SlideShare a Scribd company logo
Formal languages to map
Genotype to Phenotype
in Natural Genomes
Laura Adam
GBCB student
Outline
1. The Genotype to Phenotype (G2P) mapping
problem
2. Using formal languages to formalize G2P
mapping
3. Implementation in synthetic/systems biology
design software to study mutants
1. THE GENOTYPE TO PHENOTYPE
(G2P) MAPPING PROBLEM
G2P= Genotype to Phenotype
Genotype to Phenotype mapping
Genotype
• genetic makeup of a cell, an
organism, or an individual
• specific alleles
• inherited
Phenotype
• observable characteristics or
traits
– morphology, development,
biochemical or physiological
properties, behavior, and
products of behavior (such as
a bird's nest).
Definitions from Wikipedia
Phenotypes result from:
• the expression of an organism's genes
• the influence of environmental factors and developmental conditions
• the interactions between the two
Mapping ?
The ultimate goal of a G2P map
G2P map
The
Phenotype
is X
Historical perspectives: Mendelian
genetics
Law of Segregation:
“Mendelian genetics, considers traits that are determined completely by individual genes.”
Traditional G2P mapping is linear
• Sui Huang, Rational drug discovery: what can we learn from regulatory networks?, Drug Discovery Today, Volume 7, Issue 20, 15 October 2002
• Peccoud, J., Velden, K. V., Podlich, D., Winkler, C., Arthur, L., & Cooper, M. (2004). The selective values of alleles in a molecular network model
are context dependent. Genetics, 166(4), 1715–25.
Phenotypes
Central dogma
Current Formalisms
Databases:
genetic mapping, genome annotation,
genotype, mutant, transcripteome,
proteome and metabolomic data.
Ontologies:
Controlled vocabulary for annotation of
genes and their products (cellular
component, molecular function, biological
process)
Actually, G2P maps are nonlinear:
Gene Networks
• Priest, N. K., Rudkin, J. K., Feil, E. J., van den Elsen, J. M. H., Cheung, A., Peacock, S. J., Laabei, M., et al. (2012). From genotype to phenotype:
can systems biology be used to predict Staphylococcus aureus virulence? Nature reviews. Microbiology, 10(11), 791–7.
doi:10.1038/nrmicro2880
• Benfey, P. N., & Mitchell-Olds, T. (2008). From genotype to phenotype: systems biology meets natural variation. Science.
“replacing the linear pathways with interconnected networks.”
Gene expression mechanisms also
matter
“The current understanding of the mechanisms of gene expression indicates
the importance of nonlinear effects resulting from gene interactions. “
– Peccoud, J., Velden, K. V., Podlich, D., Winkler, C., Arthur, L., & Cooper, M. (2004). The selective values
of alleles in a molecular network model are context dependent. Genetics.
 Trans-regulatory element = gene which may modify (or regulate) the
expression of distant genes
– Phosphorylation, protein complex, transcription inhibition, etc.
 Cis-regulatory element = a region of DNA or RNA that regulates the
expression of genes located on the same section of DNA
– Translation rate depends on RBS and CDS, etc.
– Folding alters function and dynamics
What is missing in current G2P maps?
Gene expression mechanisms: the dynamics
trans and cis interactions
2. HOW TO FORMALIZE G2P
MAPPING TO MAKE PREDICTIONS?
What formal languages can bring.
Is “language of life” just a metaphor?
Or what insights can we get from
computational studies of natural language?
Natural Language Processing
How about a computational linguistics approach to the
G2P mapping problem?
 Like a text, in biology we have a support for
information (Genotype), and a meaning (Phenotype)
 Anaphora as trans-interactions:
• “type of expression whose reference depends upon
another referential element”
• eg: relation noun/pronoun
Anaphora as trans-interactions
• “type of expression whose reference depends upon
another referential element”
Natural Language Processing
How about a computational linguistics approach to the
G2P mapping problem?
 Like a text, we have a support for information
(Genotype), and a meaning (Phenotype)
 Anaphora as trans-interactions:
• eg: relation noun/pronoun (Mary – she)
 Inflectional morphology as cis-interactions
• eg: subject+verb (+tense)
Inflectional morphology as cis-
interactions
Natural Language Processing
How about a computational linguistics approach to
the G2P mapping problem?
Like a text, we have a support for information
(Genotype), and a meaning (Phenotype)
Anaphora as trans-interactions:
• eg: relation noun/pronoun (Mary – she)
Inflectional morphology as cis-interactions
• eg: subject+verb (+tense)
Handle context:
• Wittgenstein - language-game
• He went there.
We are learning
about formal
languages
Nous apprenons les
languages formels
(Nosotros)
estamos
estudiando
los
lenguajes
formales
Natural languages and Computers?
>> Linguistic universal
Intuition: Formal languages
• <subject> <verb> <object> = (SVO)
– A linguistic typology
– Could be <subject> <object> <verb> = (SOV)
 We are learning about formal languages
 Nous apprenons les languages formels
(Nosotros) estamos estudiando los
lenguajes formales
Intuition: Formal language
• SVO_sentence  Subject, Verb, Object
• Object  Noun phrase | Relative_clause
• Subject  “I” | “You” | “He” | “She” | “We’ |
“They”
• Verb  “are learning” | “is learning”
• Noun phrase  “about formal languages”
• Relative_clause  “that formal languages are
awesome”
A grammar is a: Set of rules describing how to form sentences from a language’s vocabulary
Example: Formal language
Object  Noun
Phrase
SVO_sentence 
Subject Verb Object
SVO_sentence
Subject
We
Verb
are learning
Object
Noun phrase
about formal
languages.
A parse tree represents the syntactic structure of a string according to some formal grammar.
Context free
grammar
• Terminals =words
• Non Terminals =
intermediary steps
• Rules:
– Non-terminals
{Terminals and Non
terminals}
• Start
>> The language is the
set of all sentences that
can be produced
Noam Chomsky
"father of modern linguistics"
The repressilator
Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767), 335-8. doi:10.1038/35002125
The toggle switch
Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339-42.
doi:10.1038/35002131
lacI
tetR
Grammar and Biology?
• Pattern to express protein (typology):
– <promoter> <rbs> <coding_seq> <ter> <ter>
>> Some underlying rules that must govern biology !
What would a CFG for Biology be like?
• “Sentence” to express proteins
– Transcription: promoter, terminator
– Translation: ribosome biding site
• Central dogma:
– Cassette: Promoter + RBS + CDS + Terminator
