SlideShare a Scribd company logo
王 俊 鑫 (Chun-Hsin Wang)
中華大學 資訊工程系
Fall 2002
Chap 1 First-Order
Differential Equations
Page 2
Outline
 Basic Concepts
 Separable Differential Equations
 substitution Methods
 Exact Differential Equations
 Integrating Factors
 Linear Differential Equations
 Bernoulli Equations
Page 3
Basic Concepts
 Differentiation
x
e
x
x
x
a
a
a
e
e
nx
x
a
a
x
x
x
x
n
n
log
)
(log
1
)
(ln
ln
)
(
)
(
)
( 1









 
x
x
x
x
x
x
x
x
x
x
x
x
x
x
cot
csc
)
(csc
tan
sec
)
(sec
csc
)
(cot
sec
)
(tan
sin
)
(cos
cos
)
(sin
2
2















Page 4
Basic Concepts
 Differentiation
x
x
x
x
sinh
)
(cosh
cosh
)
(sinh




2
1
2
1
2
1
2
1
1
1
)
(cot
1
1
)
(tan
1
1
)
(cos
1
1
)
(sin
x
x
x
x
x
x
x
x


















Page 5
Basic Concepts
 Integration
c
a
a
dx
a
c
e
dx
e
c
x
dx
x
dx
x
c
n
x
dx
x
x
x
x
x
n
n

















ln
ln
1
1
1
1



















vdx
u
uv
dx
v
u
vdu
uv
udv
udx
c
cudx
vdx
udx
dx
v
u )
(
Page 6
Basic Concepts
 Integration
c
x
x
xdx
c
x
x
xdx
c
x
xdx
c
x
xdx
c
x
xdx
c
x
xdx






















cot
csc
ln
csc
tan
sec
ln
sec
sin
ln
cot
cos
ln
tan
sin
cos
cos
sin
Page 7
Basic Concepts
 Integration
c
a
x
dx
a
x
c
a
x
dx
a
x
c
a
x
dx
x
a
c
a
x
a
dx
a
x




















1
2
2
1
2
2
1
2
2
1
2
2
cosh
1
sinh
1
sin
1
tan
1
1
Page 8
Basic Concepts
 ODE vs. PDE
 Dependent Variables vs. Independent
Variables
 Order
 Linear vs. Nonlinear
 Solutions
Page 9
Basic Concepts
 Ordinary Differential Equations
 An unknown function (dependent variable) y
of one independent variable x
x
dx
dy
y cos



0
4 


 y
y
2
2
2
)
2
(
2 y
x
y
e
y
y
x x









Page 10
Basic Concepts
 Partial Differential Equations
 An unknown function (dependent variable)
z of two or more independent variables
(e.g. x and y)
y
x
x
z
4
6 



y
x
y
x
z





2
2
Page 11
Basic Concepts
 The order of a differential equation is
the order of the highest derivative that
appears in the equation.
0
)
( 2
2
3






 y
n
x
y
x
y
x Order 2
2
2
1
y
x
dx
dy

 Order 1
1
)
( 4
3
2
2

 y
dx
y
d
Order 2
Page 12
Basic Concept
 The first-order differential equation contain only y’
and may contain y and given function of x.
 A solution of a given first-order differential equation
(*) on some open interval a<x<b is a function
y=h(x) that has a derivative y’=h(x) and satisfies
(*) for all x in that interval.
)
,
(
'
0
)
'
,
,
(
y
x
F
y
y
y
x
F


or (*)
Page 13
Basic Concept
 Example : Verify the solution
x
2
y
2y
xy'


Page 14
Basic Concepts
 Explicit Solution
 Implicit Solution
)
(x
h
y 
0
)
,
( 
y
x
H
Page 15
Basic Concept
 General solution vs. Particular solution
 General solution
 arbitrary constant c
 Particular solution
 choose a specific c
,....
2
,
3
'






c
c
sinx
y
cosx
y
Page 16
Basic Concept
 Singular solutions
 Def : A differential equation may sometimes have an
additional solution that cannot be obtained from the
general solution and is then called a singular
solution.
 Example
The general solution : y=cx-c2
A singular solution : y=x2/4
0
' 

 y
xy
y'
2
Page 17
Basic Concepts
 General Solution
 Particular Solution for y(0)=2 (initial condition)
kt
ce
t
y 
)
(
kt
e
t
y 2
)
( 
ky
y 

