SlideShare a Scribd company logo
IDEM PROJECT
“Mechanical Flying Bird”
Prepared by:
*DIVAKAR SINGH(1641018130)
*NISHANT SINGH(1641018182)
*GANESH SAHU(1641018336)
BRANCH-Mechanical
SECTION-A
IDEM PROJECT
“Mechanical Flying Bird”
Prepared by:
*DIVAKAR SINGH(1641018130)
*NISHANT SINGH(1641018182)
*GANESH SAHU(1641018336)
BRANCH-Mechanical
SECTION-A
Index
• Introduction
• Principle of Mechanical Bird
• Mechanism of Flying of Bird
• Use of Mechanical Bird
• Conclusion
• References
Introduction
As from the term mechanical we can say that the mechanical birds are the man
made bird with wings working on the principle of automation and flying
engineering. As demonstrated by birds, flapping wings offer potential advantages
in maneuverability and energy savings compared with fixed-wing aircraft, as well
as potentially vertical take-off and landing. It has been suggested that these
advantages are greatest at small sizes and low flying speeds.[
Unlike airplanes and helicopters, the driving airfoils of the ornithopter (Mechanical
bird) have a flapping or oscillating motion, instead of rotary. As with helicopters,
the wings usually have a combined function of providing both lift and thrust.
Theoretically, the flapping wing can be set to zero angle of attack on the upstroke,
so it passes easily through the air. Since typically the flapping airfoils produce both
lift and thrust, drag-inducing structures are minimized. These two advantages
potentially allow a high degree of efficiency.
If we go by the history, mechanical bird is having rich history. Some early manned
flight attempts may have been intended to achieve flapping-wing flight though
probably only a glide was actually achieved. These include the purported flights of
the 11th-century monk Eilmer of Malmesbury (recorded in the 12th century) and
the 9th-century poet Abbas Ibn Firnas (recorded in the 17th century).[1]
Roger
Bacon, writing in 1260, was also among the first to consider a technological means
of flight. In 1485, Leonardo da Vinci began to study the flight of birds. He grasped
that humans are too heavy, and not strong enough, to fly using wings simply
attached to the arms. He therefore sketched a device in which the aviator lies down
on a plank and works two large, membranous wings using hand levers, foot pedals,
and a system of pulleys.
In 1841, an ironsmith kalfa (journeyman) Manojlo who "came
to Belgrade from Vojvodina" attempted flying with a device described as an
ornithopter ("flapping wings like those of a bird"). Refused by the authorities a
permit to take off from the belfry of Belgrade Serbian Orthodox Cathedral, he
clandestinely climbed to the rooftop of the Dumrukhana (Import Tax head office)
and took off, landing in a heap of snow, and surviving.[3]
The first ornithopters capable of flight were constructed in France. Jobert in 1871
used a rubber band to power a small model bird. Alphonse Pénaud, Abel Hureau
de Villeneuve, and Victor Tatin, also made rubber-powered ornithopters during the
1870s. Tatin's ornithopter was perhaps the first to use active torsion of the wings,
and apparently it served as the basis for a commercial toy offered by Pichancourt c.
1889. Gustave Trouvé was the first to use internal combustion, and his 1890 model
flew a distance of 80 metres in a demonstration for the French Academy of
Sciences. The wings were flapped by gunpowder charges activating a Bourdon
tube.
From 1884 on, Lawrence Hargrave built scores of ornithopters powered by rubber
bands, springs, steam, or compressed air. He introduced the use of small flapping
wings providing the thrust for a larger fixed wing; this innovation eliminated the
need for gear reduction, thereby simplifying the construction.
E.P. Frost made ornithopters starting in the 1870s; first models powered by steam
engines, then in the 1900s an internal-combustion craft large enough for a person
though it did not fly.
In the 1930s, Alexander Lippisch and the NSFK in Germany constructed and
successfully flew a series of internal-combustion-powered ornithopters, using
Hargrave's concept of small flapping wings, but with aerodynamic improvements
resulting from methodical study.
Erich von Holst also working in the 1930s, achieved great efficiency and realism in
his work with ornithopters powered by rubber bands. He achieved perhaps the first
success of an ornithopter with a bending wing, intended to imitate more closely the
folding wing action of birds although it was not a true variable-span wing like
those of birds.
Around 1960, Percival Spencer successfully flew a series of unmanned
ornithopters using internal combustion engines ranging from 0.020-to-0.80-cubic-
inch (0.33 to 13.11 cm3
) displacement, and having wingspans up to 8 feet (2.4 m).