Example: SynBio CFG
Rules
• CONSTRUCT  CAS | 2CAS | 2CASREV | 3CAS
• 2CAS  CAS, CAS
• 2CASREV  CAS, [, CAS, ]
• 3CAS  CAS, CAS, CAS
• CAS  PROMOTER, CIX, TERMINATOR
• CIX  CISTRON | CISTRON, CISTRON
• CISTRON  RBS, CDS
• TERMINATOR  TERMINATOR, TERMINATOR
Example: SynBio CFG
Terminals
Genetic parts:
• PROMOTER  placi | ptetr | pci
• RBS  rbsA | rbsB
• CDS  laci | tetr |ci | gfp
• TERMINATOR  t1 | t2
CONSTRUCT
CAS
PROMOTER
ptetr
CIX
CISTRON
RBS
rbsA
CDS
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: SynBio CFG
Express a gene
1. CONSTRUCT  CAS
2. CAS  PROMOTER, CIX,
TERMINATOR
3. CIX  CISTRON
4. CISTRON  RBS, CDS
5. TERMINATOR 
TERMINATOR, TERMINATOR
CONSTRUCT
CAS
PROMOTER
ptetr
CIX
CISTRON
RBS
rbsA
CDS
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
[ CAS
PROMOTER
placi
CIX
CISTRON
RBS
rbsB
CDS
tetr
CISTRON
RBS
rbsB
CDS
gfp
TERMINATOR
t1
]
Example: SynBio CFG
A toggle switch
lacI
tetR
GFP
And the Phenotype? The meaning
• Use of Attribute Grammars
• It is a CFG plus:
– Terminals and Non-Terminals have attributes
– Rules have semantic actions to compute
attributes values
>> While going through the parse tree, we now
also evaluate the semantics (meaning)
And the Phenotype? The meaning
– Transcription:
• dna  dna + mrna
– Translation:
• mrna  mrna + protein
– Degradation mrna:
• mrna  []
– Degradation protein:
• protein  []
– Interaction promoter protein:
• dna + repressor <-> dna_repressor_x
Example - Attributes
• Promoter: transcription rate, repressor
– Promoter(transcription_rate, repressor)  ptetr (50, tetr)
– Promoter(transcription_rate, repressor)  placi (10, laci)
• RBS: translation rate
– RBS(translation_rate)  rbsA (25)
– RBS(translation_rate)  rbsB (50)
• CDS: degradation rate for the protein and the mRNA
– CDS(protein_deg,mrna_deg)  laci(1,1)
– CDS(protein_deg,mrna_deg)  tetr(1,1)
• Terminator
– Terminator  t1
Example: Semantic Actions
• CAS  PROMOTER(transcription_rate, repressor), CIX,
TERMINATOR
– Transcription: dna  dna + mrna, [transcription_rate]
– Interaction: if repressor in construct then dna + repressor
 dna_repressor_X
• CISTRON  RBS(translation_rate),
CDS(protein_deg,mrna_deg)
– Translation: mrna  mrna + protein, [translation_rate]
– Degradation_mrna: mrna  φ, [mrna_deg]
– Degradation_protein: protein  φ, [protein_deg]
Semantic DNA Compilation
Genetic Design
A
Get Chemical
Equations for A
Attribute
Grammar
Semantic DNA Compilation
Genetic Design
B
Get Chemical
Equations for B
Attribute
Grammar
CONSTRUCT
CAS
PROMOTER
ptetr
CIX
CISTRON
RBS
rbsA
CDS
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
[ CAS
PROMOTER
placi
CIX
CISTRON
RBS
rbsB
CDS
tetr
CISTRON
RBS
rbsB
CDS
gfp
TERMINATOR
t1
]
Example: Toggle switch
CAS
PROMOTER
ptetr
CIX
CISTRON
RBS
rbsA
CDS
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
CAS
PROMOTER
ptetr
CIX
CISTRON
RBS
rbsA
CDS
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
CAS
PROMOTER
ptetr
CIX
CISTRON
RBS
rbsA
CDS
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
CAS
PROMOTER: ptetr
ptetr
CIX
CISTRON
RBS
rbsA
CDS
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
CAS
PROMOTER: ptetr
ptetr
CIX
CISTRON
RBS
rbsA
CDS
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
CAS
PROMOTER: ptetr
ptetr
CIX
CISTRON
RBS
rbsA
CDS
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
• Translation: mrna  mrna +
protein, [translation_rate]
• Degradation_mrna: mrna  φ,
[mrna_deg]
• Degradation_protein: protein  φ,
[protein_deg]
CAS
PROMOTER: ptetr
ptetr
CIX
CISTRON
RBS: rbsA
rbsA
CDS
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
• Translation: mrna  mrna +
protein, [translation_rate]
• Degradation_mrna: mrna  φ,
[mrna_deg]
• Degradation_protein: protein  φ,
[protein_deg]
CAS
PROMOTER: ptetr
ptetr
CIX
CISTRON
RBS: rbsA
rbsA
CDS: laci
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
• Translation: mrna  mrna +
protein, [translation_rate]
• Degradation_mrna: mrna  φ,
[mrna_deg]
• Degradation_protein: protein  φ,
[protein_deg]
CAS
PROMOTER: ptetr
ptetr
CIX
CISTRON
RBS: rbsA
rbsA
CDS: laci
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
• Translation: mrna_rbsA_laci 
mrna_rbsA_laci + protein_laci, [25]
• Degradation_mrna: mrna_rbsA_laci
 φ, [1]
• Degradation_protein: protein_laci
 φ, [1]
CAS
PROMOTER: ptetr
ptetr
CIX
CISTRON
RBS: rbsA
rbsA
CDS: laci
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
• Translation: mrna_rbsA_laci 
mrna_rbsA_laci + protein_laci, [25]
• Degradation_mrna: mrna_rbsA_laci
 φ, [1]
• Degradation_protein: protein_laci
 φ, [1]
CAS
PROMOTER: ptetr
ptetr
CIX
CISTRON
RBS: rbsA
rbsA
CDS: laci
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
• Translation: mrna_rbsA_laci 
mrna_rbsA_laci + protein_laci, [25]
• Degradation_mrna: mrna_rbsA_laci
 φ, [1]
• Degradation_protein: protein_laci
 φ, [1]
CAS
PROMOTER: ptetr
ptetr
CIX
CISTRON
RBS: rbsA
rbsA
CDS: laci
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
• Translation: mrna_rbsA_laci 
mrna_rbsA_laci + protein_laci, [25]
• Degradation_mrna: mrna_rbsA_laci
 φ, [1]
• Degradation_protein: protein_laci
 φ, [1]
CAS
PROMOTER: ptetr
ptetr
CIX
CISTRON
RBS: rbsA
rbsA
CDS: laci
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
• Translation: mrna_rbsA_laci 
mrna_rbsA_laci + protein_laci, [25]
• Degradation_mrna: mrna_rbsA_laci
 φ, [1]
• Degradation_protein: protein_laci
 φ, [1]
• Transcription: dna  dna + mrna,
[transcription_rate]
• Interaction: if repressor in construct
then dna + repressor 
dna_repressor_X
CAS
PROMOTER: ptetr
ptetr
CIX
CISTRON
RBS: rbsA
rbsA
CDS: laci
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
Example: Toggle switch
• Translation: mrna_rbsA_laci 
mrna_rbsA_laci + protein_laci, [25]
• Degradation_mrna: mrna_rbsA_laci
 φ, [1]
• Degradation_protein: protein_laci
 φ, [1]
• Transcription: dna_ptetr_rbsA_laci
 dna_ptetr_rbsA_laci +
mrna_rbsA_laci , [50]
• Interaction: if tetr in construct
dna_ptetr_rbsA_laci + protein_tetr
 dna_ptetr_rbsA_laci _tetr_X
CONSTRUCT
CAS
PROMOTER
ptetr
CIX
CISTRON
RBS
rbsA
CDS
laci
TERMINATOR
TERMINATOR
t1
TERMINATOR
t2
[ CAS
PROMOTER
placi
CIX
CISTRON
RBS
rbsB
CDS
tetr
CISTRON
RBS
rbsB
CDS
gfp
TERMINATOR
t1
]
Example: Toggle switch
Toggle switch
laci/tetr
Get Chemical
Equations for A
CONST
RUCT
CAS
PROMO
TER
ptetr
CIX
CISTRO
N
RBS
rbsA
CDS
laci
TERMIN
ATOR
TERMIN
ATOR
t1
TERMIN
ATOR
t2
[ CAS
PROMO
TER
placi
CIX
CISTRO
N
RBS
rbsB
CDS
tetr
CISTRO
N
RBS
rbsB
CDS
gfp
TERMIN
ATOR
t1
]
Example: Toggle switch
• Transcription: dna_ptetr_rbsA_laci 
dna_ptetr_rbsA_laci + mrna_rbsA_laci ,