Page 18
Basic Concept
 Def: A differential equation together
with an initial condition is called an
initial value problem
0
0)
(
),
,
(
' y
x
y
y
x
f
y 

Page 19
Separable Differential Equations
 Def: A first-order differential equation of
the form
is called a separable differential
equation
dx
x
f
dy
y
g
f(x)
g(y)y
)
(
)
(
'


Page 20
Separable Differential Equations
 Example :
Sol:
0
4
9 

 x
y
y
Page 21
Separable Differential Equations
 Example :
Sol:
2
1 y
y 


Page 22
Separable Differential Equations
 Example :
Sol:
ky
y 

Page 23
Separable Differential Equations
 Example :
Sol:
1
)
0
(
,
2 


 y
xy
y
Page 24
Separable Differential Equations
 Substitution Method:
A differential equation of the form
can be transformed into a separable
differential equation
)
(
x
y
g
y 

Page 25
Separable Differential Equations
 Substitution Method:
ux
y  u
x
u
y 



x
dx
u
u
g
du
u
u
g
x
u
u
g
u
x
u










)
(
)
(
)
(
Page 26
Separable Differential Equations
 Example :
Sol:
2
2
2 x
y
y
xy 


cx
y
x
x
c
x
y
x
c
u
c
x
c
x
u
x
dx
u
udu
u
u
u
x
u
y
x
x
y
xy
x
xy
y
y
x
y
y
xy








































2
2
2
2
1
1
2
2
2
2
2
2
1
1
1
ln
ln
)
1
ln(
1
2
)
1
(
2
1
)
(
2
1
2
2
2
Page 27
Separable Differential Equations
 Exercise 1
2
01
.
0
1 y
y 


2
/
xy
y 

y
y
y
x 

 2
2
)
2
(
,
0
' 


 y
y
xy
Page 28
Exact Differential Equations
 Def: A first-order differential equation of
the form
is said to be exact if
0
)
,
(
)
,
( 
 dy
y
x
N
dx
y
x
M
x
y
x
N
y
y
x
M



)
,
(
)
,
(
Page 29
Exact Differential Equations
 Proof:
0
)
,
(
)
,
(
0
)
,
(









dy
y
x
N
dx
y
x
M
dy
y
u
dx
x
u
y
x
du
x
y
x
N
y
y
x
M
y
x
y
x
u






 )
,
(
)
,
(
)
,
(
Page 30
Exact Differential Equations
 Example :
Sol:
0
)
3
(
)
3
( 3
2
2
3



 dy
y
y
x
dx
xy
x
Exact
xy
x
N
y
M
xy
x
y
y
x
xy
y
xy
x
,
6
6
3
6
3
3
2
2
3













Page 31
Exact Differential Equations
Sol:
)
(
2
3
4
1
)
(
)
3
(
)
(
2
2
4
2
3
y
k
y
x
x
y
k
dx
xy
x
y
k
Mdx
u










1
4
3
2
2
4
)
(
3
)
(
3
c
y
y
k
y
y
x
N
dy
y
dk
y
x
y
u










Page 32
Exact Differential Equations
Sol:
c
y
y
x
x
y
x
u 


 )
6
(
4
1
)
,
( 4
2
2
4
Page 33
Exact Differential Equations
 Example
3
)
0
(
0
)
sinh
(cos
)
cosh
(sin



y
dy
y
x
dx
y
x
Page 34
Non-Exactness
 Example : 0


 xdy
ydx
Page 35
Integrating Factor
 Def: A first-order differential equation of the form
is not exact, but it will be exact if multiplied by
F(x, y)
then F(x,y) is called an integrating factor of this
equation
0
)
,
(
)
,
( 
 dy
y
x
Q
dx
y
x
P
0
)
,
(
)
,
(
)
,
(
)
,
( 
 dy
y
x
Q
y
x
F
dx
y
x
P
y
x
F
Page 36
Exact Differential Equations
 How to find integrating factor
 Golden Rule
x
x
y
y FQ
Q
F
FP
P
F
Exact
x
FQ
y
FP
FQdy
FPdx












