-                       -




                     (invariant )

            (Cartesian coordinate)

                (spherical coordinate)

           (cylindrical coordinate)

                               ,


                                                               (x,y,z)
(r,ϕ,z )                                                   (r , θ , ϕ )
            .

                    z               DEDODA
                                    university.arabsbook.com




                                        P




                                                           y


                x


                             -1             -

                                    1
(Cartesian)                                P
                                       , (x,y,z)
(r ,θ ,ϕ )                  (spherical coordinate)




                             -2       -
                                  ϕ       θ
                                               (displacement)
             .


                 (r,ϕ,z )
                                  ϕ




                                  2
-3       -


        .


       (Coordinate)                       (component)
                 r                          -:
                 A = 5i + 3 j − 4k

 (unit vector)                           (i , j , k )

            -:

i .i = 1           j.j = 1         k .k = 1
i × i = 0            j× j = 0          k × k = 0
i .j = 0          i .k = 0          j.k = 0
i × j= k           j× k = i         k × i = j



                           3
(unit vectors)
    (Cartesian coordinate)
                   (in general )
                        :
                     (a1 , a 2 , a3 )


         a1.a1 = 1       a2 .a2 = 1       a3.a3 = 1
         a1 × a1 = 0       a2 × a2 = 0          a3 × a3 = 0
         a1.a2 = 0       a1.a3 = 0         a2 .a3 = 0
         a1 × a2 = a3     a2 × a3 =a1 a3 × a2 = a1

                                (orthogonal unit curvilinear)
                               .




         (Orthogonal curvilinear coordinate)

                                           (Cartesian coordinate)
.

                                                             -:
                 r
                 l = x i +y j +z k ...........1-a

                  r
                d l = dx i +dy j +dz k ...........(1-b)

                                                        r
                   (distance)                         (dl)
              d l2 = dx 2 +dy 2 + dz 2               (2)

                                  4
z y x

             x = F1 (q1, q2 , q3 )              (4-a)
              y=F2 (q1, q2 , q3 )              (4-b)
             z=F3 (q1, q2 , q3 )               (4-c)

       (q 1 , q 2 , q 3 )                  x
              (q 1 , q 2 , q 3 )          y
              (q 1 , q 2 , q 3 )          z
                             (certain value)                   qs

                  (2) (1-b) (1-a)
               -:          z y x

            ∂x        ∂x          ∂x
     dx =       dq1 +      dq 2 +      dq 3            (5-a)
            ∂q1       ∂q 2        ∂q 3
            ∂y        ∂y          ∂y
     dy =       dq1 +      dq 2 +      dq 3            (5-b)
            ∂q1       ∂q 2        ∂q 3
            ∂z        ∂z          ∂z
     dz =       dq1 +      dq 2 +      dq 3            (5-c)
            ∂q1       ∂q 2        ∂q 3

-:
                      3
                            ∂x
        dx =        ∑i =1   ∂q i
                                 dq    i        (6 -a )
                      3
                            ∂y
        dy =        ∑i =1   ∂q i
                                 dq    i        (6 -b )
                      3
                            ∂z
        dz =        ∑
                    i =1    ∂q i
                                 dq    i        (6 -c )




                                   5
3
                                 ∂x ∂x
                  dx 2 = ∑                  dq i dq j      (7-a)
                          i =1   ∂q i ∂ q j
                           3
                                 ∂y ∂y
                  dy 2 = ∑                  dq i dq j      (7-b)
                          i =1   ∂q i ∂ q j
                           3
                               ∂z ∂z
                  dz 2 = ∑                dq i dq j        (7-c)
                          i =1 ∂ q i ∂q j




      (2)               (7-c) (7-b) (7-a)
                      -:      (2)

              3     ∂x ∂x ∂y ∂y ∂z ∂z 
      dl = ∑ 
         2
                              +         +          dqi dq j (8)
                   
          i , j =1  ∂qi ∂q j   ∂qi ∂q j ∂qi ∂q j 
                                                  




               ∂x ∂ x     ∂y ∂y      ∂z ∂ z                
                        +          +                        = hij
               ∂q ∂q      ∂q i ∂q j ∂q i ∂q j              
               i      j                                    


(8)                 (metric coefficients)                             (hij )
                            -:
                                  3
                   dl =
                      2
                                 ∑ h dq dq
                               i , j =1
                                          ij       i   j   (9)



             Kronecker delta




                                               6
hii = hi2
                                     ,i=j
       hij = hij δij = 
                       h ij = 0
                                     ,i ≠ j