[50]
• Interaction: if tetr in construct
dna_ptetr_rbsA_laci + protein_tetr 
dna_ptetr_rbsA_laci _tetr_X
• Translation: mrna_rbsA_laci 
mrna_rbsA_laci + protein_laci, [25]
• Degradation_mrna: mrna_rbsA_laci  φ,
[1]
• Degradation_protein: protein_laci  φ,
[1]
• Transcription: dna_placi_rbsB_tetr 
dna_placi_rbsB_tetr + mrna_rbsB_tetr ,
[10]
• Interaction: if laci in construct
dna_placi_rbsB_tetr + protein_tetr 
dna_placi_rbsB_tetr_laci_X
• Translation: mrna_rbsB_tetr 
mrna_rbsB_tetr + protein_tetr, [50]
• Degradation_mrna: mrna_rbsB_tetr  φ,
[1]
• Degradation_protein: protein_tetr  φ,
[1]
Attribute
Grammar
Natural
language
Natural
genomes
Formal
languages
Synthetic
biology
Scaling up to Natural Genomes
Building a Yeast Cell Cycle Attribute Grammar:
A projection of the Cell Cycle model onto the Genome
AG
?
1. The syntax 2. The chemical equations
Genome database – Wild-type
56
57
0 200000 400000 600000 800000 1000000 1200000 1400000 1600000
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
XIII
XIV
XV
XVI
< CLN3
< LTE1
< CDC15
CDC28 >
< PDS1 < SWI5
BCK2 >
< CDC14
CDC20 > < CDH1 < ESP1
CDC6 > NET1 > MAD2 >
SBF >
SIC1 >
TEM1 > MCM1 > BUB2>
< CLN2 < CLB2 < CLB5
#chromosome
# bp
22 genes
Syntax of the yeast cell cycle grammar
GENOME  MODEL ( CHRI ) ( CHRII ) ( CHRIII ) ( CHRIV ) ( CHRV ) ( CHRVI ) ( CHRVII ) (
CHRVIII ) ( CHRIX ) ( CHRX ) ( CHRXI ) ( CHRXII ) ( CHRXIII ) ( CHRXIV ) (
CHRXV ) ( CHRXVI )
CHRI  CHRI_L [CLN3 ] CHRI_M1 [LTE1 ] CHRI_M2 [CDC15 ] CHRI_R
CHRII  CHRII_L CDC28 CHRII_R
CHRIV  CHRIV_L [PDS1 ] CHRIV_M [SWI5 ] CHRIV_R
CHRV  CHRV_L BCK2 CHRV_R
CHRVI  CHRVI_L [CDC14 ] CHRVI_R
CHRVII  CHRVII_L CDC20 CHRVII_M1 [CDH1 ] CHRVII_M2 [ESP1 ] CHRVII_R
CHRX  CHRX_L CDC6 CHRX_M1 NET1 CHRX_M2 MAD2 CHRX_R
CHRXI  CHRXI_L SBF CHRXI_R
CHRXII  CHRXII_L SIC1 CHRXII_R
CHRXIII  CHRXIII_L [TEM1 ] CHRXIII_M1 MCM1 CHRXIII_M2 [BUB2 ] CHRXIII_R
CHRXVI  CHRXVI_L [CLN2 ] CHRXVI_M1 CLB2 CHRXVI_M2 [CLB5 ] CHRXVI_R
AG
?
1. The syntax 2. The chemical equations
Chen’s Model Cell Cycle
•150 parameters
•>100 mutants
•59 ODEs
•4 events
Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B., & Tyson, J. J. (2004). Integrative analysis of cell cycle control in budding yeast.
Molecular biology of the cell, 15(8), 3841-62. doi:10.1091/mbc.E03-11-0794
Rules’ Semantic Actions
61
Rules’ Semantic Actions
Trans interactions:
• Synthesis of {proteinX} by {proteinY}
• synthesis (X, Y, background_synthesis,
Y_dependant_synthesis)
• Degradation of {protein}
• Phosphorylation of {protein}
• Dephosphorylation of {protein}
• Association of {proteinA} and
{proteinB}
• Dissociation of {proteinA} and
{proteinB}
• Degradation of {proteinA) in {proteinB}
• {proteinA}/{proteinB} complex
formation
• {proteinA}/{proteinB} dissociation
• …
• Growth
Events:
• Reset ORI
• Start DNA synthesis
• Spindle checkpoint
• Cell division
Kinetic laws/functions:
• BB
• Michaelis-Menten
• Mass action1 (1 element)
• Mass action 2 (2elements)
• Goldbeter-Koshland function
Semantic – BCK2 example
• Definitions: Chemical Equation “ Protein, mass [rate]”
– synthesis(Name, Rate):-Write(Name.” = [mass] . ” .Rate).
• Rules
– ChrV  ChrV_L Bck2(B0) ChrV_R, {synthesis (‘Bck2’, B0)}
• Parts = alleles
– Bck2(0.054)[part_bck2_wt].
– Bck2(0)[part_bck2_ Δ].
63
Compile and Get wild type SBML file
Future: Mutant design
• Consider:
– What genes are modified?
 New parts
– How biologists make the mutant?
 New grammar rules
– How it relates to the mathematical model?
 New semantic actions
>> We can compute what would be the behavior of new mutants
according to the model
Phenotype:
• Inviable (phase blocked?)
• Viable (size at onset of DNA synthesis, size at bud emergence, size
at division, and duration of G1 phase?)
3. IMPLEMENTATION IN
SYNTHETIC/SYSTEMS BIOLOGY DESIGN
SOFTWARE TO STUDY MUTANTS
GenoCAD.org
67
68
72
Download the SBML file
To Switches and Oscillators, Yeast Cell
Cycle…and beyond!
Working on a workflow for users to define their OWN
Attribute Grammar:
• Define the syntax
• Define your template equations (regular, trans and cis),
choose kinetic laws >>parameters
1. Link equations to grammar rules as semantic actions
2. Link parameters to categories
3. Add any cis interaction
Attribute Grammars can be a formalism for G2P maps
Use generated compiler to analyze
your designs in GenoCAD
Design1
Your project’s
grammar
AG
editor
Database
Design2
Design mutants
Prolog
compiler
Java
(libSBML)
SBML
Java
(libSBML)
SBML
CONCLUSIONS
Conclusions
 Semantic models of DNA sequences:
– formalize G2P mapping and confer predictive powers with Attribute Grammars:
• translate DNA sequences into mathematical models
• predicting the phenotype they encode
– fill a gap in annotating genetic information by integrating gene expression
mechanisms
 Attribute grammar for the yeast cell cycle:
– in a logical and structured fashion, information from genomic databases and
mathematical models will be utilized in the exploration of novel mutants
– semantic models for natural genomes
 Genetic design tools user-friendly to the majority and still adaptable to
specific projects.
– GenoCAD: create libraries of parts, rule-based design and simulation, generation of
SBML files
– Define your own project’s Attribute Grammars: GUI editor
 Design mutants in minutes and simulate them!
Acknowledgements
• VBI SynBio Group
– J. Peccoud (P.I.)
– N. Adames
– D. Ball
– M. Lux
– C. Overend
– M. Wilson
– and Patrick (Yizhi) Cai
– and R. Hertzberg
Cai, Y., Lux, M. W., Adam, L., & Peccoud, J. (2009). Modeling structure-function relationships in
synthetic DNA sequences using attribute grammars. PLoS computational biology
• My PhD committee:
 Dr. Bevan
 Dr. Garner
 Dr. Kepes
 Dr. Peccoud
 Dr. Ramakrishnan
 Dr. Tyson
And Dennie Munson!
ADDITIONAL INFORMATION
Resources
82
Syntactic Limitation
83
The Chomsky hierachy
Searls, D.B. “Linguistic approaches to biological sequences.” Bioinformatics 13, no. 4 (1997): 333.
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/13/4/333.
Parsing
84
Left to Right
Top-Down
Parse
The Parse Tree of the Sentence
"The boy went home“
Right to Left
Top-Down
Parse
Left to Right
Bottom-Up
Parse
Right to Left
Bottom-Up
Parse
Use of attribute grammar in synthetic
biology
85
Formal definition Semantic In the synthetic
biology context
V, a finite set of non-
terminals
Attributes Parts categories
Σ, a finite set of
terminals
Attributes values Genetic Parts
R, a finite relation from
V to (VUΣ)*
Semantic actions Design Rules
S∈V, the start symbol Hard-coded
declarations
Start