,
0
)
(
1
1
0
Let
x
y
x
y
Q
P
Q
dx
dF
F
FQ
Q
dx
dF
FP
P
F(x)
F








Page 37
Exact Differential Equations
 Example :
Sol:
0


 xdy
ydx
Exact
x
N
x
y
M
dy
x
dx
x
y
x
xdy
ydx
x
F
,
1
1
1
2
2
2
2













Page 38
Exact Differential Equations
Sol:
cx
y
c
x
y
x
y
d
dy
x
dx
x
y







 0
)
(
1
2
Page 39
Exact Differential Equations
 Example :
2
)
2
(
0
)
cos(
)
sin(
2 2
2




y
dy
y
xy
dx
y
Page 40
Exact Differential Equations
 Exercise 2
0
2 2

 dy
x
xydx 0
)
( 2
2





d
r
rdr
e
x
e
F
ydy
ydx 

 ,
0
cos
sin
b
a
y
x
F
xdy
b
ydx
a 



 ,
0
)
1
(
)
1
(
0
)
1
(
)
1
( 


 dy
x
dx
y
Page 41
Linear Differential Equations
 Def: A first-order differential equation is
said to be linear if it can be written
 If r(x) = 0, this equation is said to be
homogeneous
)
(
)
( x
r
y
x
p
y 


Page 42
Linear Differential Equations
 How to solve first-order linear homogeneous
ODE ?
Sol:
0
)
( 

 y
x
p
y




 















dx
x
p
c
dx
x
p
c
dx
x
p
ce
e
e
e
y
c
dx
x
p
y
dx
x
p
y
dy
y
x
p
dx
dy
)
(
)
(
)
(
1
1
1
)
(
ln
)
(
0
)
(
Page 43
Linear Differential Equations
 Example :
Sol:
0


 y
y
x
c
x
c
x
dx
dx
x
p
e
c
e
ce
ce
ce
ce
x
y
2
)
1
(
)
(
1
1
)
(











Page 44
Linear Differential Equations
 How to solve first-order linear nonhomogeneous
ODE ?
Sol:
)
(
)
( x
r
y
x
p
y 


)
(
))
(
)
(
(
)
(
1
1
0
))
(
)
(
(
)
(
)
(
x
p
x
r
y
x
p
y
Q
P
Q
dx
dF
F
dy
dx
x
r
y
x
p
x
r
y
x
p
dx
dy
x
y 













Page 45
Linear Differential Equations
Sol:


dx
x
p
e
x
F
)
(
)
(





 




















c
dx
r
e
e
x
y
c
dx
r
e
y
e
r
e
y
e
py
y
e
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
Page 46
Linear Differential Equations
 Example :
Sol:
x
e
y
y 2



 
 
x
x
x
x
x
x
x
x
dx
dx
dx
x
p
dx
x
p
e
ce
c
e
e
c
dx
e
e
e
c
dx
e
e
e
c
dx
r
e
e
x
y
2
2
2
)
1
(
)
1
(
)
(
)
(
)
(











 








 











Page 47
Linear Differential Equations
 Example :
)
2
cos
2
2
sin
3
(
2 x
x
e
y
y x
'



Page 48
Bernoulli, Jocob
Bernoulli, Jocob
1654-1705
Page 49
Linear Differential Equations
 Def: Bernoulli equations
 If a = 0, Bernoulli Eq. => First Order
Linear Eq.
 If a <> 0, let u = y1-a
a
y
x
g
y
x
p
y )
(
)
( 


g
a
pu
a
u )
1
(
)
1
( 




Page 50
Linear Differential Equations
 Example :
Sol:
2
By
Ay
y 



 
A
B
ce
u
y
A
B
ce
c
dx
e
A
B
e
c
dx
Be
e
u
B
Au
u
Ay
B
Ay
By
y
y
y
u
y
y
y
u
Ax
Ax
Ax
Ax
Ax
Ax
a














