In 1961, Percival Spencer and Jack Stephenson flew the first successful engine-
powered, remotely piloted ornithopter, known as the Spencer Orniplane.[9]
The
Orniplane had a 90.7 inches (2,300 mm) wingspan, weighed 7.5 pounds (3.4 kg),
and was powered by a 0.35-cubic-inch (5.7 cm3
)-displacement two-stroke engine.
It had a biplane configuration, to reduce oscillation of the fuselage
Principle of Mechanical Bird
Many machines convert a reciprocating movement into a rotating one. The
combustion engine is a well-known application of this mechanism, used, for
example, in a car engine. In this project, we are using the crankshaft mechanism.
They will construct an working mechanism to flap the wings of their own
made ornithopte.
As demonstrated by birds, flapping wings offer potential advantages in
maneuverability and energy savings compared with fixed-wing aircraft, as well as
potentially vertical take-off and landing. It has been suggested that these
advantages are greatest at small sizes and low flying speeds.
Unlike airplanes and helicopters, the driving airfoils of the ornithopter have a
flapping or oscillating motion, instead of rotary. As with helicopters, the wings
usually have a combined function of providing both lift and thrust. Theoretically,
the flapping wing can be set to zero angle of attack on the upstroke, so it passes
easily through the air. Since typically the flapping airfoils produce both lift and
thrust, drag-inducing structures are minimized. These two advantages potentially
allow a high degree of efficiency.
Mechanism of Flying of Bird
Flapping, Gliding, Soaring, and Landing
What about the various swifts, swallows, and martins
They are all found on the left of the trend line. For their weight,
they all have rather large wings and fly relatively slowly. There
must be something wrong here. Swifts did not get their name for
nothing.
In fact, swifts and swallows are fast only when gliding, diving, or
fooling around. In level flapping flight, they are not fast at all. Ra-
dar data on migrating swifts give speeds around 10 meters per sec-
ond (22 miles per hour). In wind tunnels, swallows fly no faster
than 12 meters per second (27 miles per hour). Their comfortable
cruising speeds are lower yet,
Swifts and their relatives can fly very slowly, when they have to,
by spreading their wings wide. When they want to fly faster, they can fold their
wings. The elegance of their streamlining does not
suffer when they reduce their wing area, but the wing loading
increases, and with it the cruising speed. Are they poking fun at
the laws of nature? According to equation 2, a bird cannot alter its
speed at will if it wants to fly economically, once blessed with a
particular set of wings. The cruising speed is controlled by the
wing loading: W/S ¼ 0.38V 2. But if S can be changed to fit the
circumstances, this problem vanishes: the cruising speed then
changes too. All birds do this to some extent, though not always
with the grace and sophistication of swifts and swallows. But glid-
ing, soaring, and maneuvering are altogether different from flap-
ping. In the downstroke of flapping flight, all birds spread their
wings fully; however, when gliding, birds can fold their wings at
will. Figure 3 shows how gliding falcons and pigeons progressively
fold their wings as their speed increases.
When low speeds are needed, all birds make their wing area as
large as is possible. The sparrow hawk on final approach is a good example. Since
it wants to fly slowly, it spreads its pri-
mary quills and tail feathers wide. In fact, many birds deliberately
stall their fully stretched wings on final approach, maximizing drag
to obtain quick deceleration and not caring about lift during the
last seconds of flight. Just for fun, watch pigeons landing on a tree
branch or a rooftop, and see how they do it. Airplanes fully extend
various slats and flaps in preparation for landing. Airplanes and
birds alike minimize their landing speed to reduce the length of
runway required or the risk of stumbling.
Swifts’ amazing aerial maneuvers are made possible by the su-
perb aerodynamic performance of their sweptback wings. I have
seen them dallying in the updrafts in front of the cliffs in southern
Portugal, first diving toward the shore and then suddenly shooting up like rockets
and disappearing out of sight. In these stunts, flap-
ping would be of no use. With their wings folded far back, swifts
have another surprise in store. If they have to make a quick maneu-
ver, they can generate a ‘‘leading-edge vortex’’ over their swept-
back wings by suddenly increasing their angle of attack. Almost
but not quite stalling their wings, they achieve a large momentary