                  (9)
                    3
           d l2 = ∑hi2dqi2          (10)
                    i




            d l2 = d l12 +d l22 +d l32

   (metric coefficients)
      ∂x 2  ∂y 2  ∂z 2 
 h = 
   2
              +      +                 (11)
      ∂q i   ∂q i   ∂q i  
  i
                                

             (10)

            d l 1 = h1dq1 (12-a)
            d l 2 = h 2dq 2 (12-b)
            d l 3 = h3dq 3 (12-c)



            (Curvilinear coordinate)
   r
 d l = hdq1 a1+h2dq2 a2 +hdq3 a3
        1                 3                  (13)


 r  ∂l          ∂l          ∂l 
dl=      dq1 +       dq2 +      dq3 (14)
    ∂q1         ∂q 2        ∂q3 


                        7
(14)                 (13)



   1  ∂l 
             = a1               ( 1 5 -a )
   h1  ∂q 1 
   1  ∂l 
              = a2              (1 5 -b )
   h2  ∂q 2 
   1  ∂l 
             =a                 (1 5 -c )
   h3  ∂q 3 
                      3




                  1  ∂l 
        ai =                   (16)
                  hi  ∂q i 

   (metric coefficients)
    (11)



(spherical coordinate)


           x   = r s in θ c o s ϕ
           y   = r sin θ sin ϕ
           z   = r cosθ
           q   = (q r , q θ , q ϕ )

               (11)




                          8
 ∂x     ∂y                    ∂z 
                        2               2                   2
                                       
     h r2 =      +                   +       
             ∂r     ∂r                   ∂r 
     h r = (sin θ cos ϕ ) 2
        2
                                       + (sin θ sin ϕ ) 2 + (co s θ ) 2
     h r2 = sin 2 θ co s 2 ϕ + sin 2 θ sin 2 ϕ + co s 2 θ
     h r2 = sin 2 θ (co s 2 ϕ + sin 2 ϕ ) + co s 2 θ = 1
    ∴ hr = 1                       (17 )




             ∂x   ∂y   ∂z 
                    2              2                  2

      h =
       θ
        2
                   +         +      
             ∂θ   ∂θ   ∂θ 
      hθ2 = r 2 cos 2 θ cos 2 ϕ + r 2 cos 2 θ sin 2 ϕ + r 2 sin 2 θ
      hθ2 = r 2 →∴ hθ = r                       (18)

                             2              2                   2
                   ∂x   ∂y   ∂z 
            h =
             2
             ϕ           +          +       
                   ∂ϕ   ∂ϕ   ∂ϕ 
            hϕ2 = r 2 sin 2 θ sin 2 ϕ + r 2 sin 2 θ cos2 ϕ
            hϕ2 = r 2 sin 2 θ →∴ hϕ = r sin θ                       (19)




(cylindrical coordinate)
                            x = r cosϕ
                            y = r s in ϕ
                            z = z
                            q = q       r   ,q    ϕ    ,q   z



                                 (11)




                                            9
 ∂x                  ∂y       ∂z 
                                      2                  2                       2
                                     
              h r2 =                 +        +      
                      ∂r                 ∂r       ∂r 
              h r = cos2
                 2
                                     ϕ + sin 2 ϕ = 1
              ∴         h   r   =1                 (2 0 )


                                      2               2                      2
                          ∂x        ∂y        ∂z 
                  h =
                   ϕ
                    2
                                +         +       
                          ∂ϕ        ∂ϕ        ∂ϕ 
                  h ϕ2 = r 2 sin 2 ϕ + r 2 cos 2 ϕ
                  h ϕ2 = r 2 → ∴ h ϕ = r                          (21)


                       ∂x   ∂y   ∂z 
                                          2          2                   2

                   h =
                    2
                            +    + 
                        ∂z   ∂z   ∂z 
                    z
                      
                   hz2 = 1 →∴ hz = 1 (22)




curvilinear         Cartesian                      spherical                         cylindrical
   q1                   x                              r                                  r
   q                    y                                    θ                          ϕ
       2

   q3                           z                         ϕ                                 z
    h1                          1                            1                           1
    h2                          1                            r                           r
    h3                          1                     r sinθ                             1
    a1                          i                            r0                          r0
    a2                          j                            θ                           ϕ
    a3                          k                            ϕ                           k

                                              10
-1           -




  Gradient
             Curl     Laplacian      Divergence
  (Orthogonal curvilinear coordinate)

                .


