeat transfer modes
Heat transfer modes
 
Lecture26
Lecture26Lecture26
Lecture26
 
Cmb part1
Cmb part1Cmb part1
Cmb part1
 
BME 303 - Lesson 7 - Phase Transformation.pdf
BME 303 - Lesson 7 - Phase Transformation.pdfBME 303 - Lesson 7 - Phase Transformation.pdf
BME 303 - Lesson 7 - Phase Transformation.pdf
 
Lecture 7 pseudogap
Lecture 7 pseudogapLecture 7 pseudogap
Lecture 7 pseudogap
 
Lecture 18
Lecture 18Lecture 18
Lecture 18
 
Lecture 18
Lecture 18Lecture 18
Lecture 18
 
BoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdfBoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdf
 
Georgeta Ungureanu final Phd
Georgeta Ungureanu final PhdGeorgeta Ungureanu final Phd
Georgeta Ungureanu final Phd
 
Heat_in_the_Eavdvdvdvfvdvdvdfvfdvfdvfrth.ppt
Heat_in_the_Eavdvdvdvfvdvdvdfvfdvfdvfrth.pptHeat_in_the_Eavdvdvdvfvdvdvdfvfdvfdvfrth.ppt
Heat_in_the_Eavdvdvdvfvdvdvdfvfdvfdvfrth.ppt
 
Phase transformation
Phase transformationPhase transformation
Phase transformation
 
statistical physics assignment help
statistical physics assignment helpstatistical physics assignment help
statistical physics assignment help
 
lect9_geodyn_convect [Compatibility Mode] [Repaired].ppt
lect9_geodyn_convect [Compatibility Mode] [Repaired].pptlect9_geodyn_convect [Compatibility Mode] [Repaired].ppt
lect9_geodyn_convect [Compatibility Mode] [Repaired].ppt
 

More from Atner Yegorov

Здравоохранение Чувашии 2015
Здравоохранение Чувашии 2015Здравоохранение Чувашии 2015
Здравоохранение Чувашии 2015
Atner Yegorov
 
Чувашия. Итоги за 5 лет. 2015
Чувашия. Итоги за 5 лет. 2015Чувашия. Итоги за 5 лет. 2015
Чувашия. Итоги за 5 лет. 2015
Atner Yegorov
 
Инвестиционная политика Чувашской Республики 2015
Инвестиционная политика Чувашской Республики 2015Инвестиционная политика Чувашской Республики 2015
Инвестиционная политика Чувашской Республики 2015
Atner Yegorov
 
Господдержка малого и среднего бизнеса в Чувашии 2015
Господдержка малого и среднего бизнеса в Чувашии 2015Господдержка малого и среднего бизнеса в Чувашии 2015
Господдержка малого и среднего бизнеса в Чувашии 2015
Atner Yegorov
 
ИННОВАЦИИ В ПРОМЫШЛЕННОСТИ ЧУВАШИИ. 2015
ИННОВАЦИИ В ПРОМЫШЛЕННОСТИ ЧУВАШИИ. 2015ИННОВАЦИИ В ПРОМЫШЛЕННОСТИ ЧУВАШИИ. 2015
ИННОВАЦИИ В ПРОМЫШЛЕННОСТИ ЧУВАШИИ. 2015
Atner Yegorov
 
Брендинг Чувашии
Брендинг ЧувашииБрендинг Чувашии
Брендинг Чувашии
Atner Yegorov
 
VIII Экономический форум Чебоксары
VIII Экономический форум ЧебоксарыVIII Экономический форум Чебоксары
VIII Экономический форум Чебоксары
Atner Yegorov
 
Рейтин инвестклимата в регионах 2015
Рейтин инвестклимата в регионах 2015Рейтин инвестклимата в регионах 2015
Рейтин инвестклимата в регионах 2015
Atner Yegorov
 
Аттракционы тематического парка, Татарстан
Аттракционы тематического парка, ТатарстанАттракционы тематического парка, Татарстан
Аттракционы тематического парка, Татарстан
Atner Yegorov
 
Тематический парк, Татарстан
Тематический парк, ТатарстанТематический парк, Татарстан
Тематический парк, Татарстан
Atner Yegorov
 
