SlideShare a Scribd company logo
1
Geotechnical Engineering–II [CE-321]
BSc Civil Engineering – 5th Semester
by
Dr. Muhammad Irfan
Assistant Professor
Civil Engg. Dept. – UET Lahore
Email: mirfan1@msn.com
Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session
Lecture # 1
6-Sep-2017
2
SOIL STRENGTH
Construction Materials
Concrete, Steel, Bricks, Wood, Aggregate,
Soil, etc.
Most important property for Civil
Engineers?
• Concrete, Brick, Wood 
• Steel 
• Soil ?
Material Strength
Compressive
strength
Tensile Strength
3
SOIL STRENGTH
SOIL
• Mostly loaded in compression
• But fails mostly in shear
Embankment
Strip footing
Failure surface
Mobilized shear
resistance
4
• Greatest shear stress a material can sustain before failure
• Safety of geotechnical structure dependent on soil shear strength
• Failure of soil → Failure of whole structure
SHEAR STRENGTH
Typhoon triggered landslide
Wakayama, Japan (September 2011)
5
• Resistance to shearing stresses
• Shear failure occurs due to sliding or rolling of particles past each
other.
• Sources of soil shear strength
– Cohesion
• Cementation between sand grains
• Electrostatic attraction between clay particles
– Frictional resistance
• Interlocking between sand grains
SHEAR STRENGTH OF SOILS
Sliding of particlesRolling of particles
(stress independent component)
(stress dependent component)
 Cohesion (c)
 Angle of internal
friction (f)
7
SHEAR FAILURE OF SOIL
Embankment
Strip footing
Soils generally fail in shear
At failure, shear stress/resistance along failure surface (mobilized
shear resistance) reaches the shear strength.
Failure surface
Mobilized shear
resistance
8
SHEAR FAILURE OF SOIL
Retaining wall
Soils generally fail in shear
9
SHEAR FAILURE OF SOIL
Retaining wall
Mobilized shear
resistance
Failure
surface
At failure, shear stress/resistance along failure surface (mobilized
shear resistance) reaches the shear strength.
Soils generally fail in shear
10
SHEAR FAILURE MECHANISM
• Soil grains slide/roll
over each other along
the failure surface.
• No crushing of
individual grains.
Failure Surface
At failure, shear stress/resistance along failure surface ()
reaches shear strength (f).
X
Y
Difference in shear strength of X & Y?
11
The relationship between normal and shear stress on the failure
plane
f tan cf
f = shear strength
c = cohesion
 = normal stress
Φ = angle of internal friction
)( f
σ1
σ3
f
Friction angle
f
 

Graphical
representation
Cohesion
c
MOHR-COULOMB FAILURE CRITERIA
12
MOHR-COULOMB FAILURE CRITERIA


f
Non-cohesive/Granular Soils
(c = 0; f > 0) 

Cohesive Soils
(c > 0; f = 0)
c


c-f Soils
(c > 0; f > 0)
c
f
13
N
T
Area: A
For a continuous material
Normal stress: σ = N / A
(compression: +ve)
Shear stress: τ = T / A
(counter-clock-wise: +ve)
Basic Concepts
Principle Stress: Max. and min. value of normal stresses
Principle Plane: Plane on which principle stresses act
• Normal stresses are either max. or min. on principle planes
• Shear stresses are zero on principle planes
MOHR-COULOMB FAILURE CRITERIA
14
MOHR-COULOMB FAILURE CRITERIA

f is the maximum shear stress the soil can take without failure,
under any particular normal stress of .

f tan cf
c
f
Cohesion
Friction angle
f

In terms of Total Stress
15
MOHR-COULOMB FAILURE CRITERIA
u 

’
f  tancf
f’
Effective
friction angle
c’
Effective
cohesion
f
’
 = Total stress
u = Pore water
pressure
In terms of Effective Stress
f is the maximum shear stress the soil can take without failure,
under any particular normal effective stress of ’.
16
CONCLUDED
REFERENCE MATERIAL
Principles of Geotechnical Engineering – (7th Edition)
Braja M. Das
Chapter #12
Geotechnical Engineering – Principles and Practices – (2nd Edition)
Coduto, Yueng, and Kitch
Chapter #12