increase in lift that way, which allows for very sharp turns. This is
how they catch insects in their flight path, and this is how they
show off during the sophisticated aerobatics of courtship.
Continuous flapping flight does not support such extreme behav-
ior. Level flapping flight is boxed in by a large number of con-
straints—kinematic, dynamic, energetic, physiological, and so on.
When flapping, wings have to act not only as lift-generating surfa-
ces but also as propellers, a combination never successfully imi-
tated by human technology. Wings act as propellers only in the
downstroke. The upstroke is of little use. Many birds fold their
wings before they start the upstroke; others drastically reduce the
angle of attack before their wings move upward. To keep things
simple, I will assume that only the downstroke counts. This means
that flapping wings are useless during one half of each wingbeat
cycle, and have to produce twice the lift during half the time in or-
der to make sure a bird stays airborne.
The immediate consequence
is that birds have to endure a roller-coaster ride when flapping at
speed. This is obvious when you watch traveling geese fly by over-
head. Their heads are kept steady, presumably to make sure that
their delicate navigation equipment is not affected, but their bodies
are shaking up and down with each wingbeat. Another conse-
quence of the two-stroke cycle of flapping wings is that the angle
of attack during the downstroke has to be much larger than when
gliding at the same speed. This is fine as far as the flight muscles
are concerned, because the airspeed for most economical gliding
does not differ much from the speed that requires the least muscle
effort when flapping. (Just watch any bird switching from gliding to
flapping or vice versa, without change in speed.) But it does pay to
choose a higher airspeed in flapping flight, because a bird can also get twice the lift
by flying 40 percent faster (the lift goes as the
square of the speed, and the square root of 2 is about 1.4). This op-
tion keeps the angle of attack at a value that doesn’t compromise
the aerodynamic performance of the wings. I know I am not doing
justice to the great variety of flapping styles that birds employ, but
a useful rule of thumb is that the most economical speed for flap-
ping is 40 percent higher than that for gliding, provided a bird has
no shortage of muscle power. Swans and other big birds do not
have that option; their speed is limited by their muscle power.
This implies that their wings are working at a high angle of attack
during the downstroke, an angle that compromises flight efficiency
somewhat. The whistling noise made by the flight feathers of mute
swans proves that in the downstroke their wings are almost
stalling.
How to build the mechanical Bird:
The materials required to make mechanical bird are-
• cellopin paper
• straw
• super glue
• paper cutter
• paper pin
• 30cm scale
• rubber band
WORKING:
STEPS
i. First of all we need to cut the straws according to the required size.
ii. then after cutting the straws into half and arranging them to the frame of the
body
iii. take the paper pin and bring them to the required shape i.e L shape ,etc. and
stick them to frame of the body at respective position for the others part of
the birds to be fitted
iv. accordingly make the tails and wings of the bird and fit them to the
respective positions
v. take two paper pin and fold one of them to spring shape and other to U shape
and stick them to end positions and fit them
vi. After finally making the full frame of the bird ,take cellopin paper and cut it
in the shape of the wings and tails.Then stick it to frame accordingly and
arrange it properly
vii.Tie a rubber band from the front hook to back hook to wind it clockwise till
it gets tightened
viii.After that hold the bird in proper flying position and gently throw it.
The bird will fly gently and will fly till the rubberband unwinds and lands
afterwise.
Use of Mechanical Bird
• Gyroplane
• Helicopter
• Human-powered aircraft
• Insectothopter
• Micro air vehicle
• Micromechanical Flying Insect
• Nano Hummingbird
• Rotary-wing aircraft
• STOL/VTOL/STOVL/VSTOL
Conclusion
While making this project we learnt a lot about mechanical engineering and
automation, we learnt also the team co – ordination. Many hurdles came but at
the end of the it all got solved and the outcome was our project. We hope and
pray to get such more projects in our future and helping assistance by all the
people who all helped us making accomplish this project.
References
• https://en.wikipedia.org/wiki/Ornithopter
• http://www.dwengo.org/nl/node/119
• https://en.wikipedia.org/wiki/Crank_%28mechanism%29#Hand-
powered_cranks
• simple science of flight