More Related Content

What's hot

Mapping population ppt
Mapping population pptMapping population ppt
Mapping population ppt
Srishti Aggrawal
 
Transcriptomics approaches
Transcriptomics approachesTranscriptomics approaches
Transcriptomics approaches
CharupriyaChauhan1
 
Molecular Markers: Indispensable Tools for Genetic Diversity Analysis and Cro...
Molecular Markers: Indispensable Tools for Genetic Diversity Analysis and Cro...Molecular Markers: Indispensable Tools for Genetic Diversity Analysis and Cro...
Molecular Markers: Indispensable Tools for Genetic Diversity Analysis and Cro...
Premier Publishers
 
Dominant and codominant markers30nov
Dominant and codominant markers30novDominant and codominant markers30nov
Dominant and codominant markers30nov
AnkitTiwari354
 
Molecular markers
Molecular markersMolecular markers
Molecular markers
Aisha Shiyas
 
Genomics,proteomics and comparative genomics
Genomics,proteomics and comparative genomicsGenomics,proteomics and comparative genomics
Genomics,proteomics and comparative genomics
Iqbal college Peringammala TVM
 
Metatranscriptomic sequencing service
Metatranscriptomic sequencing serviceMetatranscriptomic sequencing service
Metatranscriptomic sequencing service
Dynah Perry
 
A f l p
A f l pA f l p
Use of DNA barcoding and its role in the plant species/varietal Identifica...
Use of DNA  barcoding  and its role in the plant species/varietal  Identifica...Use of DNA  barcoding  and its role in the plant species/varietal  Identifica...
Use of DNA barcoding and its role in the plant species/varietal Identifica...
Senthil Natesan
 
Molecular markers by tahura mariyam ansari
Molecular markers by tahura mariyam ansariMolecular markers by tahura mariyam ansari
Molecular markers by tahura mariyam ansari
Tahura Mariyam Ansari
 
Genomics and Plant Genomics
Genomics and Plant GenomicsGenomics and Plant Genomics
Genomics and Plant Genomics
Harshvardhan Gaikwad
 
Metagenomics and Industrial Application
Metagenomics and Industrial ApplicationMetagenomics and Industrial Application
Metagenomics and Industrial ApplicationZuleika86
 
SNP Genotyping Technologies
SNP Genotyping TechnologiesSNP Genotyping Technologies
SNP Genotyping Technologies
SivamaniBalasubramaniam
 
Biomarker
BiomarkerBiomarker
Genome editing
Genome editingGenome editing
Genome editing
Soumitra Paul
 
Molecular markers in legumes
Molecular markers in legumesMolecular markers in legumes
Molecular markers in legumes
Abdul GHAFOOR
 
Genome sequencing
Genome sequencingGenome sequencing
Genome sequencing
Anitha Yudhistira
 
Application of molecular probes
Application of molecular probesApplication of molecular probes
Application of molecular probes
Ayush Jain
 
Random RNA interactions control protein expression in prokaryotes
Random RNA interactions control protein expression in prokaryotesRandom RNA interactions control protein expression in prokaryotes
Random RNA interactions control protein expression in prokaryotes
Paul Gardner
 
Omics for crop improvement (new)
Omics for crop improvement (new)Omics for crop improvement (new)
Omics for crop improvement (new)
Gokul Dhana
 

What's hot (20)

Mapping population ppt
Mapping population pptMapping population ppt
Mapping population ppt
 
Transcriptomics approaches
Transcriptomics approachesTranscriptomics approaches
Transcriptomics approaches
 
Molecular Markers: Indispensable Tools for Genetic Diversity Analysis and Cro...
Molecular Markers: Indispensable Tools for Genetic Diversity Analysis and Cro...Molecular Markers: Indispensable Tools for Genetic Diversity Analysis and Cro...
Molecular Markers: Indispensable Tools for Genetic Diversity Analysis and Cro...
 
Dominant and codominant markers30nov
Dominant and codominant markers30novDominant and codominant markers30nov
Dominant and codominant markers30nov
 
Molecular markers
Molecular markersMolecular markers
Molecular markers
 
Genomics,proteomics and comparative genomics
Genomics,proteomics and comparative genomicsGenomics,proteomics and comparative genomics
Genomics,proteomics and comparative genomics
 
Metatranscriptomic sequencing service
Metatranscriptomic sequencing serviceMetatranscriptomic sequencing service
Metatranscriptomic sequencing service
 
A f l p
A f l pA f l p
A f l p
 
Use of DNA barcoding and its role in the plant species/varietal Identifica...
Use of DNA  barcoding  and its role in the plant species/varietal  Identifica...Use of DNA  barcoding  and its role in the plant species/varietal  Identifica...
Use of DNA barcoding and its role in the plant species/varietal Identifica...
 
Molecular markers by tahura mariyam ansari
Molecular markers by tahura mariyam ansariMolecular markers by tahura mariyam ansari
Molecular markers by tahura mariyam ansari
 
Genomics and Plant Genomics
Genomics and Plant GenomicsGenomics and Plant Genomics
Genomics and Plant Genomics
 
Metagenomics and Industrial Application
Metagenomics and Industrial ApplicationMetagenomics and Industrial Application
Metagenomics and Industrial Application
 
SNP Genotyping Technologies
SNP Genotyping TechnologiesSNP Genotyping Technologies
SNP Genotyping Technologies
 
Biomarker
BiomarkerBiomarker
Biomarker
 
Genome editing
Genome editingGenome editing
Genome editing
 
Molecular markers in legumes
Molecular markers in legumesMolecular markers in legumes
Molecular markers in legumes
 
Genome sequencing
Genome sequencingGenome sequencing
Genome sequencing
 
Application of molecular probes
Application of molecular probesApplication of molecular probes
Application of molecular probes
 
Random RNA interactions control protein expression in prokaryotes
Random RNA interactions control protein expression in prokaryotesRandom RNA interactions control protein expression in prokaryotes
Random RNA interactions control protein expression in prokaryotes
 
Omics for crop improvement (new)
Omics for crop improvement (new)Omics for crop improvement (new)
Omics for crop improvement (new)
 

Viewers also liked

Bioinformatics A Biased Overview
Bioinformatics A Biased OverviewBioinformatics A Biased Overview
Bioinformatics A Biased Overview
Philip Bourne
 
Molecular Markers: Major Applications in Insects
Molecular Markers: Major Applications in InsectsMolecular Markers: Major Applications in Insects
Molecular Markers: Major Applications in Insects
Saramita De Chakravarti
 
Flow Cytometry Training : Introduction day 1 session 1
Flow Cytometry Training : Introduction day 1 session 1Flow Cytometry Training : Introduction day 1 session 1
Flow Cytometry Training : Introduction day 1 session 1
Robert (Rob) Salomon
 
De novo genome assembly - T.Seemann - IMB winter school 2016 - brisbane, au ...
De novo genome assembly  - T.Seemann - IMB winter school 2016 - brisbane, au ...De novo genome assembly  - T.Seemann - IMB winter school 2016 - brisbane, au ...
De novo genome assembly - T.Seemann - IMB winter school 2016 - brisbane, au ...
Torsten Seemann
 
DNA Markers Techniques for Plant Varietal Identification
DNA Markers Techniques for Plant Varietal Identification DNA Markers Techniques for Plant Varietal Identification
DNA Markers Techniques for Plant Varietal Identification
Senthil Natesan
 
Ap Chapter 21
Ap Chapter 21Ap Chapter 21
Ap Chapter 21
smithbio
 
Project report-on-bio-informatics
Project report-on-bio-informaticsProject report-on-bio-informatics
Project report-on-bio-informaticsDaniela Rotariu
 
Bioinformatics in the Era of Open Science and Big Data
Bioinformatics in the Era of Open Science and Big DataBioinformatics in the Era of Open Science and Big Data
Bioinformatics in the Era of Open Science and Big Data
Philip Bourne
 
Mapping Genotype to Phenotype using Attribute Grammar, Laura Adam
Mapping Genotype to Phenotype using Attribute Grammar, Laura AdamMapping Genotype to Phenotype using Attribute Grammar, Laura Adam
Mapping Genotype to Phenotype using Attribute Grammar, Laura Adam
madalladam
 
How to be a bioinformatician
How to be a bioinformaticianHow to be a bioinformatician
How to be a bioinformatician
Christian Frech
 
Gene concept
Gene conceptGene concept
Gene concept
Promila Sheoran
 
Basics of bioinformatics
Basics of bioinformaticsBasics of bioinformatics
Basics of bioinformaticsAbhishek Vatsa
 

Viewers also liked (12)

Bioinformatics A Biased Overview
Bioinformatics A Biased OverviewBioinformatics A Biased Overview
Bioinformatics A Biased Overview
 
Molecular Markers: Major Applications in Insects
Molecular Markers: Major Applications in InsectsMolecular Markers: Major Applications in Insects
Molecular Markers: Major Applications in Insects
 
Flow Cytometry Training : Introduction day 1 session 1
Flow Cytometry Training : Introduction day 1 session 1Flow Cytometry Training : Introduction day 1 session 1
Flow Cytometry Training : Introduction day 1 session 1
 
De novo genome assembly - T.Seemann - IMB winter school 2016 - brisbane, au ...
De novo genome assembly  - T.Seemann - IMB winter school 2016 - brisbane, au ...De novo genome assembly  - T.Seemann - IMB winter school 2016 - brisbane, au ...
De novo genome assembly - T.Seemann - IMB winter school 2016 - brisbane, au ...
 