More Related Content

What's hot

Bearing capacity of Soil
Bearing capacity of SoilBearing capacity of Soil
Bearing capacity of Soil
Pirpasha Ujede
 
Slope stability analysis methods
Slope stability analysis methodsSlope stability analysis methods
Slope stability analysis methods
zaidalFarhan1
 
Consolidation Properties
Consolidation PropertiesConsolidation Properties
Consolidation Properties
Sanchari Halder
 
Direct shear test
Direct shear testDirect shear test
Direct shear test
KHK karimi
 
ppt of consolidation and settlement of soil
ppt of consolidation and settlement of soilppt of consolidation and settlement of soil
ppt of consolidation and settlement of soil
SAMRAT CHODHURY
 
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Muhammad Irfan
 
Geotechnical Engineering-I [Lec #2: Introduction-2]
Geotechnical Engineering-I [Lec #2: Introduction-2]Geotechnical Engineering-I [Lec #2: Introduction-2]
Geotechnical Engineering-I [Lec #2: Introduction-2]
Muhammad Irfan
 
Permeability of Soil
Permeability of SoilPermeability of Soil
Permeability of Soil
Arbaz Kazi
 
Unit6 svd
Unit6 svdUnit6 svd
Unit6 svd
Pavan Kumar N
 
Settlement of shallow foundation
Settlement of shallow foundationSettlement of shallow foundation
Settlement of shallow foundation
Latif Hyder Wadho
 
8 compressibility and consolidation
8 compressibility and consolidation8 compressibility and consolidation
8 compressibility and consolidation
Saurabh Kumar
 
Triaxial shear test
Triaxial shear testTriaxial shear test
Triaxial shear test
Shah Naseer
 
Effective stress
Effective stressEffective stress
Effective stress
sudheerKumarY1
 
Shear strength of soil
Shear strength of soilShear strength of soil
Shear strength of soil
Latif Hyder Wadho
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Muhammad Irfan
 
Stresses in soil
Stresses in soilStresses in soil
Stresses in soil
rajini24
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Muhammad Irfan
 
Shear Strength of Soil
Shear Strength of SoilShear Strength of Soil
Shear Strength of Soil
Umang Parmar
 

What's hot (20)

Bearing capacity of Soil
Bearing capacity of SoilBearing capacity of Soil
Bearing capacity of Soil
 
Slope stability analysis methods
Slope stability analysis methodsSlope stability analysis methods
Slope stability analysis methods
 
Consolidation Properties
Consolidation PropertiesConsolidation Properties
Consolidation Properties
 
Direct shear test
Direct shear testDirect shear test
Direct shear test
 
ppt of consolidation and settlement of soil
ppt of consolidation and settlement of soilppt of consolidation and settlement of soil
ppt of consolidation and settlement of soil
 
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
 
Geotechnical Engineering-I [Lec #2: Introduction-2]
Geotechnical Engineering-I [Lec #2: Introduction-2]Geotechnical Engineering-I [Lec #2: Introduction-2]
Geotechnical Engineering-I [Lec #2: Introduction-2]
 
Permeability of Soil
Permeability of SoilPermeability of Soil
Permeability of Soil
 
Unit6 svd
Unit6 svdUnit6 svd
Unit6 svd
 
Settlement of shallow foundation
Settlement of shallow foundationSettlement of shallow foundation
Settlement of shallow foundation
 
8 compressibility and consolidation
8 compressibility and consolidation8 compressibility and consolidation
8 compressibility and consolidation
 
Triaxial shear test
Triaxial shear testTriaxial shear test
Triaxial shear test
 
Effective stress
Effective stressEffective stress
Effective stress
 
Shear strength of soil
Shear strength of soilShear strength of soil
Shear strength of soil
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
 
Stresses in soil
Stresses in soilStresses in soil
Stresses in soil
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]
 
Shear Strength of Soil
Shear Strength of SoilShear Strength of Soil
Shear Strength of Soil
 