More Related Content

What's hot

Making of Drone
Making of  DroneMaking of  Drone
Making of Drone
mohanchandrakanth swarna
 
Mini project on RC plane
Mini project on RC planeMini project on RC plane
Mini project on RC plane
Sandeep Mishra
 
Quadcopter
QuadcopterQuadcopter
Quadcopter
Aakash Goyal
 
Insect head
Insect head Insect head
Insect head
Amani Riyadh
 
Subdivision endopterygota
Subdivision endopterygotaSubdivision endopterygota
Subdivision endopterygota
Rana Ali
 
Quail-Production-and-Management-extension.pptx
Quail-Production-and-Management-extension.pptxQuail-Production-and-Management-extension.pptx
Quail-Production-and-Management-extension.pptx
NorelieIbacarra1
 
Incubation of Poultry
Incubation of PoultryIncubation of Poultry
Incubation of Poultry
Subham Dwivedi
 
Type of Insect head
Type of Insect headType of Insect head
Type of Insect head
Yuvraj Singh
 
Types of Feathers.pptx
Types of Feathers.pptxTypes of Feathers.pptx
Types of Feathers.pptx
Maryam Riasat
 
Insect respiratory system
Insect respiratory systemInsect respiratory system
Ejection Mechanism for Helicopters
Ejection Mechanism for HelicoptersEjection Mechanism for Helicopters
Ejection Mechanism for Helicopters
Kunal Adhikari
 
Aircraft wing
Aircraft wingAircraft wing
Aircraft wing
Thirumal Aero
 
Mecoptera - Scorpion files
Mecoptera - Scorpion filesMecoptera - Scorpion files
Mecoptera - Scorpion files
SatishGolla6
 
Birds are glorified reptiles, Archaeopteryx, compare Archaeopteryx and moder...
Birds are  glorified reptiles, Archaeopteryx, compare Archaeopteryx and moder...Birds are  glorified reptiles, Archaeopteryx, compare Archaeopteryx and moder...
Birds are glorified reptiles, Archaeopteryx, compare Archaeopteryx and moder...
SoniaBajaj10
 
Breeds of chicken.pptx
Breeds of chicken.pptxBreeds of chicken.pptx
Breeds of chicken.pptx
HarshiniAlapati
 
Pigeon breeds
Pigeon breedsPigeon breeds
Pigeon breeds
VidyaC8
 
Flight adaptation and Mechanism Of Flight in Birds.
Flight adaptation and Mechanism Of Flight in Birds.Flight adaptation and Mechanism Of Flight in Birds.
Flight adaptation and Mechanism Of Flight in Birds.
Manish Dash
 
Flight adaptations in birds
Flight adaptations in birdsFlight adaptations in birds
Flight adaptations in birds
nusratperween2
 
Systems Of Grasshoper
Systems Of GrasshoperSystems Of Grasshoper
Systems Of Grasshoper
Muhammad Rehan
 

What's hot (20)

Making of Drone
Making of  DroneMaking of  Drone
Making of Drone
 
Mini project on RC plane
Mini project on RC planeMini project on RC plane
Mini project on RC plane
 
Quadcopter
QuadcopterQuadcopter
Quadcopter
 
Insect head
Insect head Insect head
Insect head
 
Subdivision endopterygota
Subdivision endopterygotaSubdivision endopterygota
Subdivision endopterygota
 
Quail-Production-and-Management-extension.pptx
Quail-Production-and-Management-extension.pptxQuail-Production-and-Management-extension.pptx
Quail-Production-and-Management-extension.pptx
 
Incubation of Poultry
Incubation of PoultryIncubation of Poultry
Incubation of Poultry
 
Type of Insect head
Type of Insect headType of Insect head
Type of Insect head
 
Types of Feathers.pptx
Types of Feathers.pptxTypes of Feathers.pptx
Types of Feathers.pptx
 
Insect respiratory system
Insect respiratory systemInsect respiratory system
Insect respiratory system
 
Ejection Mechanism for Helicopters
Ejection Mechanism for HelicoptersEjection Mechanism for Helicopters
Ejection Mechanism for Helicopters
 
Aircraft wing
Aircraft wingAircraft wing
Aircraft wing
 
Mecoptera - Scorpion files
Mecoptera - Scorpion filesMecoptera - Scorpion files
Mecoptera - Scorpion files
 
Birds are glorified reptiles, Archaeopteryx, compare Archaeopteryx and moder...
Birds are  glorified reptiles, Archaeopteryx, compare Archaeopteryx and moder...Birds are  glorified reptiles, Archaeopteryx, compare Archaeopteryx and moder...
Birds are glorified reptiles, Archaeopteryx, compare Archaeopteryx and moder...
 
Breeds of chicken.pptx
Breeds of chicken.pptxBreeds of chicken.pptx
Breeds of chicken.pptx
 
Pigeon breeds
Pigeon breedsPigeon breeds
Pigeon breeds
 
Flight adaptation and Mechanism Of Flight in Birds.
Flight adaptation and Mechanism Of Flight in Birds.Flight adaptation and Mechanism Of Flight in Birds.
Flight adaptation and Mechanism Of Flight in Birds.
 