                    Gradient

          r       ∂φ       ∂φ       ∂φ
          ∇φ = a1     + a2     + a3     (23)
                  ∂l1      ∂l2      ∂l3

(23)                  (12)                 ∂l

       r        ∂φ         ∂φ         ∂φ
       ∇φ = a1       + a2       + a3       (24)
               h1∂q1      h2∂q2      h3∂q3



               Divergence




                             11
(Gauss's or Divergence theorem)
                           r r       r r
                         Ñ
                         ∫
                         S
                           F .da = ∫ ∇.Fdτ
                                    v
                                                (25)


                      r r
                      ∇ .F = constant


                  a3
                                 DEDODA
                                 university.arabsbook.com
                                  r
                                  F



                                                      a2




                                                        (q1 , q 2 , q 3 )
      a1




-4      -
                                        (25)
                                   r r
                     r r
                     ∇. F = lim
                                 Ñ
                                 ∫ F . da
                                                      (26)
                           ∫dτ →0 ∫ dτ

4
              r r
            Ñ
            ∫ F . da = φR +φL + φT + φBo + φF + φBa      (27)
                                                                            -:
R: - right: -
L: - left: -
T:-top: -

                                        12
Bo:-bottom: -
F:-front: -
Ba:- back: -




                                                                 
                                                                 
  φR = F2R d l3R d l1R                                           
             ∂F2 dq2                                           
                                                                 
  φR =  F2 +           ( h3R dq3h1R dq1 )                       (28 − a)
             ∂q2 2                                             
                                                                
              ∂F2 dq2         ∂h3 dq2        ∂h1 dq2 
  φR =  F2 +           h3 +            h1 +         dq1dq3 
             ∂q2 2           ∂q2 2          ∂q2 2          
                                                                 




               ∂F dq     ∂h dq     ∂h dq 
   φL = −  F2 − 2 2  h1 − 1 2  h3 + 1 2  dq1dq3 (28-b)
               ∂q2 2     ∂q2 2     ∂q2 2 


                     (28-b)                (28-a)


                     ∂h          ∂h    ∂F           
      φR + φL =  F2h1 3 + F2h3 1 + h1h3 2 dq1dq2dq3 
                     ∂q2         ∂q2   ∂q2          
                                                       (28 − c )
                 ∂(F2h1h3 )                         
      φR + φL =             dq1dq2dq3               
                 ∂q2                                




                                     13
 ∂( F2 h1h2 ) 
                φT + φBo =                dq1dq 2dq 3   (28-d)
                            ∂q 3 
                            ∂(F1h2 h3 ) 
                φF + φBa =               dq1dq 2dq 3    (28-e)
                            ∂q1 

(27)                (28-e) (28-d) (28-c)

         r r  ∂(F h h ) ∂(F h h ) ∂(F h h ) 
       Ñ
       ∫
       S
         F . da=  2 2 3 + 2 1 3 + 3 1 2  dq1dq2dq3 (29)
                  ∂q1     ∂q2       ∂q3 

       r r
       ∇. F             (26)                 (29)

                    ∂(F2h2h3 ) ∂(F2h1h3 ) ∂(F3h1h2 ) 
                              +          +            dq1dq2dq3
       r r          ∂q1          ∂q2         ∂q3 
       ∇. F= lim
            ∫dτ →0                     ∫ dτ
       but      ∫ dτ = h h h
                        1 2 3   dq1dq2dq3
                ∂(F2h2h3 ) ∂(F2h1h3 ) ∂(F3h1h2 ) 
                          +          +            dq dq dq
         r r  ∂q1            ∂q2         ∂q3  1 2 3
       ∴ ∇. F=
                             h1h2h3 dq1dq2dq3
        r r       1  ∂(Fh2h3 ) ∂(F2h1h3 ) ∂(F3h1h2 ) 
        ∇. F=          
                         1
                               +          +            (30)
                h1h2h3  ∂q1      ∂q2         ∂q3 


                  Divergence                   (30)
              (Orthogonal curvilinear coordinate)
                    Divergence
                       .