DNA Markers Techniques for Plant Varietal Identification
DNA Markers Techniques for Plant Varietal Identification DNA Markers Techniques for Plant Varietal Identification
DNA Markers Techniques for Plant Varietal Identification
 
Ap Chapter 21
Ap Chapter 21Ap Chapter 21
Ap Chapter 21
 
Project report-on-bio-informatics
Project report-on-bio-informaticsProject report-on-bio-informatics
Project report-on-bio-informatics
 
Bioinformatics in the Era of Open Science and Big Data
Bioinformatics in the Era of Open Science and Big DataBioinformatics in the Era of Open Science and Big Data
Bioinformatics in the Era of Open Science and Big Data
 
Mapping Genotype to Phenotype using Attribute Grammar, Laura Adam
Mapping Genotype to Phenotype using Attribute Grammar, Laura AdamMapping Genotype to Phenotype using Attribute Grammar, Laura Adam
Mapping Genotype to Phenotype using Attribute Grammar, Laura Adam
 
How to be a bioinformatician
How to be a bioinformaticianHow to be a bioinformatician
How to be a bioinformatician
 
Gene concept
Gene conceptGene concept
Gene concept
 
Basics of bioinformatics
Basics of bioinformaticsBasics of bioinformatics
Basics of bioinformatics
 

Similar to Formal languages to map Genotype to Phenotype in Natural Genomes

Plant Pathogen Genome Data: My Life In Sequences
Plant Pathogen Genome Data: My Life In SequencesPlant Pathogen Genome Data: My Life In Sequences
Plant Pathogen Genome Data: My Life In Sequences
Leighton Pritchard
 
The Language of the Gene Ontology
The Language of the Gene OntologyThe Language of the Gene Ontology
The Language of the Gene Ontology
robertstevens65
 
Molecular basis of evolution and softwares used in phylogenetic tree contruction
Molecular basis of evolution and softwares used in phylogenetic tree contructionMolecular basis of evolution and softwares used in phylogenetic tree contruction
Molecular basis of evolution and softwares used in phylogenetic tree contruction
UdayBhanushali111
 
Genome Curation using Apollo
Genome Curation using ApolloGenome Curation using Apollo
Genome Curation using Apollo
Monica Munoz-Torres
 
Apollo Introduction for i5K Groups 2015-10-07
Apollo Introduction for i5K Groups 2015-10-07Apollo Introduction for i5K Groups 2015-10-07
Apollo Introduction for i5K Groups 2015-10-07
Monica Munoz-Torres
 
Apolo Taller en BIOS
Apolo Taller en BIOS Apolo Taller en BIOS
Apolo Taller en BIOS
Monica Munoz-Torres
 
Comparative Genomics and Visualisation BS32010
Comparative Genomics and Visualisation BS32010Comparative Genomics and Visualisation BS32010
Comparative Genomics and Visualisation BS32010
Leighton Pritchard
 
Welch Wordifier Bosc2009
Welch Wordifier Bosc2009Welch Wordifier Bosc2009
Welch Wordifier Bosc2009bosc
 
Deep Learning for Natural Language Processing: Word Embeddings
Deep Learning for Natural Language Processing: Word EmbeddingsDeep Learning for Natural Language Processing: Word Embeddings
Deep Learning for Natural Language Processing: Word Embeddings
Roelof Pieters
 
Introduction to Natural Language Processing
Introduction to Natural Language ProcessingIntroduction to Natural Language Processing
Introduction to Natural Language Processing
Pranav Gupta
 
DextMP: Text mining for finding moonlighting proteins
DextMP: Text mining for finding moonlighting proteinsDextMP: Text mining for finding moonlighting proteins
DextMP: Text mining for finding moonlighting proteins
Purdue University
 
Franz et al evol 2016 representing phylogeny as a logically tractable variable
Franz et al evol 2016 representing phylogeny as a logically tractable variable  Franz et al evol 2016 representing phylogeny as a logically tractable variable
Franz et al evol 2016 representing phylogeny as a logically tractable variable
taxonbytes
 
Introduction to Apollo: i5K E affinis
Introduction to Apollo: i5K E affinisIntroduction to Apollo: i5K E affinis
Introduction to Apollo: i5K E affinis
Monica Munoz-Torres
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomics
Jajati Keshari Nayak
 
Bridging the Systemic and Semantic Spheres
Bridging the Systemic and Semantic SpheresBridging the Systemic and Semantic Spheres
Bridging the Systemic and Semantic Spheres
Helene Finidori
 
Experiences with logic programming in bioinformatics
Experiences with logic programming in bioinformaticsExperiences with logic programming in bioinformatics
Experiences with logic programming in bioinformatics
Chris Mungall
 
Artificial Intelligence Notes Unit 4
Artificial Intelligence Notes Unit 4Artificial Intelligence Notes Unit 4
Artificial Intelligence Notes Unit 4
DigiGurukul
 
Biological literature mining - from information retrieval to biological disco...
Biological literature mining - from information retrieval to biological disco...Biological literature mining - from information retrieval to biological disco...
Biological literature mining - from information retrieval to biological disco...
Lars Juhl Jensen
 
Beyond Transparency: Success & Lessons From tambisBoston2003
Beyond Transparency: Success & Lessons From tambisBoston2003Beyond Transparency: Success & Lessons From tambisBoston2003
Beyond Transparency: Success & Lessons From tambisBoston2003
robertstevens65
 
Introduction to BioNLP and its applications
Introduction to BioNLP and its applicationsIntroduction to BioNLP and its applications
Introduction to BioNLP and its applications
ShankaiYan
 

Similar to Formal languages to map Genotype to Phenotype in Natural Genomes (20)

Plant Pathogen Genome Data: My Life In Sequences
Plant Pathogen Genome Data: My Life In SequencesPlant Pathogen Genome Data: My Life In Sequences
Plant Pathogen Genome Data: My Life In Sequences
 
The Language of the Gene Ontology
The Language of the Gene OntologyThe Language of the Gene Ontology
The Language of the Gene Ontology
 
Molecular basis of evolution and softwares used in phylogenetic tree contruction
Molecular basis of evolution and softwares used in phylogenetic tree contructionMolecular basis of evolution and softwares used in phylogenetic tree contruction
Molecular basis of evolution and softwares used in phylogenetic tree contruction
 
Genome Curation using Apollo
Genome Curation using ApolloGenome Curation using Apollo
Genome Curation using Apollo
 
Apollo Introduction for i5K Groups 2015-10-07
Apollo Introduction for i5K Groups 2015-10-07Apollo Introduction for i5K Groups 2015-10-07
Apollo Introduction for i5K Groups 2015-10-07
 
Apolo Taller en BIOS
Apolo Taller en BIOS Apolo Taller en BIOS
Apolo Taller en BIOS
 
Comparative Genomics and Visualisation BS32010
Comparative Genomics and Visualisation BS32010Comparative Genomics and Visualisation BS32010
Comparative Genomics and Visualisation BS32010
 
Welch Wordifier Bosc2009
Welch Wordifier Bosc2009Welch Wordifier Bosc2009
Welch Wordifier Bosc2009
 
Deep Learning for Natural Language Processing: Word Embeddings
Deep Learning for Natural Language Processing: Word EmbeddingsDeep Learning for Natural Language Processing: Word Embeddings
Deep Learning for Natural Language Processing: Word Embeddings
 