Flight adaptations in birds
Flight adaptations in birdsFlight adaptations in birds
Flight adaptations in birds
 
Basic aircraft control system
Basic aircraft control systemBasic aircraft control system
Basic aircraft control system
 
Systems Of Grasshoper
Systems Of GrasshoperSystems Of Grasshoper
Systems Of Grasshoper
 

Similar to Flying bird

People want to fly
People want to flyPeople want to fly
People want to flybeatusest
 
The miracle in birds. english
The miracle in birds. englishThe miracle in birds. english
The miracle in birds. english
HarunyahyaEnglish
 
Plane
PlanePlane
PlaneAiir
 
V22 Osprey
V22 OspreyV22 Osprey
Aircraft propulsion
Aircraft propulsion Aircraft propulsion
Aircraft propulsion
Cool Kid
 
Design, Fabrication and Testing Of Flapping Wing Micro Air Vehicle
Design, Fabrication and Testing Of Flapping Wing Micro Air VehicleDesign, Fabrication and Testing Of Flapping Wing Micro Air Vehicle
Design, Fabrication and Testing Of Flapping Wing Micro Air Vehicle
IJERA Editor
 
Design, Fabrication and Testing Of Flapping Wing Micro Air Vehicle
Design, Fabrication and Testing Of Flapping Wing Micro Air VehicleDesign, Fabrication and Testing Of Flapping Wing Micro Air Vehicle
Design, Fabrication and Testing Of Flapping Wing Micro Air Vehicle
IJERA Editor
 
Elements of-aeronautics
Elements of-aeronauticsElements of-aeronautics
Elements of-aeronautics
niranjrnk
 
Unit 24 - Bernoulli Principal And Flight
Unit 24 - Bernoulli Principal And FlightUnit 24 - Bernoulli Principal And Flight
Unit 24 - Bernoulli Principal And Flight
Olympus High School - Jeff Taylor
 
Hovercraft
HovercraftHovercraft
Hovercraft
Mitesh6897
 
Flying
FlyingFlying
Flying
beatusest2
 
Hovercraft seminar report
Hovercraft seminar report Hovercraft seminar report
Hovercraft seminar report
AnshulAggarwal73
 
Hovercraft presentation-The Future is Now!
Hovercraft presentation-The Future is Now!Hovercraft presentation-The Future is Now!
Hovercraft presentation-The Future is Now!
Riaz Zalil
 
Hovercraft
HovercraftHovercraft
Hovercraft
Spondan Mahapatra
 
History of aircraft complete
History of aircraft complete History of aircraft complete
History of aircraft complete
Natasha Nabila
 
Airplane
AirplaneAirplane
Airplane
vishal gupta
 
Dan
DanDan
Aircraft Wing
Aircraft Wing Aircraft Wing
Aircraft Wing
Vishal Vyas
 
Aviation History & How an Aircraft flies
Aviation History & How an Aircraft fliesAviation History & How an Aircraft flies
Aviation History & How an Aircraft flies
shankar11122
 

Similar to Flying bird (20)

People want to fly
People want to flyPeople want to fly
People want to fly
 
The miracle in birds. english
The miracle in birds. englishThe miracle in birds. english
The miracle in birds. english
 
Plane
PlanePlane
Plane
 
V22 Osprey
V22 OspreyV22 Osprey
V22 Osprey
 
Aircraft propulsion
Aircraft propulsion Aircraft propulsion
Aircraft propulsion
 
Design, Fabrication and Testing Of Flapping Wing Micro Air Vehicle
Design, Fabrication and Testing Of Flapping Wing Micro Air VehicleDesign, Fabrication and Testing Of Flapping Wing Micro Air Vehicle
Design, Fabrication and Testing Of Flapping Wing Micro Air Vehicle
 
Design, Fabrication and Testing Of Flapping Wing Micro Air Vehicle
Design, Fabrication and Testing Of Flapping Wing Micro Air VehicleDesign, Fabrication and Testing Of Flapping Wing Micro Air Vehicle
Design, Fabrication and Testing Of Flapping Wing Micro Air Vehicle
 
Elements of-aeronautics
Elements of-aeronauticsElements of-aeronautics
Elements of-aeronautics
 
Unit 24 - Bernoulli Principal And Flight
Unit 24 - Bernoulli Principal And FlightUnit 24 - Bernoulli Principal And Flight
Unit 24 - Bernoulli Principal And Flight
 
Hovercraft
HovercraftHovercraft
Hovercraft
 
Flying
FlyingFlying
Flying
 
Hovercraft seminar report
Hovercraft seminar report Hovercraft seminar report
Hovercraft seminar report
 
Hovercraft presentation-The Future is Now!
Hovercraft presentation-The Future is Now!Hovercraft presentation-The Future is Now!
Hovercraft presentation-The Future is Now!
 