             Laplacian
 (The Laplacian in orthogonal curvilinear coordinate)

                                       14
r r r2
                           ∇. ∇φ =∇ φ
                             (24)
r        1  ∂  h2h3 ∂φ  ∂  hh3 ∂φ  ∂  hh2 ∂φ 
∇2φ =                   + 
                                  1
                                         + 
                                                 1
                                                         (31)
      hh2h3 ∂q1  h1 ∂q1  ∂q2  h2 ∂q2  ∂q3  h3 ∂q3 
       1



            Laplacian


    The curl in orthogonal curvilinear coordinate


               " Stoke's Theorem"
                    r r r r r
                   ∫∇×F. da=ÑF. dr (32)
                            ∫

                       r r
                       ∇×F = constant
                       q3

                                                DEDODA
                                 h2cdq          universi ty.arabsbook.com
                                            2




                       c
        h3dq   3   d                             h3b
                                                   dq     3
                                        b

                             a
                                                              q2

                            h2dq 2


q1



                                   15
-5         -
       q2        q3
                                                           curl

                                q2 q1

                             q3        q1
.    (32)                   5                              curl
                                     r r
                   r r
                  (∇×F )1 = lim
                                   Ñ F. dr
                                   ∫                (33)
                           ∫da→0       ∫da
      r r
    Ñ F . dr=F2h2dq 2 + F3b h3b dq3 − F2c h2cdq 2 − F3h3dq3
    ∫
      r r                     ∂F           ∂h     
    Ñ
    ∫ F . dr=F2h2dq 2 +  F3 + 3 dq 2  h3 + 3 dq 2  dq3
                             ∂q 2          ∂q 2   
                    ∂F           ∂h       
             -  F2 + 2 dq3  F2 + 2 dq3  dq2 − F3h3dq3
                    ∂q3          ∂q3      
         r r  ∂(F h ) ∂(F2h2 ) 
    →∴ Ñ F . dr =  3 3 −
       ∫                         dq2dq3                      (34)
                   ∂q 2  ∂q3 


                         ∫da = h h dq dq
                                  2 3       2   3

                  (33)                  (34)

               r r     1 ∂(Fh ) ∂(Fh )
              (∇×F)1 =  3 3 − 2 2  (35-a)
                      h2h3  ∂q2   ∂q3 

            q3   q1


                                  16
r r
                (∇ × F ) 2
     q2 q1
                 r r
                (∇ × F )3




      r r     1 ∂(Fh ) ∂(Fh )
     (∇×F)2 =  1 1 − 3 3  (35-b)
             hh3  ∂q3
              1           ∂q1 


      r r     1 ∂(Fh ) ∂(Fh )
     (∇×F)3 =  2 2 − 1 1  (35-c)
             hh2  ∂q1
              1          ∂q2 

              (35)



                a1h1     a 2 h2      a 3h3
r r        1      ∂          ∂        ∂
∇× F =                                       (36)
         h1h2 h3 ∂q1        ∂q 2     ∂q3
                h1F1        h 2 F2   h3F3




                       17
ϕ       θ
                           ,                         (displacement)



        z

                                                DEDODA
                                                universi ty.arabsbook.com
                           dr
                 rd θ

                  r
            θ
                   dθ
                                                         y

        ϕ                                   r sin θ dϕ


x
            dϕ

                 r sin θ


                      -6            -

                                    ϕ       θ

    1              12



                               18
d lϕ    d lθ
                             1                          12

                 d lθ = hθ dqθ → d lθ = rd θ
                 d lϕ = hϕdqϕ → d lϕ = r sinθd ϕ



Laplacian       Divergence            Gradient
                                                            Curl
                     1
                   (36) (31) (30) (24)


                      (24)
               r        ∂φ         ∂φ         ∂φ
               ∇φ = a1       + a2       + a3
                       h1∂q1      h2∂q2      h3∂q3

                     Gradient            1

            ( Cartesian coordinate)
                Gradient
                 r      ∂φ    ∂φ  ∂φ
                 ∇φ = i    + j +k    (37)
                        ∂x    ∂y  ∂z



              r      ∂φ   ∂φ         ∂φ
              ∇φ = r0 +θ      +ϕ          (38)
                     ∂r  r ∂θ    r sinθ∂ϕ




                                 19
r      ∂φ   ∂φ     ∂φ
                 ∇φ = r0 +ϕ      +k    (39)
                        ∂r  r ∂ϕ    ∂z

                  Divergence
         r r       1  ∂(Fh2h3 ) ∂(F2h1h3 ) ∂(F3h1h2 ) 
         ∇. F=          
                          1
                                +          +           
                 h1h2h3  ∂q1      ∂q2         ∂q3 



                     r r  ∂F ∂F ∂F 
                     ∇. F=  x + y + z  (40)
                            ∂x ∂y ∂z 




      r r         1  ∂(Fr r 2 sinθ ) ∂(Fθ r sinθ ) ∂(Fϕ r ) 
      ∇. F=                         +             +         
              r 2 sin θ    ∂r            ∂θ          ∂ϕ 
      r r 1 ∂(r 2Fr )      1 ∂(sinθ Fθ )      1 ∂(Fϕ )
    → ∇. F= 2         +                  +             (41)
           r  ∂r        r sin θ  ∂θ        r sinθ ∂ϕ



               r r 1  ∂(F r ) ∂(F ) ∂(F r ) 
               ∇. F=  r + ϕ + z 
                    r  ∂r      ∂ϕ     ∂z 
                r r 1 ∂(rFr ) 1 ∂(Fϕ ) ∂(Fz )
              → ∇. F=        +        +       (42)
                      r ∂r     r ∂ϕ     ∂z