Introduction to Natural Language Processing
Introduction to Natural Language ProcessingIntroduction to Natural Language Processing
Introduction to Natural Language Processing
 
DextMP: Text mining for finding moonlighting proteins
DextMP: Text mining for finding moonlighting proteinsDextMP: Text mining for finding moonlighting proteins
DextMP: Text mining for finding moonlighting proteins
 
Franz et al evol 2016 representing phylogeny as a logically tractable variable
Franz et al evol 2016 representing phylogeny as a logically tractable variable  Franz et al evol 2016 representing phylogeny as a logically tractable variable
Franz et al evol 2016 representing phylogeny as a logically tractable variable
 
Introduction to Apollo: i5K E affinis
Introduction to Apollo: i5K E affinisIntroduction to Apollo: i5K E affinis
Introduction to Apollo: i5K E affinis
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomics
 
Bridging the Systemic and Semantic Spheres
Bridging the Systemic and Semantic SpheresBridging the Systemic and Semantic Spheres
Bridging the Systemic and Semantic Spheres
 
Experiences with logic programming in bioinformatics
Experiences with logic programming in bioinformaticsExperiences with logic programming in bioinformatics
Experiences with logic programming in bioinformatics
 
Artificial Intelligence Notes Unit 4
Artificial Intelligence Notes Unit 4Artificial Intelligence Notes Unit 4
Artificial Intelligence Notes Unit 4
 
Biological literature mining - from information retrieval to biological disco...
Biological literature mining - from information retrieval to biological disco...Biological literature mining - from information retrieval to biological disco...
Biological literature mining - from information retrieval to biological disco...
 
Beyond Transparency: Success & Lessons From tambisBoston2003
Beyond Transparency: Success & Lessons From tambisBoston2003Beyond Transparency: Success & Lessons From tambisBoston2003
Beyond Transparency: Success & Lessons From tambisBoston2003
 
Introduction to BioNLP and its applications
Introduction to BioNLP and its applicationsIntroduction to BioNLP and its applications
Introduction to BioNLP and its applications
 

Recently uploaded

role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
sonaliswain16
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
IvanMallco1
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
kumarmathi863
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
DiyaBiswas10
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
University of Maribor
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
muralinath2
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
NathanBaughman3
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
anitaento25
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
muralinath2
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Areesha Ahmad
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 

Recently uploaded (20)