Similar to Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]

MOHR’S COULOMB THEORY By Geotechnaical eng
MOHR’S COULOMB THEORY By  Geotechnaical engMOHR’S COULOMB THEORY By  Geotechnaical eng
MOHR’S COULOMB THEORY By Geotechnaical eng
virajgurav1110
 
lec-8.soil_shear_strength_.ppt
lec-8.soil_shear_strength_.pptlec-8.soil_shear_strength_.ppt
lec-8.soil_shear_strength_.ppt
DrAnkitaUpadhya
 
CH-1 Shear Strength of Soil.pptx
CH-1 Shear Strength of Soil.pptxCH-1 Shear Strength of Soil.pptx
CH-1 Shear Strength of Soil.pptx
GetahunTadesse5
 
SHEAR STRENGTH OF SOIL.ppt
SHEAR STRENGTH OF SOIL.pptSHEAR STRENGTH OF SOIL.ppt
SHEAR STRENGTH OF SOIL.ppt
GourhariBiswas1
 
soil_shear_strength_.ppt
soil_shear_strength_.pptsoil_shear_strength_.ppt
soil_shear_strength_.ppt
Prashant Kumar Dikshit
 
Shear Strength Parameters and types.pptx
Shear Strength Parameters and types.pptxShear Strength Parameters and types.pptx
Shear Strength Parameters and types.pptx
SmartEngineer5
 
Shear Strength of soil and Tests on soil
Shear Strength of soil and Tests on soilShear Strength of soil and Tests on soil
Shear Strength of soil and Tests on soil
satish dulla
 
Soil Bearing Capacity.pdf
Soil Bearing Capacity.pdfSoil Bearing Capacity.pdf
Soil Bearing Capacity.pdf
theceeshops
 
Design, seepage analysis and controls of waste dumps
Design, seepage analysis and controls of waste dumpsDesign, seepage analysis and controls of waste dumps
Design, seepage analysis and controls of waste dumps
Safdar Ali
 
Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]
Muhammad Irfan
 
Shear Strength of Soil.ppt
Shear Strength of Soil.pptShear Strength of Soil.ppt
Shear Strength of Soil.ppt
Aishpatil11
 
Ch1 introduction
Ch1 introductionCh1 introduction
Ch1 introduction
Reyam AL Mousawi
 
SHEAR STRENGTH THEORY
SHEAR STRENGTH THEORYSHEAR STRENGTH THEORY
SHEAR STRENGTH THEORY
Vibhanshu Singh
 
Foundation Analysis and Design (5th Edition).pdf
Foundation Analysis and Design (5th Edition).pdfFoundation Analysis and Design (5th Edition).pdf
Foundation Analysis and Design (5th Edition).pdf
pandian18
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Muhammad Irfan
 
UNIT -IV SHEAR STRENGTH OF SOILS.pptx
UNIT -IV SHEAR STRENGTH OF SOILS.pptxUNIT -IV SHEAR STRENGTH OF SOILS.pptx
UNIT -IV SHEAR STRENGTH OF SOILS.pptx
mythili spd
 
Gte set2used
Gte set2usedGte set2used
Gte set2used
jagadish108
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Muhammad Irfan
 
Transient response of delaminated composite shell subjected to low velocity o...
Transient response of delaminated composite shell subjected to low velocity o...Transient response of delaminated composite shell subjected to low velocity o...
Transient response of delaminated composite shell subjected to low velocity o...
University of Glasgow
 
A Comparative Study on Enhancing the Factor of Safety for Retaining Walls Aga...
A Comparative Study on Enhancing the Factor of Safety for Retaining Walls Aga...A Comparative Study on Enhancing the Factor of Safety for Retaining Walls Aga...
A Comparative Study on Enhancing the Factor of Safety for Retaining Walls Aga...
IRJET Journal
 

Similar to Geotechnical Engineering-II [Lec #1: Shear Strength of Soil] (20)