                                    Laplacian
r        1  ∂  h2h3 ∂φ  ∂  hh3 ∂φ  ∂  hh2 ∂φ 
∇2φ =                   + 
                                  1
                                         + 
                                                 1
                                                        
      hh2h3 ∂q1  h1 ∂q1  ∂q2  h2 ∂q2  ∂q3  h3 ∂q3 
       1




                                    20
r2 ∂2φ ∂2φ ∂2φ 
                 ∇φ =  2 + 2 + 2  (43)
                      ∂x ∂y ∂z 


r       1 ∂  2       ∂φ  ∂   ∂φ  ∂  1 ∂φ 
∇2φ = 2        r sinθ + sinθ +               (44)
     r sinθ ∂r       ∂r  ∂θ  ∂θ  ∂ϕ sinθ ∂ϕ 



        r2 1  ∂  ∂φ  ∂  1 ∂φ  ∂  ∂φ 
        ∇φ =  r +                + r  (45)
            r ∂r  ∂r  ∂ϕ  r ∂ϕ  ∂z  ∂z 
                                   

                                    Curl
                    .1

                .




                            21

تحليل المتجهات

  • 1.
    - - (invariant ) (Cartesian coordinate) (spherical coordinate) (cylindrical coordinate) , (x,y,z) (r,ϕ,z ) (r , θ , ϕ ) . z DEDODA university.arabsbook.com P y x -1 - 1
  • 2.
    (Cartesian) P , (x,y,z) (r ,θ ,ϕ ) (spherical coordinate) -2 - ϕ θ (displacement) . (r,ϕ,z ) ϕ 2
  • 3.
    -3 - . (Coordinate) (component) r -: A = 5i + 3 j − 4k (unit vector) (i , j , k ) -: i .i = 1 j.j = 1 k .k = 1 i × i = 0 j× j = 0 k × k = 0 i .j = 0 i .k = 0 j.k = 0 i × j= k j× k = i k × i = j 3
  • 4.
    (unit vectors) (Cartesian coordinate) (in general ) : (a1 , a 2 , a3 ) a1.a1 = 1 a2 .a2 = 1 a3.a3 = 1 a1 × a1 = 0 a2 × a2 = 0 a3 × a3 = 0 a1.a2 = 0 a1.a3 = 0 a2 .a3 = 0 a1 × a2 = a3 a2 × a3 =a1 a3 × a2 = a1 (orthogonal unit curvilinear) . (Orthogonal curvilinear coordinate) (Cartesian coordinate) . -: r l = x i +y j +z k ...........1-a r d l = dx i +dy j +dz k ...........(1-b) r (distance) (dl) d l2 = dx 2 +dy 2 + dz 2 (2) 4
  • 5.
    z y x x = F1 (q1, q2 , q3 ) (4-a) y=F2 (q1, q2 , q3 ) (4-b) z=F3 (q1, q2 , q3 ) (4-c) (q 1 , q 2 , q 3 ) x (q 1 , q 2 , q 3 ) y (q 1 , q 2 , q 3 ) z (certain value) qs (2) (1-b) (1-a) -: z y x ∂x ∂x ∂x dx = dq1 + dq 2 + dq 3 (5-a) ∂q1 ∂q 2 ∂q 3 ∂y ∂y ∂y dy = dq1 + dq 2 + dq 3 (5-b) ∂q1 ∂q 2 ∂q 3 ∂z ∂z ∂z dz = dq1 + dq 2 + dq 3 (5-c) ∂q1 ∂q 2 ∂q 3 -: 3 ∂x dx = ∑i =1 ∂q i dq i (6 -a ) 3 ∂y dy = ∑i =1 ∂q i dq i (6 -b ) 3 ∂z dz = ∑ i =1 ∂q i dq i (6 -c ) 5