1
1
)
( 1
2
2
2
1
2
1
1
Page 51
Linear Differential Equations
 Exercise 3
4


 y
y kx
e
ky
y 



2
2 y
y
y 


1



 xy
xy
y
)
2
(
,
sin
3 
y
x
y
y 


Page 52
Summary
可分離 Separable 
變換法 Substitution 
正合 Exact 
積分因子 Integrating Factor 
線性 Linear 
柏努利 Bernoulli 
dx
x
f
dy
y
g )
(
)
( 
dx
x
f
du
u
g )
(
)
( 
0
)
,
(
)
,
( 
 dy
y
x
N
dx
y
x
M
0

 FQdy
FPdx
)
(
)
( x
r
y
x
p
y 


a
y
x
g
y
x
p
y )
(
)
( 


Page 53
Orthogonal Trajectories of
Curves
 Angle of intersection of two curves is
defined to be the angle between the
tangents of the curves at the point of
intersection
 How to use differential equations for
finding curves that intersect given
curves at right angles ?
Page 54
How to find Orthogonal Trajectories
 1st Step: find a differential equation
for a given cure
 2nd Step: the differential equation of the
orthogonal trajectories to be found
 3rd step: solve the differential equation
as above ( in 2nd step)
)
,
( y
x
f
y 
)
,
( y
x
f
y' 
)
,
(
1
y
x
f
y' 

Page 55
Orthogonal Trajectories of Curves
 Example: given a curve y=cx2, where c
is arbitrary. Find their orthogonal
trajectories.
Sol:
Page 56
Existance and Uniqueness of Solution
 An initial value problem may have no
solutions, precisely one solution, or
more than one solution.
 Example
1
)
0
(
,
0
' 

 y
y
y
1
)
0
(
,
' 
 y
x
y
1
)
0
(
,
1
' 

 y
y
xy
No solutions
Precisely one solutions
More than one solutions
Page 57
Existence and uniqueness theorems
 Problem of existence
 Under what conditions does an initial
value problem have at least one
solution ?
 Existence theorem, see page 53
 Problem of uniqueness
 Under what conditions does that the
problem have at most one solution ?
 Uniqueness theorem, see page54

More Related Content

Similar to fode1.ppt

Differential equation and Laplace transform
Differential equation and Laplace transformDifferential equation and Laplace transform
Differential equation and Laplace transform
sujathavvv
 
Differential equation and Laplace transform
Differential equation and Laplace transformDifferential equation and Laplace transform
Differential equation and Laplace transform
Mohanamalar8
 
K12105 sharukh...
K12105 sharukh...K12105 sharukh...
K12105 sharukh...
shahrukh0222
 
160280102031 c2 aem
160280102031 c2 aem160280102031 c2 aem
160280102031 c2 aem
L.D. COLLEGE OF ENGINEERING
 
MRS EMMAH.pdf
MRS EMMAH.pdfMRS EMMAH.pdf
MRS EMMAH.pdf
Kasungwa
 
Unit2
Unit2Unit2
Unit I.pptx notes study important etc good
Unit I.pptx notes study important etc goodUnit I.pptx notes study important etc good
Unit I.pptx notes study important etc good
SanjayKumar255383
 
UNIT-III.pdf
UNIT-III.pdfUNIT-III.pdf
UNIT-III.pdf
Rupesh383474
 
160280102051 c3 aem
160280102051 c3 aem160280102051 c3 aem
160280102051 c3 aem
L.D. COLLEGE OF ENGINEERING
 
Differential equations
Differential equationsDifferential equations
Differential equations
Dawood Aqlan
 
Differential equations
Differential equationsDifferential equations
Differential equations
Charan Kumar
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
Ahmed Haider
 
ME Reference.pdf
ME Reference.pdfME Reference.pdf
ME Reference.pdf
TechnicalDepartment4
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
VjekoslavKovac1
 
Iq3514961502
Iq3514961502Iq3514961502
Iq3514961502
IJERA Editor
 
Automobile 3rd sem aem ppt.2016
Automobile 3rd sem aem ppt.2016Automobile 3rd sem aem ppt.2016
Automobile 3rd sem aem ppt.2016
kalpeshvaghdodiya
 
Ch07 8
Ch07 8Ch07 8
Ch07 8
Rendy Robert
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
Abdul Hannan
 