Будущее журналистики
Будущее журналистикиБудущее журналистики
Будущее журналистики
Atner Yegorov
 
Будущее нишевых СМИ
Будущее нишевых СМИБудущее нишевых СМИ
Будущее нишевых СМИ
Atner Yegorov
 
Relap
RelapRelap
Будущее онлайн СМИ в регионах
Будущее онлайн СМИ в регионах Будущее онлайн СМИ в регионах
Будущее онлайн СМИ в регионах
Atner Yegorov
 
Война форматов. Как люди читают новости
Война форматов. Как люди читают новости Война форматов. Как люди читают новости
Война форматов. Как люди читают новости
Atner Yegorov
 
Национальная технологическая инициатива
Национальная технологическая инициативаНациональная технологическая инициатива
Национальная технологическая инициатива
Atner Yegorov
 
О РАЗРАБОТКЕ И РЕАЛИЗАЦИИ НАЦИОНАЛЬНОЙ ТЕХНОЛОГИЧЕСКОЙ ИНИЦИАТИВЫ
О РАЗРАБОТКЕ И РЕАЛИЗАЦИИ НАЦИОНАЛЬНОЙ  ТЕХНОЛОГИЧЕСКОЙ ИНИЦИАТИВЫ О РАЗРАБОТКЕ И РЕАЛИЗАЦИИ НАЦИОНАЛЬНОЙ  ТЕХНОЛОГИЧЕСКОЙ ИНИЦИАТИВЫ
О РАЗРАБОТКЕ И РЕАЛИЗАЦИИ НАЦИОНАЛЬНОЙ ТЕХНОЛОГИЧЕСКОЙ ИНИЦИАТИВЫ
Atner Yegorov
 
Участники заседания по модернизации
Участники заседания по модернизацииУчастники заседания по модернизации
Участники заседания по модернизации
Atner Yegorov
 
Город Innopolis
Город InnopolisГород Innopolis
Город Innopolis
Atner Yegorov
 
презентация1
презентация1презентация1
презентация1Atner Yegorov
 

More from Atner Yegorov (20)

Здравоохранение Чувашии 2015
Здравоохранение Чувашии 2015Здравоохранение Чувашии 2015
Здравоохранение Чувашии 2015
 
Чувашия. Итоги за 5 лет. 2015
Чувашия. Итоги за 5 лет. 2015Чувашия. Итоги за 5 лет. 2015
Чувашия. Итоги за 5 лет. 2015
 
Инвестиционная политика Чувашской Республики 2015
Инвестиционная политика Чувашской Республики 2015Инвестиционная политика Чувашской Республики 2015
Инвестиционная политика Чувашской Республики 2015
 
Господдержка малого и среднего бизнеса в Чувашии 2015
Господдержка малого и среднего бизнеса в Чувашии 2015Господдержка малого и среднего бизнеса в Чувашии 2015
Господдержка малого и среднего бизнеса в Чувашии 2015
 
ИННОВАЦИИ В ПРОМЫШЛЕННОСТИ ЧУВАШИИ. 2015
ИННОВАЦИИ В ПРОМЫШЛЕННОСТИ ЧУВАШИИ. 2015ИННОВАЦИИ В ПРОМЫШЛЕННОСТИ ЧУВАШИИ. 2015
ИННОВАЦИИ В ПРОМЫШЛЕННОСТИ ЧУВАШИИ. 2015
 
Брендинг Чувашии
Брендинг ЧувашииБрендинг Чувашии
Брендинг Чувашии
 
VIII Экономический форум Чебоксары
VIII Экономический форум ЧебоксарыVIII Экономический форум Чебоксары
VIII Экономический форум Чебоксары
 
Рейтин инвестклимата в регионах 2015
Рейтин инвестклимата в регионах 2015Рейтин инвестклимата в регионах 2015
Рейтин инвестклимата в регионах 2015
 
Аттракционы тематического парка, Татарстан
Аттракционы тематического парка, ТатарстанАттракционы тематического парка, Татарстан
Аттракционы тематического парка, Татарстан
 