Hovercrafts
HovercraftsHovercrafts
Hovercrafts
 
Hovercraft
HovercraftHovercraft
Hovercraft
 
History of aircraft complete
History of aircraft complete History of aircraft complete
History of aircraft complete
 
Airplane
AirplaneAirplane
Airplane
 
Dan
DanDan
Dan
 
Aircraft Wing
Aircraft Wing Aircraft Wing
Aircraft Wing
 
Aviation History & How an Aircraft flies
Aviation History & How an Aircraft fliesAviation History & How an Aircraft flies
Aviation History & How an Aircraft flies
 

Recently uploaded

Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
aishnasrivastava
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
anitaento25
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
sachin783648
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
IqrimaNabilatulhusni
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
kumarmathi863
 
FAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsFAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable Predictions
Michel Dumontier
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
pablovgd
 
Penicillin...........................pptx
Penicillin...........................pptxPenicillin...........................pptx
Penicillin...........................pptx
Cherry
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
AADYARAJPANDEY1
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
Health Advances
 
plant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptxplant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptx
yusufzako14
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 

Recently uploaded (20)

Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
 
FAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsFAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable Predictions
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 
Penicillin...........................pptx
Penicillin...........................pptxPenicillin...........................pptx
Penicillin...........................pptx
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
 
plant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptxplant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptx
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 