Integral calculus formula sheet 0
Integral calculus formula sheet 0Integral calculus formula sheet 0
Integral calculus formula sheet 0
DELHI STATE, TECHNICAL EDUCATION
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
AjEcuacion
 

Similar to fode1.ppt (20)

Differential equation and Laplace transform
Differential equation and Laplace transformDifferential equation and Laplace transform
Differential equation and Laplace transform
 
Differential equation and Laplace transform
Differential equation and Laplace transformDifferential equation and Laplace transform
Differential equation and Laplace transform
 
K12105 sharukh...
K12105 sharukh...K12105 sharukh...
K12105 sharukh...
 
160280102031 c2 aem
160280102031 c2 aem160280102031 c2 aem
160280102031 c2 aem
 
MRS EMMAH.pdf
MRS EMMAH.pdfMRS EMMAH.pdf
MRS EMMAH.pdf
 
Unit2
Unit2Unit2
Unit2
 
Unit I.pptx notes study important etc good
Unit I.pptx notes study important etc goodUnit I.pptx notes study important etc good
Unit I.pptx notes study important etc good
 
UNIT-III.pdf
UNIT-III.pdfUNIT-III.pdf
UNIT-III.pdf
 
160280102051 c3 aem
160280102051 c3 aem160280102051 c3 aem
160280102051 c3 aem
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
ME Reference.pdf
ME Reference.pdfME Reference.pdf
ME Reference.pdf
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Iq3514961502
Iq3514961502Iq3514961502
Iq3514961502
 
Automobile 3rd sem aem ppt.2016
Automobile 3rd sem aem ppt.2016Automobile 3rd sem aem ppt.2016
Automobile 3rd sem aem ppt.2016
 
Ch07 8
Ch07 8Ch07 8
Ch07 8
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
 
Integral calculus formula sheet 0
Integral calculus formula sheet 0Integral calculus formula sheet 0
Integral calculus formula sheet 0
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
 

Recently uploaded

8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
by6843629
 
Immersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths ForwardImmersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths Forward
Leonel Morgado
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
vluwdy49
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
University of Hertfordshire
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
Areesha Ahmad
 
The cost of acquiring information by natural selection
The cost of acquiring information by natural selectionThe cost of acquiring information by natural selection
The cost of acquiring information by natural selection
Carl Bergstrom
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
University of Maribor
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
hozt8xgk
 
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdfMending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Selcen Ozturkcan
 
Katherine Romanak - Geologic CO2 Storage.pdf
Katherine Romanak - Geologic CO2 Storage.pdfKatherine Romanak - Geologic CO2 Storage.pdf
Katherine Romanak - Geologic CO2 Storage.pdf
Texas Alliance of Groundwater Districts
 
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
Advanced-Concepts-Team
 
23PH301 - Optics - Optical Lenses.pptx
23PH301 - Optics  -  Optical Lenses.pptx23PH301 - Optics  -  Optical Lenses.pptx
23PH301 - Optics - Optical Lenses.pptx
RDhivya6
 
20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx
Sharon Liu
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
PirithiRaju
 
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdfwaterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
LengamoLAppostilic
 
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
Sérgio Sacani
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
Gokturk Mehmet Dilci
 
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero WaterSharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Texas Alliance of Groundwater Districts
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
PirithiRaju
 
Compexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titrationCompexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titration
Vandana Devesh Sharma
 

Recently uploaded (20)

8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
 
Immersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths ForwardImmersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths Forward
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
 
The cost of acquiring information by natural selection
The cost of acquiring information by natural selectionThe cost of acquiring information by natural selection
The cost of acquiring information by natural selection
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
 
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdfMending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
 
Katherine Romanak - Geologic CO2 Storage.pdf
Katherine Romanak - Geologic CO2 Storage.pdfKatherine Romanak - Geologic CO2 Storage.pdf
Katherine Romanak - Geologic CO2 Storage.pdf
 
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
 
23PH301 - Optics - Optical Lenses.pptx
23PH301 - Optics  -  Optical Lenses.pptx23PH301 - Optics  -  Optical Lenses.pptx
23PH301 - Optics - Optical Lenses.pptx
 
20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
 
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdfwaterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
 