  • 6.
    3 ∂x ∂x dx 2 = ∑ dq i dq j (7-a) i =1 ∂q i ∂ q j 3 ∂y ∂y dy 2 = ∑ dq i dq j (7-b) i =1 ∂q i ∂ q j 3 ∂z ∂z dz 2 = ∑ dq i dq j (7-c) i =1 ∂ q i ∂q j (2) (7-c) (7-b) (7-a) -: (2) 3  ∂x ∂x ∂y ∂y ∂z ∂z  dl = ∑  2 + +  dqi dq j (8)  i , j =1  ∂qi ∂q j ∂qi ∂q j ∂qi ∂q j    ∂x ∂ x ∂y ∂y ∂z ∂ z   + +  = hij  ∂q ∂q ∂q i ∂q j ∂q i ∂q j   i j  (8) (metric coefficients) (hij ) -: 3 dl = 2 ∑ h dq dq i , j =1 ij i j (9) Kronecker delta 6
  • 7.
    hii = hi2  ,i=j hij = hij δij =  h ij = 0  ,i ≠ j (9) 3 d l2 = ∑hi2dqi2 (10) i d l2 = d l12 +d l22 +d l32 (metric coefficients)  ∂x 2  ∂y 2  ∂z 2  h =  2  +  +   (11)  ∂q i   ∂q i   ∂q i   i   (10) d l 1 = h1dq1 (12-a) d l 2 = h 2dq 2 (12-b) d l 3 = h3dq 3 (12-c) (Curvilinear coordinate) r d l = hdq1 a1+h2dq2 a2 +hdq3 a3 1 3 (13) r  ∂l   ∂l   ∂l  dl=  dq1 +  dq2 +  dq3 (14)  ∂q1   ∂q 2   ∂q3  7
  • 8.
    (14) (13) 1  ∂l    = a1 ( 1 5 -a ) h1  ∂q 1  1  ∂l    = a2 (1 5 -b ) h2  ∂q 2  1  ∂l    =a (1 5 -c ) h3  ∂q 3  3 1  ∂l  ai =   (16) hi  ∂q i  (metric coefficients) (11) (spherical coordinate) x = r s in θ c o s ϕ y = r sin θ sin ϕ z = r cosθ q = (q r , q θ , q ϕ ) (11) 8
  • 9.
     ∂x   ∂y  ∂z  2 2 2  h r2 =   +  +   ∂r   ∂r   ∂r  h r = (sin θ cos ϕ ) 2 2 + (sin θ sin ϕ ) 2 + (co s θ ) 2 h r2 = sin 2 θ co s 2 ϕ + sin 2 θ sin 2 ϕ + co s 2 θ h r2 = sin 2 θ (co s 2 ϕ + sin 2 ϕ ) + co s 2 θ = 1 ∴ hr = 1 (17 )  ∂x   ∂y   ∂z  2 2 2 h = θ 2  +  +   ∂θ   ∂θ   ∂θ  hθ2 = r 2 cos 2 θ cos 2 ϕ + r 2 cos 2 θ sin 2 ϕ + r 2 sin 2 θ hθ2 = r 2 →∴ hθ = r (18) 2 2 2  ∂x   ∂y   ∂z  h = 2 ϕ  +  +   ∂ϕ   ∂ϕ   ∂ϕ  hϕ2 = r 2 sin 2 θ sin 2 ϕ + r 2 sin 2 θ cos2 ϕ hϕ2 = r 2 sin 2 θ →∴ hϕ = r sin θ (19) (cylindrical coordinate) x = r cosϕ y = r s in ϕ z = z q = q r ,q ϕ ,q z (11) 9
  • 10.
     ∂x  ∂y   ∂z  2 2 2  h r2 =   +   +    ∂r   ∂r   ∂r  h r = cos2 2 ϕ + sin 2 ϕ = 1 ∴ h r =1 (2 0 ) 2 2 2  ∂x   ∂y   ∂z  h = ϕ 2  +  +   ∂ϕ   ∂ϕ   ∂ϕ  h ϕ2 = r 2 sin 2 ϕ + r 2 cos 2 ϕ h ϕ2 = r 2 → ∴ h ϕ = r (21)  ∂x   ∂y   ∂z  2 2 2 h = 2  +  +  ∂z   ∂z   ∂z  z  hz2 = 1 →∴ hz = 1 (22) curvilinear Cartesian spherical cylindrical q1 x r r q y θ ϕ 2 q3 z ϕ z h1 1 1 1 h2 1 r r h3 1 r sinθ 1 a1 i r0 r0 a2 j θ ϕ a3 k ϕ k 10