role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 

Formal languages to map Genotype to Phenotype in Natural Genomes

  • 1. Formal languages to map Genotype to Phenotype in Natural Genomes Laura Adam GBCB student
  • 2. Outline 1. The Genotype to Phenotype (G2P) mapping problem 2. Using formal languages to formalize G2P mapping 3. Implementation in synthetic/systems biology design software to study mutants
  • 3. 1. THE GENOTYPE TO PHENOTYPE (G2P) MAPPING PROBLEM G2P= Genotype to Phenotype
  • 4. Genotype to Phenotype mapping Genotype • genetic makeup of a cell, an organism, or an individual • specific alleles • inherited Phenotype • observable characteristics or traits – morphology, development, biochemical or physiological properties, behavior, and products of behavior (such as a bird's nest). Definitions from Wikipedia Phenotypes result from: • the expression of an organism's genes • the influence of environmental factors and developmental conditions • the interactions between the two Mapping ?
  • 5. The ultimate goal of a G2P map G2P map The Phenotype is X
  • 6. Historical perspectives: Mendelian genetics Law of Segregation: “Mendelian genetics, considers traits that are determined completely by individual genes.”
  • 7. Traditional G2P mapping is linear • Sui Huang, Rational drug discovery: what can we learn from regulatory networks?, Drug Discovery Today, Volume 7, Issue 20, 15 October 2002 • Peccoud, J., Velden, K. V., Podlich, D., Winkler, C., Arthur, L., & Cooper, M. (2004). The selective values of alleles in a molecular network model are context dependent. Genetics, 166(4), 1715–25. Phenotypes Central dogma
  • 8. Current Formalisms Databases: genetic mapping, genome annotation, genotype, mutant, transcripteome, proteome and metabolomic data. Ontologies: Controlled vocabulary for annotation of genes and their products (cellular component, molecular function, biological process) Actually, G2P maps are nonlinear: Gene Networks • Priest, N. K., Rudkin, J. K., Feil, E. J., van den Elsen, J. M. H., Cheung, A., Peacock, S. J., Laabei, M., et al. (2012). From genotype to phenotype: can systems biology be used to predict Staphylococcus aureus virulence? Nature reviews. Microbiology, 10(11), 791–7. doi:10.1038/nrmicro2880 • Benfey, P. N., & Mitchell-Olds, T. (2008). From genotype to phenotype: systems biology meets natural variation. Science. “replacing the linear pathways with interconnected networks.”
  • 9. Gene expression mechanisms also matter “The current understanding of the mechanisms of gene expression indicates the importance of nonlinear effects resulting from gene interactions. “ – Peccoud, J., Velden, K. V., Podlich, D., Winkler, C., Arthur, L., & Cooper, M. (2004). The selective values of alleles in a molecular network model are context dependent. Genetics.  Trans-regulatory element = gene which may modify (or regulate) the expression of distant genes – Phosphorylation, protein complex, transcription inhibition, etc.  Cis-regulatory element = a region of DNA or RNA that regulates the expression of genes located on the same section of DNA – Translation rate depends on RBS and CDS, etc. – Folding alters function and dynamics
  • 10. What is missing in current G2P maps? Gene expression mechanisms: the dynamics trans and cis interactions
  • 11. 2. HOW TO FORMALIZE G2P MAPPING TO MAKE PREDICTIONS? What formal languages can bring.
  • 12. Is “language of life” just a metaphor? Or what insights can we get from computational studies of natural language?
  • 13. Natural Language Processing How about a computational linguistics approach to the G2P mapping problem?  Like a text, in biology we have a support for information (Genotype), and a meaning (Phenotype)  Anaphora as trans-interactions: • “type of expression whose reference depends upon another referential element” • eg: relation noun/pronoun
  • 14. Anaphora as trans-interactions • “type of expression whose reference depends upon another referential element”
  • 15. Natural Language Processing How about a computational linguistics approach to the G2P mapping problem?  Like a text, we have a support for information (Genotype), and a meaning (Phenotype)  Anaphora as trans-interactions: • eg: relation noun/pronoun (Mary – she)  Inflectional morphology as cis-interactions • eg: subject+verb (+tense)
  • 16. Inflectional morphology as cis- interactions
  • 17. Natural Language Processing How about a computational linguistics approach to the G2P mapping problem? Like a text, we have a support for information (Genotype), and a meaning (Phenotype) Anaphora as trans-interactions: • eg: relation noun/pronoun (Mary – she) Inflectional morphology as cis-interactions • eg: subject+verb (+tense) Handle context: • Wittgenstein - language-game • He went there.
  • 18. We are learning about formal languages Nous apprenons les languages formels (Nosotros) estamos estudiando los lenguajes formales Natural languages and Computers? >> Linguistic universal
  • 19. Intuition: Formal languages • <subject> <verb> <object> = (SVO) – A linguistic typology – Could be <subject> <object> <verb> = (SOV)  We are learning about formal languages  Nous apprenons les languages formels (Nosotros) estamos estudiando los lenguajes formales
  • 20. Intuition: Formal language • SVO_sentence  Subject, Verb, Object • Object  Noun phrase | Relative_clause • Subject  “I” | “You” | “He” | “She” | “We’ | “They” • Verb  “are learning” | “is learning” • Noun phrase  “about formal languages” • Relative_clause  “that formal languages are awesome” A grammar is a: Set of rules describing how to form sentences from a language’s vocabulary
  • 21. Example: Formal language Object  Noun Phrase SVO_sentence  Subject Verb Object SVO_sentence Subject We Verb are learning Object Noun phrase about formal languages. A parse tree represents the syntactic structure of a string according to some formal grammar.
  • 22. Context free grammar • Terminals =words • Non Terminals = intermediary steps • Rules: – Non-terminals {Terminals and Non terminals} • Start >> The language is the set of all sentences that can be produced Noam Chomsky "father of modern linguistics"
  • 23. The repressilator Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767), 335-8. doi:10.1038/35002125
  • 24. The toggle switch Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339-42. doi:10.1038/35002131 lacI tetR
  • 25. Grammar and Biology? • Pattern to express protein (typology): – <promoter> <rbs> <coding_seq> <ter> <ter> >> Some underlying rules that must govern biology !
  • 26. What would a CFG for Biology be like? • “Sentence” to express proteins – Transcription: promoter, terminator – Translation: ribosome biding site • Central dogma: – Cassette: Promoter + RBS + CDS + Terminator
  • 27. Example: SynBio CFG Rules • CONSTRUCT  CAS | 2CAS | 2CASREV | 3CAS • 2CAS  CAS, CAS • 2CASREV  CAS, [, CAS, ] • 3CAS  CAS, CAS, CAS • CAS  PROMOTER, CIX, TERMINATOR • CIX  CISTRON | CISTRON, CISTRON • CISTRON  RBS, CDS • TERMINATOR  TERMINATOR, TERMINATOR
  • 28. Example: SynBio CFG Terminals Genetic parts: • PROMOTER  placi | ptetr | pci • RBS  rbsA | rbsB • CDS  laci | tetr |ci | gfp • TERMINATOR  t1 | t2
  • 29. CONSTRUCT CAS PROMOTER ptetr CIX CISTRON RBS rbsA CDS laci TERMINATOR TERMINATOR t1 TERMINATOR t2 Example: SynBio CFG Express a gene 1. CONSTRUCT  CAS 2. CAS  PROMOTER, CIX, TERMINATOR 3. CIX  CISTRON 4. CISTRON  RBS, CDS 5. TERMINATOR  TERMINATOR, TERMINATOR
  • 31. And the Phenotype? The meaning • Use of Attribute Grammars • It is a CFG plus: – Terminals and Non-Terminals have attributes – Rules have semantic actions to compute attributes values >> While going through the parse tree, we now also evaluate the semantics (meaning)
  • 32. And the Phenotype? The meaning – Transcription: • dna  dna + mrna – Translation: • mrna  mrna + protein – Degradation mrna: • mrna  [] – Degradation protein: • protein  [] – Interaction promoter protein: • dna + repressor <-> dna_repressor_x
  • 33. Example - Attributes • Promoter: transcription rate, repressor – Promoter(transcription_rate, repressor)  ptetr (50, tetr) – Promoter(transcription_rate, repressor)  placi (10, laci) • RBS: translation rate – RBS(translation_rate)  rbsA (25) – RBS(translation_rate)  rbsB (50) • CDS: degradation rate for the protein and the mRNA – CDS(protein_deg,mrna_deg)  laci(1,1) – CDS(protein_deg,mrna_deg)  tetr(1,1) • Terminator – Terminator  t1
  • 34. Example: Semantic Actions • CAS  PROMOTER(transcription_rate, repressor), CIX, TERMINATOR – Transcription: dna  dna + mrna, [transcription_rate] – Interaction: if repressor in construct then dna + repressor  dna_repressor_X • CISTRON  RBS(translation_rate), CDS(protein_deg,mrna_deg) – Translation: mrna  mrna + protein, [translation_rate] – Degradation_mrna: mrna  φ, [mrna_deg] – Degradation_protein: protein  φ, [protein_deg]
  • 35. Semantic DNA Compilation Genetic Design A Get Chemical Equations for A Attribute Grammar
  • 36. Semantic DNA Compilation Genetic Design B Get Chemical Equations for B Attribute Grammar
  • 43. CAS PROMOTER: ptetr ptetr CIX CISTRON RBS rbsA CDS laci TERMINATOR TERMINATOR t1 TERMINATOR t2 Example: Toggle switch • Translation: mrna  mrna + protein, [translation_rate] • Degradation_mrna: mrna  φ, [mrna_deg] • Degradation_protein: protein  φ, [protein_deg]