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
 
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero WaterSharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
 
Compexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titrationCompexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titration
 

fode1.ppt

  • 1. 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 1 First-Order Differential Equations
  • 2. Page 2 Outline  Basic Concepts  Separable Differential Equations  substitution Methods  Exact Differential Equations  Integrating Factors  Linear Differential Equations  Bernoulli Equations
  • 3. Page 3 Basic Concepts  Differentiation x e x x x a a a e e nx x a a x x x x n n log ) (log 1 ) (ln ln ) ( ) ( ) ( 1            x x x x x x x x x x x x x x cot csc ) (csc tan sec ) (sec csc ) (cot sec ) (tan sin ) (cos cos ) (sin 2 2               
  • 4. Page 4 Basic Concepts  Differentiation x x x x sinh ) (cosh cosh ) (sinh     2 1 2 1 2 1 2 1 1 1 ) (cot 1 1 ) (tan 1 1 ) (cos 1 1 ) (sin x x x x x x x x                  
  • 5. Page 5 Basic Concepts  Integration c a a dx a c e dx e c x dx x dx x c n x dx x x x x x n n                  ln ln 1 1 1 1                    vdx u uv dx v u vdu uv udv udx c cudx vdx udx dx v u ) (
  • 6. Page 6 Basic Concepts  Integration c x x xdx c x x xdx c x xdx c x xdx c x xdx c x xdx                       cot csc ln csc tan sec ln sec sin ln cot cos ln tan sin cos cos sin
  • 7. Page 7 Basic Concepts  Integration c a x dx a x c a x dx a x c a x dx x a c a x a dx a x                     1 2 2 1 2 2 1 2 2 1 2 2 cosh 1 sinh 1 sin 1 tan 1 1
  • 8. Page 8 Basic Concepts  ODE vs. PDE  Dependent Variables vs. Independent Variables  Order  Linear vs. Nonlinear  Solutions
  • 9. Page 9 Basic Concepts  Ordinary Differential Equations  An unknown function (dependent variable) y of one independent variable x x dx dy y cos    0 4     y y 2 2 2 ) 2 ( 2 y x y e y y x x         
  • 10. Page 10 Basic Concepts  Partial Differential Equations  An unknown function (dependent variable) z of two or more independent variables (e.g. x and y) y x x z 4 6     y x y x z      2 2
  • 11. Page 11 Basic Concepts  The order of a differential equation is the order of the highest derivative that appears in the equation. 0 ) ( 2 2 3        y n x y x y x Order 2 2 2 1 y x dx dy   Order 1 1 ) ( 4 3 2 2   y dx y d Order 2
  • 12. Page 12 Basic Concept  The first-order differential equation contain only y’ and may contain y and given function of x.  A solution of a given first-order differential equation (*) on some open interval a<x<b is a function y=h(x) that has a derivative y’=h(x) and satisfies (*) for all x in that interval. ) , ( ' 0 ) ' , , ( y x F y y y x F   or (*)
  • 13. Page 13 Basic Concept  Example : Verify the solution x 2 y 2y xy'  
  • 14. Page 14 Basic Concepts  Explicit Solution  Implicit Solution ) (x h y  0 ) , (  y x H
  • 15. Page 15 Basic Concept  General solution vs. Particular solution  General solution  arbitrary constant c  Particular solution  choose a specific c ,.... 2 , 3 '       c c sinx y cosx y
  • 16. Page 16 Basic Concept  Singular solutions  Def : A differential equation may sometimes have an additional solution that cannot be obtained from the general solution and is then called a singular solution.  Example The general solution : y=cx-c2 A singular solution : y=x2/4 0 '    y xy y' 2
  • 17. Page 17 Basic Concepts  General Solution  Particular Solution for y(0)=2 (initial condition) kt ce t y  ) ( kt e t y 2 ) (  ky y  