  • 11.
    -1 - Gradient Curl Laplacian Divergence (Orthogonal curvilinear coordinate) . Gradient r ∂φ ∂φ ∂φ ∇φ = a1 + a2 + a3 (23) ∂l1 ∂l2 ∂l3 (23) (12) ∂l r ∂φ ∂φ ∂φ ∇φ = a1 + a2 + a3 (24) h1∂q1 h2∂q2 h3∂q3 Divergence 11
  • 12.
    (Gauss's or Divergencetheorem) r r r r Ñ ∫ S F .da = ∫ ∇.Fdτ v (25) r r ∇ .F = constant a3 DEDODA university.arabsbook.com r F a2 (q1 , q 2 , q 3 ) a1 -4 - (25) r r r r ∇. F = lim Ñ ∫ F . da (26) ∫dτ →0 ∫ dτ 4 r r Ñ ∫ F . da = φR +φL + φT + φBo + φF + φBa (27) -: R: - right: - L: - left: - T:-top: - 12
  • 13.
    Bo:-bottom: - F:-front: - Ba:-back: -   φR = F2R d l3R d l1R   ∂F2 dq2    φR =  F2 +  ( h3R dq3h1R dq1 )  (28 − a)  ∂q2 2     ∂F2 dq2  ∂h3 dq2  ∂h1 dq2  φR =  F2 +  h3 +  h1 + dq1dq3   ∂q2 2  ∂q2 2  ∂q2 2     ∂F dq  ∂h dq  ∂h dq  φL = −  F2 − 2 2  h1 − 1 2  h3 + 1 2  dq1dq3 (28-b)  ∂q2 2  ∂q2 2  ∂q2 2  (28-b) (28-a)  ∂h ∂h ∂F   φR + φL =  F2h1 3 + F2h3 1 + h1h3 2 dq1dq2dq3   ∂q2 ∂q2 ∂q2    (28 − c )  ∂(F2h1h3 )   φR + φL =  dq1dq2dq3   ∂q2   13
  • 14.
     ∂( F2h1h2 )  φT + φBo =   dq1dq 2dq 3 (28-d)  ∂q 3   ∂(F1h2 h3 )  φF + φBa =   dq1dq 2dq 3 (28-e)  ∂q1  (27) (28-e) (28-d) (28-c) r r  ∂(F h h ) ∂(F h h ) ∂(F h h )  Ñ ∫ S F . da=  2 2 3 + 2 1 3 + 3 1 2  dq1dq2dq3 (29)  ∂q1 ∂q2 ∂q3  r r ∇. F (26) (29)  ∂(F2h2h3 ) ∂(F2h1h3 ) ∂(F3h1h2 )   + +  dq1dq2dq3 r r  ∂q1 ∂q2 ∂q3  ∇. F= lim ∫dτ →0 ∫ dτ but ∫ dτ = h h h 1 2 3 dq1dq2dq3  ∂(F2h2h3 ) ∂(F2h1h3 ) ∂(F3h1h2 )   + +  dq dq dq r r  ∂q1 ∂q2 ∂q3  1 2 3 ∴ ∇. F= h1h2h3 dq1dq2dq3 r r 1  ∂(Fh2h3 ) ∂(F2h1h3 ) ∂(F3h1h2 )  ∇. F=  1 + +  (30) h1h2h3  ∂q1 ∂q2 ∂q3  Divergence (30) (Orthogonal curvilinear coordinate) Divergence . Laplacian (The Laplacian in orthogonal curvilinear coordinate) 14
  • 15.
    r r r2 ∇. ∇φ =∇ φ (24) r 1  ∂  h2h3 ∂φ  ∂  hh3 ∂φ  ∂  hh2 ∂φ  ∇2φ =   +  1 +  1  (31) hh2h3 ∂q1  h1 ∂q1  ∂q2  h2 ∂q2  ∂q3  h3 ∂q3  1 Laplacian The curl in orthogonal curvilinear coordinate " Stoke's Theorem" r r r r r ∫∇×F. da=ÑF. dr (32) ∫ r r ∇×F = constant q3 DEDODA h2cdq universi ty.arabsbook.com 2 c h3dq 3 d h3b dq 3 b a q2 h2dq 2 q1 15