Тематический парк, Татарстан
Тематический парк, ТатарстанТематический парк, Татарстан
Тематический парк, Татарстан
 
Будущее журналистики
Будущее журналистикиБудущее журналистики
Будущее журналистики
 
Будущее нишевых СМИ
Будущее нишевых СМИБудущее нишевых СМИ
Будущее нишевых СМИ
 
Relap
RelapRelap
Relap
 
Будущее онлайн СМИ в регионах
Будущее онлайн СМИ в регионах Будущее онлайн СМИ в регионах
Будущее онлайн СМИ в регионах
 
Война форматов. Как люди читают новости
Война форматов. Как люди читают новости Война форматов. Как люди читают новости
Война форматов. Как люди читают новости
 
Национальная технологическая инициатива
Национальная технологическая инициативаНациональная технологическая инициатива
Национальная технологическая инициатива
 
О РАЗРАБОТКЕ И РЕАЛИЗАЦИИ НАЦИОНАЛЬНОЙ ТЕХНОЛОГИЧЕСКОЙ ИНИЦИАТИВЫ
О РАЗРАБОТКЕ И РЕАЛИЗАЦИИ НАЦИОНАЛЬНОЙ  ТЕХНОЛОГИЧЕСКОЙ ИНИЦИАТИВЫ О РАЗРАБОТКЕ И РЕАЛИЗАЦИИ НАЦИОНАЛЬНОЙ  ТЕХНОЛОГИЧЕСКОЙ ИНИЦИАТИВЫ
О РАЗРАБОТКЕ И РЕАЛИЗАЦИИ НАЦИОНАЛЬНОЙ ТЕХНОЛОГИЧЕСКОЙ ИНИЦИАТИВЫ
 
Участники заседания по модернизации
Участники заседания по модернизацииУчастники заседания по модернизации
Участники заседания по модернизации
 
Город Innopolis
Город InnopolisГород Innopolis
Город Innopolis
 
презентация1
презентация1презентация1
презентация1
 

Recently uploaded

DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
Wasswaderrick3
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
yqqaatn0
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
Phenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvementPhenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvement
IshaGoswami9
 
Red blood cells- genesis-maturation.pptx
Red blood cells- genesis-maturation.pptxRed blood cells- genesis-maturation.pptx
Red blood cells- genesis-maturation.pptx
muralinath2
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
University of Maribor
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
Mudde & Rovira Kaltwasser. - Populism in Europe and the Americas - Threat Or...
Mudde &  Rovira Kaltwasser. - Populism in Europe and the Americas - Threat Or...Mudde &  Rovira Kaltwasser. - Populism in Europe and the Americas - Threat Or...
Mudde & Rovira Kaltwasser. - Populism in Europe and the Americas - Threat Or...
frank0071
 
Nucleophilic Addition of carbonyl compounds.pptx
Nucleophilic Addition of carbonyl  compounds.pptxNucleophilic Addition of carbonyl  compounds.pptx
Nucleophilic Addition of carbonyl compounds.pptx
SSR02
 
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptxANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
RASHMI M G
 
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptxBREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
RASHMI M G
 
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdfTopic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
TinyAnderson
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
Gokturk Mehmet Dilci
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
pablovgd
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
Abdul Wali Khan University Mardan,kP,Pakistan
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
tonzsalvador2222
 
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
David Osipyan
 

Recently uploaded (20)

DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
Phenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvementPhenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvement
 
Red blood cells- genesis-maturation.pptx
Red blood cells- genesis-maturation.pptxRed blood cells- genesis-maturation.pptx
Red blood cells- genesis-maturation.pptx
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
Mudde & Rovira Kaltwasser. - Populism in Europe and the Americas - Threat Or...
Mudde &  Rovira Kaltwasser. - Populism in Europe and the Americas - Threat Or...Mudde &  Rovira Kaltwasser. - Populism in Europe and the Americas - Threat Or...
Mudde & Rovira Kaltwasser. - Populism in Europe and the Americas - Threat Or...
 