MOHR’S COULOMB THEORY By Geotechnaical eng
MOHR’S COULOMB THEORY By  Geotechnaical engMOHR’S COULOMB THEORY By  Geotechnaical eng
MOHR’S COULOMB THEORY By Geotechnaical eng
 
lec-8.soil_shear_strength_.ppt
lec-8.soil_shear_strength_.pptlec-8.soil_shear_strength_.ppt
lec-8.soil_shear_strength_.ppt
 
CH-1 Shear Strength of Soil.pptx
CH-1 Shear Strength of Soil.pptxCH-1 Shear Strength of Soil.pptx
CH-1 Shear Strength of Soil.pptx
 
SHEAR STRENGTH OF SOIL.ppt
SHEAR STRENGTH OF SOIL.pptSHEAR STRENGTH OF SOIL.ppt
SHEAR STRENGTH OF SOIL.ppt
 
soil_shear_strength_.ppt
soil_shear_strength_.pptsoil_shear_strength_.ppt
soil_shear_strength_.ppt
 
Shear Strength Parameters and types.pptx
Shear Strength Parameters and types.pptxShear Strength Parameters and types.pptx
Shear Strength Parameters and types.pptx
 
Shear Strength of soil and Tests on soil
Shear Strength of soil and Tests on soilShear Strength of soil and Tests on soil
Shear Strength of soil and Tests on soil
 
Soil Bearing Capacity.pdf
Soil Bearing Capacity.pdfSoil Bearing Capacity.pdf
Soil Bearing Capacity.pdf
 
Design, seepage analysis and controls of waste dumps
Design, seepage analysis and controls of waste dumpsDesign, seepage analysis and controls of waste dumps
Design, seepage analysis and controls of waste dumps
 
Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]
 
Shear Strength of Soil.ppt
Shear Strength of Soil.pptShear Strength of Soil.ppt
Shear Strength of Soil.ppt
 
Ch1 introduction
Ch1 introductionCh1 introduction
Ch1 introduction
 
SHEAR STRENGTH THEORY
SHEAR STRENGTH THEORYSHEAR STRENGTH THEORY
SHEAR STRENGTH THEORY
 
Foundation Analysis and Design (5th Edition).pdf
Foundation Analysis and Design (5th Edition).pdfFoundation Analysis and Design (5th Edition).pdf
Foundation Analysis and Design (5th Edition).pdf
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
 
UNIT -IV SHEAR STRENGTH OF SOILS.pptx
UNIT -IV SHEAR STRENGTH OF SOILS.pptxUNIT -IV SHEAR STRENGTH OF SOILS.pptx
UNIT -IV SHEAR STRENGTH OF SOILS.pptx
 
Gte set2used
Gte set2usedGte set2used
Gte set2used
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
 
Transient response of delaminated composite shell subjected to low velocity o...
Transient response of delaminated composite shell subjected to low velocity o...Transient response of delaminated composite shell subjected to low velocity o...
Transient response of delaminated composite shell subjected to low velocity o...
 
A Comparative Study on Enhancing the Factor of Safety for Retaining Walls Aga...
A Comparative Study on Enhancing the Factor of Safety for Retaining Walls Aga...A Comparative Study on Enhancing the Factor of Safety for Retaining Walls Aga...
A Comparative Study on Enhancing the Factor of Safety for Retaining Walls Aga...
 

More from Muhammad Irfan

Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]
Muhammad Irfan
 
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Muhammad Irfan
 
Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]
Muhammad Irfan
 

More from Muhammad Irfan (20)

Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
 
Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]
 
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
 
Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]
 

Recently uploaded

ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
Las Vegas Warehouse
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
Prakhyath Rai
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
UReason
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
Gino153088
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
Software Quality Assurance-se412-v11.ppt
Software Quality Assurance-se412-v11.pptSoftware Quality Assurance-se412-v11.ppt
Software Quality Assurance-se412-v11.ppt
TaghreedAltamimi
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
Nada Hikmah
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
gowrishankartb2005
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
bijceesjournal
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
RamonNovais6
 
Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
Roger Rozario
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
AjmalKhan50578
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
Divyanshu
 

Recently uploaded (20)

ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
Software Quality Assurance-se412-v11.ppt
Software Quality Assurance-se412-v11.pptSoftware Quality Assurance-se412-v11.ppt
Software Quality Assurance-se412-v11.ppt
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
 
Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
 

Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]

  • 1. 1 Geotechnical Engineering–II [CE-321] BSc Civil Engineering – 5th Semester by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session Lecture # 1 6-Sep-2017
  • 2. 2 SOIL STRENGTH Construction Materials Concrete, Steel, Bricks, Wood, Aggregate, Soil, etc. Most important property for Civil Engineers? • Concrete, Brick, Wood  • Steel  • Soil ? Material Strength Compressive strength Tensile Strength
  • 3. 3 SOIL STRENGTH SOIL • Mostly loaded in compression • But fails mostly in shear Embankment Strip footing Failure surface Mobilized shear resistance
  • 4. 4 • Greatest shear stress a material can sustain before failure • Safety of geotechnical structure dependent on soil shear strength • Failure of soil → Failure of whole structure SHEAR STRENGTH Typhoon triggered landslide Wakayama, Japan (September 2011)
  • 5. 5 • Resistance to shearing stresses • Shear failure occurs due to sliding or rolling of particles past each other. • Sources of soil shear strength – Cohesion • Cementation between sand grains • Electrostatic attraction between clay particles – Frictional resistance • Interlocking between sand grains SHEAR STRENGTH OF SOILS Sliding of particlesRolling of particles (stress independent component) (stress dependent component)  Cohesion (c)  Angle of internal friction (f)
  • 6. 7 SHEAR FAILURE OF SOIL Embankment Strip footing Soils generally fail in shear At failure, shear stress/resistance along failure surface (mobilized shear resistance) reaches the shear strength. Failure surface Mobilized shear resistance
  • 7. 8 SHEAR FAILURE OF SOIL Retaining wall Soils generally fail in shear
  • 8. 9 SHEAR FAILURE OF SOIL Retaining wall Mobilized shear resistance Failure surface At failure, shear stress/resistance along failure surface (mobilized shear resistance) reaches the shear strength. Soils generally fail in shear
  • 9. 10 SHEAR FAILURE MECHANISM • Soil grains slide/roll over each other along the failure surface. • No crushing of individual grains. Failure Surface At failure, shear stress/resistance along failure surface () reaches shear strength (f). X Y Difference in shear strength of X & Y?
  • 10. 11 The relationship between normal and shear stress on the failure plane f tan cf f = shear strength c = cohesion  = normal stress Φ = angle of internal friction )( f σ1 σ3 f Friction angle f    Graphical representation Cohesion c MOHR-COULOMB FAILURE CRITERIA
  • 11. 12 MOHR-COULOMB FAILURE CRITERIA   f Non-cohesive/Granular Soils (c = 0; f > 0)   Cohesive Soils (c > 0; f = 0) c   c-f Soils (c > 0; f > 0) c f
  • 12. 13 N T Area: A For a continuous material Normal stress: σ = N / A (compression: +ve) Shear stress: τ = T / A (counter-clock-wise: +ve) Basic Concepts Principle Stress: Max. and min. value of normal stresses Principle Plane: Plane on which principle stresses act • Normal stresses are either max. or min. on principle planes • Shear stresses are zero on principle planes MOHR-COULOMB FAILURE CRITERIA
  • 13. 14 MOHR-COULOMB FAILURE CRITERIA  f is the maximum shear stress the soil can take without failure, under any particular normal stress of .  f tan cf c f Cohesion Friction angle f  In terms of Total Stress
  • 14. 15 MOHR-COULOMB FAILURE CRITERIA u   ’ f  tancf f’ Effective friction angle c’ Effective cohesion f ’  = Total stress u = Pore water pressure In terms of Effective Stress f is the maximum shear stress the soil can take without failure, under any particular normal effective stress of ’.
  • 15. 16 CONCLUDED REFERENCE MATERIAL Principles of Geotechnical Engineering – (7th Edition) Braja M. Das Chapter #12 Geotechnical Engineering – Principles and Practices – (2nd Edition) Coduto, Yueng, and Kitch Chapter #12