  • 18. Page 18 Basic Concept  Def: A differential equation together with an initial condition is called an initial value problem 0 0) ( ), , ( ' y x y y x f y  
  • 19. Page 19 Separable Differential Equations  Def: A first-order differential equation of the form is called a separable differential equation dx x f dy y g f(x) g(y)y ) ( ) ( '  
  • 20. Page 20 Separable Differential Equations  Example : Sol: 0 4 9    x y y
  • 21. Page 21 Separable Differential Equations  Example : Sol: 2 1 y y   
  • 22. Page 22 Separable Differential Equations  Example : Sol: ky y  
  • 23. Page 23 Separable Differential Equations  Example : Sol: 1 ) 0 ( , 2     y xy y
  • 24. Page 24 Separable Differential Equations  Substitution Method: A differential equation of the form can be transformed into a separable differential equation ) ( x y g y  
  • 25. Page 25 Separable Differential Equations  Substitution Method: ux y  u x u y     x dx u u g du u u g x u u g u x u           ) ( ) ( ) (
  • 26. Page 26 Separable Differential Equations  Example : Sol: 2 2 2 x y y xy    cx y x x c x y x c u c x c x u x dx u udu u u u x u y x x y xy x xy y y x y y xy                                         2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 ln ln ) 1 ln( 1 2 ) 1 ( 2 1 ) ( 2 1 2 2 2
  • 27. Page 27 Separable Differential Equations  Exercise 1 2 01 . 0 1 y y    2 / xy y   y y y x    2 2 ) 2 ( , 0 '     y y xy
  • 28. Page 28 Exact Differential Equations  Def: A first-order differential equation of the form is said to be exact if 0 ) , ( ) , (   dy y x N dx y x M x y x N y y x M    ) , ( ) , (
  • 29. Page 29 Exact Differential Equations  Proof: 0 ) , ( ) , ( 0 ) , (          dy y x N dx y x M dy y u dx x u y x du x y x N y y x M y x y x u        ) , ( ) , ( ) , (
  • 30. Page 30 Exact Differential Equations  Example : Sol: 0 ) 3 ( ) 3 ( 3 2 2 3     dy y y x dx xy x Exact xy x N y M xy x y y x xy y xy x , 6 6 3 6 3 3 2 2 3             
  • 31. Page 31 Exact Differential Equations Sol: ) ( 2 3 4 1 ) ( ) 3 ( ) ( 2 2 4 2 3 y k y x x y k dx xy x y k Mdx u           1 4 3 2 2 4 ) ( 3 ) ( 3 c y y k y y x N dy y dk y x y u          
  • 32. Page 32 Exact Differential Equations Sol: c y y x x y x u     ) 6 ( 4 1 ) , ( 4 2 2 4
  • 33. Page 33 Exact Differential Equations  Example 3 ) 0 ( 0 ) sinh (cos ) cosh (sin    y dy y x dx y x
  • 34. Page 34 Non-Exactness  Example : 0    xdy ydx
  • 35. Page 35 Integrating Factor  Def: A first-order differential equation of the form is not exact, but it will be exact if multiplied by F(x, y) then F(x,y) is called an integrating factor of this equation 0 ) , ( ) , (   dy y x Q dx y x P 0 ) , ( ) , ( ) , ( ) , (   dy y x Q y x F dx y x P y x F
  • 36. Page 36 Exact Differential Equations  How to find integrating factor  Golden Rule x x y y FQ Q F FP P F Exact x FQ y FP FQdy FPdx             , 0 ) ( 1 1 0 Let x y x y Q P Q dx dF F FQ Q dx dF FP P F(x) F        
  • 37. Page 37 Exact Differential Equations  Example : Sol: 0    xdy ydx Exact x N x y M dy x dx x y x xdy ydx x F , 1 1 1 2 2 2 2             
  • 38. Page 38 Exact Differential Equations Sol: cx y c x y x y d dy x dx x y         0 ) ( 1 2
  • 39. Page 39 Exact Differential Equations  Example : 2 ) 2 ( 0 ) cos( ) sin( 2 2 2     y dy y xy dx y
  • 40. Page 40 Exact Differential Equations  Exercise 2 0 2 2   dy x xydx 0 ) ( 2 2      d r rdr e x e F ydy ydx    , 0 cos sin b a y x F xdy b ydx a      , 0 ) 1 ( ) 1 ( 0 ) 1 ( ) 1 (     dy x dx y