Nucleophilic Addition of carbonyl compounds.pptx
Nucleophilic Addition of carbonyl  compounds.pptxNucleophilic Addition of carbonyl  compounds.pptx
Nucleophilic Addition of carbonyl compounds.pptx
 
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptxANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
 
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptxBREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
 
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdfTopic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
 
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
 

Biermann clusters

  • 1. The Biermann Lectures: Adventures in Theoretical Astrophysics I: The Physics of Galaxy Cluster Plasmas Eliot Quataert (UC Berkeley) w/ Mike McCourt, Ian Parrish, Prateek Sharma Perseu`s (optical) Hydra A (x-ray)
  • 2. The Biermann Lectures: Adventures in Theoretical Astrophysics • analytic theory + sims w/ students, postdocs • work on a range of problems: ‘model building’ & studying key processes • Compact Object Astrophysics • gamma-ray bursts, transients, accretion theory, the Galactic Center • Galaxy Formation • massive black hole growth, galactic winds, ‘feedback’, star formation in galaxies • Plasma Astrophysics • plasma instabilities (disks, galaxy clusters, ...), plasma turbulence (incl solar wind) • Stellar Astrophysics • stellar seismology, tides
  • 3. The Biermann Lectures: Adventures in Theoretical Astrophysics I: The Physics of Galaxy Cluster Plasmas Eliot Quataert (UC Berkeley) w/ Mike McCourt, Ian Parrish, Prateek Sharma Perseu`s (optical) Hydra A (x-ray)
  • 4. Clusters of Galaxies • largest gravitationally bound objects: Mvir ~ 1014-15 M⊙ Rvir ~ 1-3 Mpc • ~ 84% dark matter; ~ 14 % plasma; ~ 2% stars (102-3 galaxies) • on exponential tail of the mass function: potential cosmological probe • host the most massive galaxies (~ 1012 M⊙) and black holes (~ 109-10 M⊙) x-ray (thermal plasma) optical (stars) radio (BH & relativistic plasma) ~ 0.1 Rvir
  • 5. Hot Plasma in Clusters Lx ~ 1043-46 erg s-1 n ~ 10-4-1 cm-3 T ~ 1-15 keV Mgas ~ 1013-14 M⊙ large electron mean free path: ➞ thermal conduction impt n, T ➞ radiative cooling impt in cluster cores
  • 6. Galaxy Clusters: a Key to Understanding Massive Galaxy Formation in ~ 2/3 of cluster cores, tcool << age of Universe absent a heat source: Ṁcool ~ 100-1000 M⊙ yr-1 Not Observed Ṁstar << Ṁcool no sufficiently large reservoirs of cold gas X-ray Spectra: Tmin ~ 1/3 <T> Age of Universe Observed Clusters central cooling time (Myr) Cavagnolo et al. Lack of cooling gas ➔ A heat source! AGN, conduction, ....
  • 7. Galaxy Clusters: a Key to Understanding Massive Galaxy Formation understanding the thermal evolution of clusters requires progress on: - heating, turbulence, heat transport over ~ 4π, interaction btw hot & cold gas, CRs, ... start with the basics: convection & thermal instability Hα emissio`n in Perseus
  • 8. Hydrodynamic Convection • Schwarzschild criterion for convection: ds/dz < 0 • Motions slow & adiabatic: pressure equil, s ~ const solar interior: tsound ~ hr << tbuoyancy ~ month << tdiffusion ~ 104 yr gravity high s background fluid convectively unstable low entropy (s)
  • 9. Cluster Entropy Profiles Radius (Rvir) Schwarzschild criterion ➔ clusters are stable Entropy Piffaretti et al. 2005 ds/dr > 0
  • 10. Anisotropic Thermal Conduction in Cluster Plasmas electron mean free path: ρe ρe: electron ⇒ conduction is energetically impt Larmor radius le >> ρe ⇒ heat transport is anisotropic, primarily along B momentum transport is also anisotropic