Flying bird

  • 1.
  • 2. IDEM PROJECT “Mechanical Flying Bird” Prepared by: *DIVAKAR SINGH(1641018130) *NISHANT SINGH(1641018182) *GANESH SAHU(1641018336) BRANCH-Mechanical SECTION-A
  • 3. IDEM PROJECT “Mechanical Flying Bird” Prepared by: *DIVAKAR SINGH(1641018130) *NISHANT SINGH(1641018182) *GANESH SAHU(1641018336) BRANCH-Mechanical SECTION-A
  • 4. Index • Introduction • Principle of Mechanical Bird • Mechanism of Flying of Bird • Use of Mechanical Bird • Conclusion • References
  • 5. Introduction As from the term mechanical we can say that the mechanical birds are the man made bird with wings working on the principle of automation and flying engineering. As demonstrated by birds, flapping wings offer potential advantages in maneuverability and energy savings compared with fixed-wing aircraft, as well as potentially vertical take-off and landing. It has been suggested that these advantages are greatest at small sizes and low flying speeds.[ Unlike airplanes and helicopters, the driving airfoils of the ornithopter (Mechanical bird) have a flapping or oscillating motion, instead of rotary. As with helicopters, the wings usually have a combined function of providing both lift and thrust. Theoretically, the flapping wing can be set to zero angle of attack on the upstroke, so it passes easily through the air. Since typically the flapping airfoils produce both lift and thrust, drag-inducing structures are minimized. These two advantages potentially allow a high degree of efficiency. If we go by the history, mechanical bird is having rich history. Some early manned flight attempts may have been intended to achieve flapping-wing flight though probably only a glide was actually achieved. These include the purported flights of the 11th-century monk Eilmer of Malmesbury (recorded in the 12th century) and the 9th-century poet Abbas Ibn Firnas (recorded in the 17th century).[1] Roger Bacon, writing in 1260, was also among the first to consider a technological means of flight. In 1485, Leonardo da Vinci began to study the flight of birds. He grasped that humans are too heavy, and not strong enough, to fly using wings simply attached to the arms. He therefore sketched a device in which the aviator lies down on a plank and works two large, membranous wings using hand levers, foot pedals, and a system of pulleys. In 1841, an ironsmith kalfa (journeyman) Manojlo who "came to Belgrade from Vojvodina" attempted flying with a device described as an ornithopter ("flapping wings like those of a bird"). Refused by the authorities a permit to take off from the belfry of Belgrade Serbian Orthodox Cathedral, he clandestinely climbed to the rooftop of the Dumrukhana (Import Tax head office) and took off, landing in a heap of snow, and surviving.[3] The first ornithopters capable of flight were constructed in France. Jobert in 1871
  • 6. used a rubber band to power a small model bird. Alphonse Pénaud, Abel Hureau de Villeneuve, and Victor Tatin, also made rubber-powered ornithopters during the 1870s. Tatin's ornithopter was perhaps the first to use active torsion of the wings, and apparently it served as the basis for a commercial toy offered by Pichancourt c. 1889. Gustave Trouvé was the first to use internal combustion, and his 1890 model flew a distance of 80 metres in a demonstration for the French Academy of Sciences. The wings were flapped by gunpowder charges activating a Bourdon tube. From 1884 on, Lawrence Hargrave built scores of ornithopters powered by rubber bands, springs, steam, or compressed air. He introduced the use of small flapping wings providing the thrust for a larger fixed wing; this innovation eliminated the need for gear reduction, thereby simplifying the construction. E.P. Frost made ornithopters starting in the 1870s; first models powered by steam engines, then in the 1900s an internal-combustion craft large enough for a person though it did not fly. In the 1930s, Alexander Lippisch and the NSFK in Germany constructed and successfully flew a series of internal-combustion-powered ornithopters, using Hargrave's concept of small flapping wings, but with aerodynamic improvements resulting from methodical study. Erich von Holst also working in the 1930s, achieved great efficiency and realism in his work with ornithopters powered by rubber bands. He achieved perhaps the first success of an ornithopter with a bending wing, intended to imitate more closely the folding wing action of birds although it was not a true variable-span wing like those of birds. Around 1960, Percival Spencer successfully flew a series of unmanned ornithopters using internal combustion engines ranging from 0.020-to-0.80-cubic- inch (0.33 to 13.11 cm3 ) displacement, and having wingspans up to 8 feet (2.4 m). In 1961, Percival Spencer and Jack Stephenson flew the first successful engine- powered, remotely piloted ornithopter, known as the Spencer Orniplane.[9] The Orniplane had a 90.7 inches (2,300 mm) wingspan, weighed 7.5 pounds (3.4 kg), and was powered by a 0.35-cubic-inch (5.7 cm3 )-displacement two-stroke engine. It had a biplane configuration, to reduce oscillation of the fuselage
  • 7. Principle of Mechanical Bird Many machines convert a reciprocating movement into a rotating one. The combustion engine is a well-known application of this mechanism, used, for example, in a car engine. In this project, we are using the crankshaft mechanism. They will construct an working mechanism to flap the wings of their own made ornithopte. As demonstrated by birds, flapping wings offer potential advantages in maneuverability and energy savings compared with fixed-wing aircraft, as well as potentially vertical take-off and landing. It has been suggested that these advantages are greatest at small sizes and low flying speeds. Unlike airplanes and helicopters, the driving airfoils of the ornithopter have a flapping or oscillating motion, instead of rotary. As with helicopters, the wings usually have a combined function of providing both lift and thrust. Theoretically, the flapping wing can be set to zero angle of attack on the upstroke, so it passes easily through the air. Since typically the flapping airfoils produce both lift and thrust, drag-inducing structures are minimized. These two advantages potentially allow a high degree of efficiency.
  • 8. Mechanism of Flying of Bird Flapping, Gliding, Soaring, and Landing What about the various swifts, swallows, and martins They are all found on the left of the trend line. For their weight, they all have rather large wings and fly relatively slowly. There must be something wrong here. Swifts did not get their name for nothing. In fact, swifts and swallows are fast only when gliding, diving, or fooling around. In level flapping flight, they are not fast at all. Ra- dar data on migrating swifts give speeds around 10 meters per sec- ond (22 miles per hour). In wind tunnels, swallows fly no faster than 12 meters per second (27 miles per hour). Their comfortable cruising speeds are lower yet,