  • 41. Page 41 Linear Differential Equations  Def: A first-order differential equation is said to be linear if it can be written  If r(x) = 0, this equation is said to be homogeneous ) ( ) ( x r y x p y   
  • 42. Page 42 Linear Differential Equations  How to solve first-order linear homogeneous ODE ? Sol: 0 ) (    y x p y                      dx x p c dx x p c dx x p ce e e e y c dx x p y dx x p y dy y x p dx dy ) ( ) ( ) ( 1 1 1 ) ( ln ) ( 0 ) (
  • 43. Page 43 Linear Differential Equations  Example : Sol: 0    y y x c x c x dx dx x p e c e ce ce ce ce x y 2 ) 1 ( ) ( 1 1 ) (           
  • 44. Page 44 Linear Differential Equations  How to solve first-order linear nonhomogeneous ODE ? Sol: ) ( ) ( x r y x p y    ) ( )) ( ) ( ( ) ( 1 1 0 )) ( ) ( ( ) ( ) ( x p x r y x p y Q P Q dx dF F dy dx x r y x p x r y x p dx dy x y              
  • 45. Page 45 Linear Differential Equations Sol:   dx x p e x F ) ( ) (                            c dx r e e x y c dx r e y e r e y e py y e dx x p dx x p dx x p dx x p dx x p dx x p dx x p ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
  • 46. Page 46 Linear Differential Equations  Example : Sol: x e y y 2        x x x x x x x x dx dx dx x p dx x p e ce c e e c dx e e e c dx e e e c dx r e e x y 2 2 2 ) 1 ( ) 1 ( ) ( ) ( ) (                                  
  • 47. Page 47 Linear Differential Equations  Example : ) 2 cos 2 2 sin 3 ( 2 x x e y y x '   
  • 49. Page 49 Linear Differential Equations  Def: Bernoulli equations  If a = 0, Bernoulli Eq. => First Order Linear Eq.  If a <> 0, let u = y1-a a y x g y x p y ) ( ) (    g a pu a u ) 1 ( ) 1 (     
  • 50. Page 50 Linear Differential Equations  Example : Sol: 2 By Ay y       A B ce u y A B ce c dx e A B e c dx Be e u B Au u Ay B Ay By y y y u y y y u Ax Ax Ax Ax Ax Ax a                                               1 1 ) ( 1 2 2 2 1 2 1 1
  • 51. Page 51 Linear Differential Equations  Exercise 3 4    y y kx e ky y     2 2 y y y    1     xy xy y ) 2 ( , sin 3  y x y y   
  • 52. Page 52 Summary 可分離 Separable  變換法 Substitution  正合 Exact  積分因子 Integrating Factor  線性 Linear  柏努利 Bernoulli  dx x f dy y g ) ( ) (  dx x f du u g ) ( ) (  0 ) , ( ) , (   dy y x N dx y x M 0   FQdy FPdx ) ( ) ( x r y x p y    a y x g y x p y ) ( ) (   
  • 53. Page 53 Orthogonal Trajectories of Curves  Angle of intersection of two curves is defined to be the angle between the tangents of the curves at the point of intersection  How to use differential equations for finding curves that intersect given curves at right angles ?
  • 54. Page 54 How to find Orthogonal Trajectories  1st Step: find a differential equation for a given cure  2nd Step: the differential equation of the orthogonal trajectories to be found  3rd step: solve the differential equation as above ( in 2nd step) ) , ( y x f y  ) , ( y x f y'  ) , ( 1 y x f y'  
  • 55. Page 55 Orthogonal Trajectories of Curves  Example: given a curve y=cx2, where c is arbitrary. Find their orthogonal trajectories. Sol:
  • 56. Page 56 Existance and Uniqueness of Solution  An initial value problem may have no solutions, precisely one solution, or more than one solution.  Example 1 ) 0 ( , 0 '    y y y 1 ) 0 ( , '   y x y 1 ) 0 ( , 1 '    y y xy No solutions Precisely one solutions More than one solutions
  • 57. Page 57 Existence and uniqueness theorems  Problem of existence  Under what conditions does an initial value problem have at least one solution ?  Existence theorem, see page 53  Problem of uniqueness  Under what conditions does that the problem have at most one solution ?  Uniqueness theorem, see page54