  • 11. The Magnetothermal Instability (MTI) Balbus 2000, 2001; Parrish & Stone 2005, 2007; Quataert 2008; McCourt+ 2011 cold g hot thermal conduction time << buoyancy time weak B-field no dynamical effect; only channels heat flow convectively unstable (dT/dz < 0) growth time ~ dyn. time
  • 12. The MTI cold g hot instability saturates by generating sustained convection & amplifying the magnetic field (analogous to hydro convection) B-field lines & Temp McCourt+ 2011
  • 13. The MTI in Clusters MTI unstable r ≳ 100 kpc Piffaretti et al. 2005 cool core cluster temperature profile Radius (Rvir) T/<T> Global Cluster Simulation (not cosmological) Mach #s ~ 0.3-0.6! largest near ~ Rvir (impt for X-ray, SZ mass measurements)
  • 14. The Heat Flux-Driven Buoyancy Instability (HBI) Quataert 2008; Parrish & Quataert 2008 hot cold g, Qz weak B heat flux converging & diverging heat flux ⇒ conductive heating & cooling for dT/dz > 0 upwardly displaced fluid heats up & rises, bends field more, .... convectively unstable
  • 15. The HBI magnetic field lines HBI saturates largely by rearranging B-field & suppressing heat flow in direction of gravity Parrish & Quataert 2008 hot cold g, Qz heat flux
  • 16. Global Cluster Simulations • 3D MHD w/ cooling, anisotropic conduction • non-cosmological: isolated cluster core (≲ 200 kpc) • HBI → conduction cannot halt the cooling catastrophe t=0 t=1.6 Gyr T (keV) t=4.8 Gyr t=9.5 Gyr Temperature (color) & magnetic field direction (unit vectors) Parrish et al. 2009 initial radial field for visualization (same results w/ tangled fields)
  • 17. New Forms of Convection in Cluster Plasmas cool core cluster temperature profile MTI r ≳ 100 kpc HBI r ≲ 100 kpc Piffaretti et al. 2005 Radius (Rvir) T/<T> ~ 200 kpc The Entire Cluster is Convectively Unstable a number of other astrophysical applications ... instabilities only suppressed by 1. strong B (e.g., solar corona) or 2. isotropic heat transport >> anisotropic transport (e.g., solar interior)
  • 18. Galaxy Clusters: a Key to Understanding Massive Galaxy Formation • Cluster cores: tcool << tHubble But most of the gas isn’t cooling • Lack of cooling gas ➔ A heat source must balance radiative losses • Plausible source of heating: an AGN in the cluster’s central galaxy Hydra A Observationally, Energy Required to Inflate Bubbles/Jets ~ LX of hot ICM Why this ‘Feedback’ is more subtle than you thought: Local Thermal (In)Stability
  • 19. there is some cool, dense gas observed in many clusters Fabian et al. 2008 Hα emission (‘filaments’) in Perseus
  • 20. Cavagnolo et al. 2008 Evidence for Cool, Dense Gas Ubiquitous in ‘Cool-Core’ Clusters Cluster Central ‘Entropy’ (K0 = kT/n2/3) Hα emission spatially extended in many cases McDonald+ 2010 molecular gas (CO, HCN) star formation & AGN activity (radio power) also correlate w/ short cooling times Hα emission high n, faster cooling low n, slower cooling origin of cold gas? role of cold gas in feedback/heating cycle?
  • 21. Conjecture: Signature of Local Thermal Instability in a Globally Stable System Global Thermal Balance ≠ Local Thermal Balance <Heating> ~ <Cooling> ⇒ no cooling flow Heating ≠ Cooling locally ⇒ local thermal instability Subtle physics w/ critical implications for multiphase gas in clusters & the feedback cycle that regulates ICM properties (analogous to the ISM of galaxies)
  • 22. Htg vs. Cooling in Cluster Plasmas competition btw cooling & gravity: key parameter tcool/tff significant dense gas via thermal instability iff tcool/tff ≲ few g rapid cooling: δρ/ρ non-linear ⇒ multiphase structure slow cooling: δρ/ρ ~ linear ⇒ no extended multiphase structure Cartesian sims (movies ~ 10 tcool) toy model w/ htg ∋ H(r) ~ <ℒ>(r) no B-fields or conduction