  • 9. Swifts and their relatives can fly very slowly, when they have to, by spreading their wings wide. When they want to fly faster, they can fold their wings. The elegance of their streamlining does not suffer when they reduce their wing area, but the wing loading increases, and with it the cruising speed. Are they poking fun at the laws of nature? According to equation 2, a bird cannot alter its speed at will if it wants to fly economically, once blessed with a particular set of wings. The cruising speed is controlled by the wing loading: W/S ¼ 0.38V 2. But if S can be changed to fit the circumstances, this problem vanishes: the cruising speed then changes too. All birds do this to some extent, though not always with the grace and sophistication of swifts and swallows. But glid- ing, soaring, and maneuvering are altogether different from flap- ping. In the downstroke of flapping flight, all birds spread their wings fully; however, when gliding, birds can fold their wings at will. Figure 3 shows how gliding falcons and pigeons progressively fold their wings as their speed increases. When low speeds are needed, all birds make their wing area as large as is possible. The sparrow hawk on final approach is a good example. Since it wants to fly slowly, it spreads its pri- mary quills and tail feathers wide. In fact, many birds deliberately stall their fully stretched wings on final approach, maximizing drag to obtain quick deceleration and not caring about lift during the last seconds of flight. Just for fun, watch pigeons landing on a tree
  • 10. branch or a rooftop, and see how they do it. Airplanes fully extend various slats and flaps in preparation for landing. Airplanes and birds alike minimize their landing speed to reduce the length of runway required or the risk of stumbling. Swifts’ amazing aerial maneuvers are made possible by the su- perb aerodynamic performance of their sweptback wings. I have seen them dallying in the updrafts in front of the cliffs in southern Portugal, first diving toward the shore and then suddenly shooting up like rockets and disappearing out of sight. In these stunts, flap- ping would be of no use. With their wings folded far back, swifts have another surprise in store. If they have to make a quick maneu- ver, they can generate a ‘‘leading-edge vortex’’ over their swept- back wings by suddenly increasing their angle of attack. Almost but not quite stalling their wings, they achieve a large momentary increase in lift that way, which allows for very sharp turns. This is how they catch insects in their flight path, and this is how they show off during the sophisticated aerobatics of courtship. Continuous flapping flight does not support such extreme behav- ior. Level flapping flight is boxed in by a large number of con-
  • 11. straints—kinematic, dynamic, energetic, physiological, and so on. When flapping, wings have to act not only as lift-generating surfa- ces but also as propellers, a combination never successfully imi- tated by human technology. Wings act as propellers only in the downstroke. The upstroke is of little use. Many birds fold their wings before they start the upstroke; others drastically reduce the angle of attack before their wings move upward. To keep things simple, I will assume that only the downstroke counts. This means that flapping wings are useless during one half of each wingbeat cycle, and have to produce twice the lift during half the time in or- der to make sure a bird stays airborne. The immediate consequence
  • 12. is that birds have to endure a roller-coaster ride when flapping at speed. This is obvious when you watch traveling geese fly by over- head. Their heads are kept steady, presumably to make sure that their delicate navigation equipment is not affected, but their bodies are shaking up and down with each wingbeat. Another conse- quence of the two-stroke cycle of flapping wings is that the angle of attack during the downstroke has to be much larger than when gliding at the same speed. This is fine as far as the flight muscles are concerned, because the airspeed for most economical gliding does not differ much from the speed that requires the least muscle effort when flapping. (Just watch any bird switching from gliding to flapping or vice versa, without change in speed.) But it does pay to choose a higher airspeed in flapping flight, because a bird can also get twice the lift by flying 40 percent faster (the lift goes as the square of the speed, and the square root of 2 is about 1.4). This op- tion keeps the angle of attack at a value that doesn’t compromise the aerodynamic performance of the wings. I know I am not doing justice to the great variety of flapping styles that birds employ, but a useful rule of thumb is that the most economical speed for flap- ping is 40 percent higher than that for gliding, provided a bird has no shortage of muscle power. Swans and other big birds do not have that option; their speed is limited by their muscle power. This implies that their wings are working at a high angle of attack during the downstroke, an angle that compromises flight efficiency somewhat. The whistling noise made by the flight feathers of mute
  • 13. swans proves that in the downstroke their wings are almost stalling. How to build the mechanical Bird: The materials required to make mechanical bird are- • cellopin paper
  • 14. • straw • super glue • paper cutter • paper pin • 30cm scale • rubber band WORKING: STEPS i. First of all we need to cut the straws according to the required size. ii. then after cutting the straws into half and arranging them to the frame of the body iii. take the paper pin and bring them to the required shape i.e L shape ,etc. and stick them to frame of the body at respective position for the others part of the birds to be fitted iv. accordingly make the tails and wings of the bird and fit them to the respective positions
  • 15. v. take two paper pin and fold one of them to spring shape and other to U shape and stick them to end positions and fit them vi. After finally making the full frame of the bird ,take cellopin paper and cut it in the shape of the wings and tails.Then stick it to frame accordingly and arrange it properly vii.Tie a rubber band from the front hook to back hook to wind it clockwise till it gets tightened viii.After that hold the bird in proper flying position and gently throw it. The bird will fly gently and will fly till the rubberband unwinds and lands afterwise. Use of Mechanical Bird
  • 16. • Gyroplane • Helicopter • Human-powered aircraft • Insectothopter • Micro air vehicle • Micromechanical Flying Insect • Nano Hummingbird • Rotary-wing aircraft • STOL/VTOL/STOVL/VSTOL Conclusion
  • 17. While making this project we learnt a lot about mechanical engineering and automation, we learnt also the team co – ordination. Many hurdles came but at the end of the it all got solved and the outcome was our project. We hope and pray to get such more projects in our future and helping assistance by all the people who all helped us making accomplish this project. References
  • 18. • https://en.wikipedia.org/wiki/Ornithopter • http://www.dwengo.org/nl/node/119 • https://en.wikipedia.org/wiki/Crank_%28mechanism%29#Hand- powered_cranks • simple science of flight