  • 44. CAS PROMOTER: ptetr ptetr CIX CISTRON RBS: rbsA rbsA CDS laci TERMINATOR TERMINATOR t1 TERMINATOR t2 Example: Toggle switch • Translation: mrna  mrna + protein, [translation_rate] • Degradation_mrna: mrna  φ, [mrna_deg] • Degradation_protein: protein  φ, [protein_deg]
  • 45. CAS PROMOTER: ptetr ptetr CIX CISTRON RBS: rbsA rbsA CDS: laci laci TERMINATOR TERMINATOR t1 TERMINATOR t2 Example: Toggle switch • Translation: mrna  mrna + protein, [translation_rate] • Degradation_mrna: mrna  φ, [mrna_deg] • Degradation_protein: protein  φ, [protein_deg]
  • 46. CAS PROMOTER: ptetr ptetr CIX CISTRON RBS: rbsA rbsA CDS: laci laci TERMINATOR TERMINATOR t1 TERMINATOR t2 Example: Toggle switch • Translation: mrna_rbsA_laci  mrna_rbsA_laci + protein_laci, [25] • Degradation_mrna: mrna_rbsA_laci  φ, [1] • Degradation_protein: protein_laci  φ, [1]
  • 47. CAS PROMOTER: ptetr ptetr CIX CISTRON RBS: rbsA rbsA CDS: laci laci TERMINATOR TERMINATOR t1 TERMINATOR t2 Example: Toggle switch • Translation: mrna_rbsA_laci  mrna_rbsA_laci + protein_laci, [25] • Degradation_mrna: mrna_rbsA_laci  φ, [1] • Degradation_protein: protein_laci  φ, [1]
  • 48. CAS PROMOTER: ptetr ptetr CIX CISTRON RBS: rbsA rbsA CDS: laci laci TERMINATOR TERMINATOR t1 TERMINATOR t2 Example: Toggle switch • Translation: mrna_rbsA_laci  mrna_rbsA_laci + protein_laci, [25] • Degradation_mrna: mrna_rbsA_laci  φ, [1] • Degradation_protein: protein_laci  φ, [1]
  • 49. CAS PROMOTER: ptetr ptetr CIX CISTRON RBS: rbsA rbsA CDS: laci laci TERMINATOR TERMINATOR t1 TERMINATOR t2 Example: Toggle switch • Translation: mrna_rbsA_laci  mrna_rbsA_laci + protein_laci, [25] • Degradation_mrna: mrna_rbsA_laci  φ, [1] • Degradation_protein: protein_laci  φ, [1]
  • 50. CAS PROMOTER: ptetr ptetr CIX CISTRON RBS: rbsA rbsA CDS: laci laci TERMINATOR TERMINATOR t1 TERMINATOR t2 Example: Toggle switch • Translation: mrna_rbsA_laci  mrna_rbsA_laci + protein_laci, [25] • Degradation_mrna: mrna_rbsA_laci  φ, [1] • Degradation_protein: protein_laci  φ, [1] • Transcription: dna  dna + mrna, [transcription_rate] • Interaction: if repressor in construct then dna + repressor  dna_repressor_X
  • 51. CAS PROMOTER: ptetr ptetr CIX CISTRON RBS: rbsA rbsA CDS: laci laci TERMINATOR TERMINATOR t1 TERMINATOR t2 Example: Toggle switch • Translation: mrna_rbsA_laci  mrna_rbsA_laci + protein_laci, [25] • Degradation_mrna: mrna_rbsA_laci  φ, [1] • Degradation_protein: protein_laci  φ, [1] • Transcription: dna_ptetr_rbsA_laci  dna_ptetr_rbsA_laci + mrna_rbsA_laci , [50] • Interaction: if tetr in construct dna_ptetr_rbsA_laci + protein_tetr  dna_ptetr_rbsA_laci _tetr_X
  • 53. Toggle switch laci/tetr Get Chemical Equations for A CONST RUCT CAS PROMO TER ptetr CIX CISTRO N RBS rbsA CDS laci TERMIN ATOR TERMIN ATOR t1 TERMIN ATOR t2 [ CAS PROMO TER placi CIX CISTRO N RBS rbsB CDS tetr CISTRO N RBS rbsB CDS gfp TERMIN ATOR t1 ] Example: Toggle switch • Transcription: dna_ptetr_rbsA_laci  dna_ptetr_rbsA_laci + mrna_rbsA_laci , [50] • Interaction: if tetr in construct dna_ptetr_rbsA_laci + protein_tetr  dna_ptetr_rbsA_laci _tetr_X • Translation: mrna_rbsA_laci  mrna_rbsA_laci + protein_laci, [25] • Degradation_mrna: mrna_rbsA_laci  φ, [1] • Degradation_protein: protein_laci  φ, [1] • Transcription: dna_placi_rbsB_tetr  dna_placi_rbsB_tetr + mrna_rbsB_tetr , [10] • Interaction: if laci in construct dna_placi_rbsB_tetr + protein_tetr  dna_placi_rbsB_tetr_laci_X • Translation: mrna_rbsB_tetr  mrna_rbsB_tetr + protein_tetr, [50] • Degradation_mrna: mrna_rbsB_tetr  φ, [1] • Degradation_protein: protein_tetr  φ, [1] Attribute Grammar
  • 54. Natural language Natural genomes Formal languages Synthetic biology Scaling up to Natural Genomes Building a Yeast Cell Cycle Attribute Grammar: A projection of the Cell Cycle model onto the Genome
  • 55. AG ? 1. The syntax 2. The chemical equations
  • 56. Genome database – Wild-type 56
  • 57. 57 0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI < CLN3 < LTE1 < CDC15 CDC28 > < PDS1 < SWI5 BCK2 > < CDC14 CDC20 > < CDH1 < ESP1 CDC6 > NET1 > MAD2 > SBF > SIC1 > TEM1 > MCM1 > BUB2> < CLN2 < CLB2 < CLB5 #chromosome # bp 22 genes
  • 58. Syntax of the yeast cell cycle grammar GENOME  MODEL ( CHRI ) ( CHRII ) ( CHRIII ) ( CHRIV ) ( CHRV ) ( CHRVI ) ( CHRVII ) ( CHRVIII ) ( CHRIX ) ( CHRX ) ( CHRXI ) ( CHRXII ) ( CHRXIII ) ( CHRXIV ) ( CHRXV ) ( CHRXVI ) CHRI  CHRI_L [CLN3 ] CHRI_M1 [LTE1 ] CHRI_M2 [CDC15 ] CHRI_R CHRII  CHRII_L CDC28 CHRII_R CHRIV  CHRIV_L [PDS1 ] CHRIV_M [SWI5 ] CHRIV_R CHRV  CHRV_L BCK2 CHRV_R CHRVI  CHRVI_L [CDC14 ] CHRVI_R CHRVII  CHRVII_L CDC20 CHRVII_M1 [CDH1 ] CHRVII_M2 [ESP1 ] CHRVII_R CHRX  CHRX_L CDC6 CHRX_M1 NET1 CHRX_M2 MAD2 CHRX_R CHRXI  CHRXI_L SBF CHRXI_R CHRXII  CHRXII_L SIC1 CHRXII_R CHRXIII  CHRXIII_L [TEM1 ] CHRXIII_M1 MCM1 CHRXIII_M2 [BUB2 ] CHRXIII_R CHRXVI  CHRXVI_L [CLN2 ] CHRXVI_M1 CLB2 CHRXVI_M2 [CLB5 ] CHRXVI_R
  • 59. AG ? 1. The syntax 2. The chemical equations
  • 60. Chen’s Model Cell Cycle •150 parameters •>100 mutants •59 ODEs •4 events Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B., & Tyson, J. J. (2004). Integrative analysis of cell cycle control in budding yeast. Molecular biology of the cell, 15(8), 3841-62. doi:10.1091/mbc.E03-11-0794
  • 62. Rules’ Semantic Actions Trans interactions: • Synthesis of {proteinX} by {proteinY} • synthesis (X, Y, background_synthesis, Y_dependant_synthesis) • Degradation of {protein} • Phosphorylation of {protein} • Dephosphorylation of {protein} • Association of {proteinA} and {proteinB} • Dissociation of {proteinA} and {proteinB} • Degradation of {proteinA) in {proteinB} • {proteinA}/{proteinB} complex formation • {proteinA}/{proteinB} dissociation • … • Growth Events: • Reset ORI • Start DNA synthesis • Spindle checkpoint • Cell division Kinetic laws/functions: • BB • Michaelis-Menten • Mass action1 (1 element) • Mass action 2 (2elements) • Goldbeter-Koshland function
  • 63. Semantic – BCK2 example • Definitions: Chemical Equation “ Protein, mass [rate]” – synthesis(Name, Rate):-Write(Name.” = [mass] . ” .Rate). • Rules – ChrV  ChrV_L Bck2(B0) ChrV_R, {synthesis (‘Bck2’, B0)} • Parts = alleles – Bck2(0.054)[part_bck2_wt]. – Bck2(0)[part_bck2_ Δ]. 63
  • 64. Compile and Get wild type SBML file
  • 65. Future: Mutant design • Consider: – What genes are modified?  New parts – How biologists make the mutant?  New grammar rules – How it relates to the mathematical model?  New semantic actions >> We can compute what would be the behavior of new mutants according to the model Phenotype: • Inviable (phase blocked?) • Viable (size at onset of DNA synthesis, size at bud emergence, size at division, and duration of G1 phase?)
  • 66. 3. IMPLEMENTATION IN SYNTHETIC/SYSTEMS BIOLOGY DESIGN SOFTWARE TO STUDY MUTANTS GenoCAD.org
  • 67. 67
  • 68. 68
  • 69.
  • 70.
  • 71.
  • 72. 72
  • 73.
  • 74.
  • 75.
  • 77. To Switches and Oscillators, Yeast Cell Cycle…and beyond! Working on a workflow for users to define their OWN Attribute Grammar: • Define the syntax • Define your template equations (regular, trans and cis), choose kinetic laws >>parameters 1. Link equations to grammar rules as semantic actions 2. Link parameters to categories 3. Add any cis interaction Attribute Grammars can be a formalism for G2P maps
  • 78. Use generated compiler to analyze your designs in GenoCAD Design1 Your project’s grammar AG editor Database Design2 Design mutants Prolog compiler Java (libSBML) SBML Java (libSBML) SBML
  • 80. Conclusions  Semantic models of DNA sequences: – formalize G2P mapping and confer predictive powers with Attribute Grammars: • translate DNA sequences into mathematical models • predicting the phenotype they encode – fill a gap in annotating genetic information by integrating gene expression mechanisms  Attribute grammar for the yeast cell cycle: – in a logical and structured fashion, information from genomic databases and mathematical models will be utilized in the exploration of novel mutants – semantic models for natural genomes  Genetic design tools user-friendly to the majority and still adaptable to specific projects. – GenoCAD: create libraries of parts, rule-based design and simulation, generation of SBML files – Define your own project’s Attribute Grammars: GUI editor  Design mutants in minutes and simulate them!
  • 81. Acknowledgements • VBI SynBio Group – J. Peccoud (P.I.) – N. Adames – D. Ball – M. Lux – C. Overend – M. Wilson – and Patrick (Yizhi) Cai – and R. Hertzberg Cai, Y., Lux, M. W., Adam, L., & Peccoud, J. (2009). Modeling structure-function relationships in synthetic DNA sequences using attribute grammars. PLoS computational biology • My PhD committee:  Dr. Bevan  Dr. Garner  Dr. Kepes  Dr. Peccoud  Dr. Ramakrishnan  Dr. Tyson And Dennie Munson!
  • 83. Syntactic Limitation 83 The Chomsky hierachy Searls, D.B. “Linguistic approaches to biological sequences.” Bioinformatics 13, no. 4 (1997): 333. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/13/4/333.
  • 84. Parsing 84 Left to Right Top-Down Parse The Parse Tree of the Sentence "The boy went home“ Right to Left Top-Down Parse Left to Right Bottom-Up Parse Right to Left Bottom-Up Parse
  • 85. Use of attribute grammar in synthetic biology 85 Formal definition Semantic In the synthetic biology context V, a finite set of non- terminals Attributes Parts categories Σ, a finite set of terminals Attributes values Genetic Parts R, a finite relation from V to (VUΣ)* Semantic actions Design Rules S∈V, the start symbol Hard-coded declarations Start