  • 23. Htg vs. Cooling in Cluster Plasmas competition btw cooling & gravity: key parameter tcool/tff slow cooling, tcool/tff ≳ few thermal instability amplifies density perturbations but blobs sheared apart before δρ/ρ ~ 1 ⇒ no multiphase structure tcool/tff δρ/ρ|rms (after ~ 10 tcool) ~ linear multiphase analytically !" " ! tff tcool
  • 24. Htg vs. Cooling in Cluster Plasmas competition btw cooling & gravity: key parameter tcool/tff tcool/tff = 1/10 tcool/tff = 1 tcool/tff = 10 t/tcool slow cooling, tcool/tff ≳ few thermal instability amplifies density perturbations but blobs sheared apart before δρ/ρ ~ 1 ⇒ no multiphase structure analytically !" " ! tff tcool Net cooling rate & inflow to small radii strongly suppressed only if tcool/tff ≳ few ˙M ˙M CF ! ! tff tcool "2 " 1
  • 25. global cluster sim (NFW halo) min(tcool/tff) ~ 10 log[mass density ρ] Global Cluster Sims Criterion for multiphase structure: tcool/tff ≲ 10 somewhat less stringent than cartesian bec. of compression during inflow in spherical systems
  • 26. Htg vs. Cooling in Cluster Plasmas • Thermal Instability w/ Realistic Physics ⇒ Cold Filaments (not cold blobs) • Realistic = B-fields, anisotropic conduction/viscosity, & cosmic-rays • filaments typically aligned along local B-field • CR pressure significant in filaments g B0 more rapid conduction log10[ρ/ρ0] in local Cartesian sim
  • 27. Cavagnolo et al. 2008 Evidence for Cool, Dense Gas Ubiquitous in Cool-Core Clusters Cluster Central ‘Entropy’ (K0 = kT/n2/3) star formation & AGN activity also correlated w/ K0 ≲ 30 keV cm2 Hα emission 30 keV cm2 consistent w/ predictions for multiphase structure from thermal instability tcool tff ! 5 (K/30 keVcm2)3/2 T1/2 keV !−22.8 (tff/100 Myr)
  • 28. Clusters in both ACCEPT & McDonald+2010 Hα survey min(tcool/tff) at ~ 10-30 kpc ~ observed radii of filaments
  • 29. Feedback & the Self-Regulation of Cluster Properties initial central entropy (keV cm2) axisymmetric global cluster sims (NFW halo) in global thermal equilibrium (H ~ ℒ) Net cooling rate & inflow to small radii strongly suppressed only if tcool/tff ≳ few-10, ˙M ˙M CF ! ! tff tcool "2 " 1 1 10 30 100 If Heating ~ εṀc2 (AGN, SNe, ...) ⇒ clusters self-regulate to min(tcool/tff) ~ 10 min(entropy) ~ 10-30 keV cm2 Ṁ (Msun yr-1) at ~ kpc
  • 30. Feedback & the Self-Regulation of Cluster Properties 1 10 30 If Heating ~ εṀc2 (AGN, SNe, ...) ⇒ clusters self-regulate to min(tcool/tff) ~ 10 (weakly dependent on details of heating; intrinsically multi-D physics -- not in 1D models)
  • 31. Feedback & the Self-Regulation of Cluster Properties observed central cooling times peak at ~ 5-10 tff consistent w/ ‘feedback’ loop in which is Ṁ induced by local thermal instability Age of Universe ~ tff Observed Clusters central cooling time (Myr) Cavagnolo et al. ‘cool-core’ clusters
  • 32. The Thermal Physics of Galaxy Cluster Plasmas • Clusters are convectively unstable at all radii! • induced by anisotropic thermal conduction (accept no substitute) • these mediate heat transport in clusters & drive turbulence at all radii • Clusters are in ~ global thermal equilibrium, but are locally unstable • Local TI: competition btw cooling & gravity: tcool/tff • tcool/tff ≲ 10 ⇒ significant multi-phase structure • Ṁ << ṀCF iff tcool/tff ≳ 3-10 (i.e, not too much dense gas via TI) • feedback ⇒ min(tcool/tff) ~ 10, K0 ~ 30 keV cm2: consistent w/ data Next Time