  • 16.
    -5 - q2 q3 curl q2 q1 q3 q1 . (32) 5 curl r r r r (∇×F )1 = lim Ñ F. dr ∫ (33) ∫da→0 ∫da r r Ñ F . dr=F2h2dq 2 + F3b h3b dq3 − F2c h2cdq 2 − F3h3dq3 ∫ r r  ∂F  ∂h  Ñ ∫ F . dr=F2h2dq 2 +  F3 + 3 dq 2  h3 + 3 dq 2  dq3  ∂q 2  ∂q 2   ∂F  ∂h  -  F2 + 2 dq3  F2 + 2 dq3  dq2 − F3h3dq3  ∂q3  ∂q3  r r  ∂(F h ) ∂(F2h2 )  →∴ Ñ F . dr =  3 3 − ∫  dq2dq3 (34)  ∂q 2 ∂q3  ∫da = h h dq dq 2 3 2 3 (33) (34) r r 1 ∂(Fh ) ∂(Fh ) (∇×F)1 =  3 3 − 2 2  (35-a) h2h3  ∂q2 ∂q3  q3 q1 16
  • 17.
    r r (∇ × F ) 2 q2 q1 r r (∇ × F )3 r r 1 ∂(Fh ) ∂(Fh ) (∇×F)2 =  1 1 − 3 3  (35-b) hh3  ∂q3 1 ∂q1  r r 1 ∂(Fh ) ∂(Fh ) (∇×F)3 =  2 2 − 1 1  (35-c) hh2  ∂q1 1 ∂q2  (35) a1h1 a 2 h2 a 3h3 r r 1 ∂ ∂ ∂ ∇× F = (36) h1h2 h3 ∂q1 ∂q 2 ∂q3 h1F1 h 2 F2 h3F3 17
  • 18.
    ϕ θ , (displacement) z DEDODA universi ty.arabsbook.com dr rd θ r θ dθ y ϕ r sin θ dϕ x dϕ r sin θ -6 - ϕ θ 1 12 18
  • 19.
    d lϕ d lθ 1 12 d lθ = hθ dqθ → d lθ = rd θ d lϕ = hϕdqϕ → d lϕ = r sinθd ϕ Laplacian Divergence Gradient Curl 1 (36) (31) (30) (24) (24) r ∂φ ∂φ ∂φ ∇φ = a1 + a2 + a3 h1∂q1 h2∂q2 h3∂q3 Gradient 1 ( Cartesian coordinate) Gradient r ∂φ ∂φ ∂φ ∇φ = i + j +k (37) ∂x ∂y ∂z r ∂φ ∂φ ∂φ ∇φ = r0 +θ +ϕ (38) ∂r r ∂θ r sinθ∂ϕ 19
  • 20.
    r ∂φ ∂φ ∂φ ∇φ = r0 +ϕ +k (39) ∂r r ∂ϕ ∂z Divergence r r 1  ∂(Fh2h3 ) ∂(F2h1h3 ) ∂(F3h1h2 )  ∇. F=  1 + +  h1h2h3  ∂q1 ∂q2 ∂q3  r r  ∂F ∂F ∂F  ∇. F=  x + y + z  (40)  ∂x ∂y ∂z  r r 1  ∂(Fr r 2 sinθ ) ∂(Fθ r sinθ ) ∂(Fϕ r )  ∇. F=  + +  r 2 sin θ  ∂r ∂θ ∂ϕ  r r 1 ∂(r 2Fr ) 1 ∂(sinθ Fθ ) 1 ∂(Fϕ ) → ∇. F= 2 + + (41) r ∂r r sin θ ∂θ r sinθ ∂ϕ r r 1  ∂(F r ) ∂(F ) ∂(F r )  ∇. F=  r + ϕ + z  r  ∂r ∂ϕ ∂z  r r 1 ∂(rFr ) 1 ∂(Fϕ ) ∂(Fz ) → ∇. F= + + (42) r ∂r r ∂ϕ ∂z Laplacian r 1  ∂  h2h3 ∂φ  ∂  hh3 ∂φ  ∂  hh2 ∂φ  ∇2φ =   +  1 +  1  hh2h3 ∂q1  h1 ∂q1  ∂q2  h2 ∂q2  ∂q3  h3 ∂q3  1 20
  • 21.
    r2 ∂2φ ∂2φ∂2φ  ∇φ =  2 + 2 + 2  (43) ∂x ∂y ∂z  r 1 ∂  2 ∂φ  ∂  ∂φ  ∂  1 ∂φ  ∇2φ = 2   r sinθ + sinθ +   (44) r sinθ ∂r  ∂r  ∂θ  ∂θ  ∂ϕ sinθ ∂ϕ  r2 1  ∂  ∂φ  ∂  1 ∂φ  ∂  ∂φ  ∇φ =  r +  + r  (45) r ∂r  ∂r  ∂ϕ  r ∂ϕ  ∂z  ∂z   Curl .1 . 21