Mathematics Formulae
for School Students
M. D. Raghu
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
𝒙 𝒎. 𝒙 𝒏 = 𝒙 𝒎+𝒏
𝒙 𝒎
𝒙 𝒏
= 𝒙 𝒎−𝒏
𝒙 𝒎 𝒏 = 𝒙 𝒎𝒏
𝒙
𝒑
𝒒 =
𝒒
𝒙 𝒑
Algebra
Indices Logarithms
𝑰𝒇 𝒚 = 𝒃 𝒙
𝒕𝒉𝒆𝒏 𝒙 = log 𝒃 𝒚
log 𝒃 𝒙𝒚 = log 𝒃 𝒙 + log 𝒃 𝒚
log 𝒃
𝒙
𝒚 = log 𝑏 𝒙 − log 𝒃 𝒚
log 𝒃 𝒙 𝒏 = 𝒏 log 𝒃 𝒙
log 𝒂 𝒙 =
log 𝑏 𝒙
log 𝒃 𝒂
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
𝐼𝑓 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0,
𝑡ℎ𝑒𝑛 𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑐
2𝑎
Algebra
Quadratic Equations
𝑎2 − 𝑏2 = (𝑎 − 𝑏)(𝑎 + 𝑏)
𝑎 − 𝑏 2 = 𝑎2 − 2𝑎𝑏 + 𝑏2
𝑎 + 𝑏 2
= 𝑎2
+ 2𝑎𝑏 + 𝑏2
Binomial Expansion
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
𝑎 + 𝑏 𝑛 = 𝑛 𝐶0 𝑎 𝑛 + 𝑛 𝐶1 𝑎 𝑛−1 𝑏 + ⋯ + 𝑛 𝐶 𝑟 𝑎 𝑛−𝑟 𝑏 𝑟 + ⋯ + 𝑛 𝐶 𝑛 𝑏 𝑛
Algebra
Binomial Theorem
𝑤ℎ𝑒𝑟𝑒 𝑛 𝐶 𝑟 =
𝑛!
𝑛 − 𝑟 ! × 𝑟!
1 + 𝑥 𝑛 = 1 + 𝑛 𝐶1 𝑥 + ⋯ + 𝑛 𝐶 𝑟 𝑥 𝑟 + ⋯
𝐼𝑓 𝑥 < 1,
𝑡ℎ𝑒𝑛 𝑥 𝑟 → 0 𝑎𝑠 𝑟 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠, 𝑟 ∈ 𝑁
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Arithmetic
𝒏 𝒕𝒉
𝒕𝒆𝒓𝒎
𝒕 𝒏 = 𝒂 + 𝒏 − 𝟏 𝒅
𝑴𝒆𝒂𝒏 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆
𝒅 = 𝒕 𝒏+𝟏 − 𝒕 𝒏
𝑺𝒖𝒎 𝒐𝒇 𝒏 𝒕𝒆𝒓𝒎𝒔
𝒔 𝒏 =
𝒏
𝟐
𝟐𝒂 + 𝒏 − 𝟏 𝒅
𝒔 𝒏 =
𝒂 𝟏−𝒓 𝒏
𝟏−𝒓
, 𝒓 ≠ 𝟏
𝒕 𝒏 = 𝒂 𝒓 𝒏−𝟏
𝒓 =
𝒕 𝒏
𝒕 𝒏−𝟏
𝒔∞ =
𝒂
𝟏−𝒓
, 𝒓 < 𝟏
Arithmetic Series
𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, …
Geometric Series
𝑎, 𝑎𝑟, 𝑎𝑟2, …
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Arithmetic
𝒛 = 𝒙 − 𝒊𝒚
𝒘𝒉𝒆𝒓𝒆 𝒛 𝒊𝒔 𝒄𝒐𝒏𝒋𝒖𝒈𝒂𝒕𝒆 𝒐𝒇 𝒛
𝑹𝒆𝒂𝒍 𝒑𝒂𝒓𝒕 𝒛 =
𝒛 + 𝒛
𝟐
𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚 𝒑𝒂𝒓𝒕 𝒛 =
𝒛 − 𝒛
𝟐𝒊
𝒛 = 𝒙 + 𝒊𝒚
𝒘𝒉𝒆𝒓𝒆 𝒊 = −𝟏
Complex Numbers
𝒛 𝟏 ± 𝒛 𝟐 = 𝒛 𝟏 . 𝒛 𝟐
𝒛 𝒛 = 𝒛 𝟐
𝒛 𝟏. 𝒛 𝟐 = 𝒛 𝟏 𝒛 𝟐
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Arithmetic
Parametric Complex Numbers
De Moivre’s Theorem
𝒓 𝐜𝐢𝐬 𝜽 𝒏 = 𝒓 𝒏 𝐜𝐢𝐬 𝒏𝜽
𝒘𝒉𝒆𝒓𝒆 𝐜𝐢𝐬 𝜽 = 𝐜𝐨𝐬 𝜽 + 𝒊 𝐬𝐢𝐧 𝜽 , 𝒏 ∈ 𝑰
𝐜𝐨𝐬 𝜽 + 𝒊 𝐬𝐢𝐧 𝜽 𝒏 = 𝐜𝐨𝐬 𝒏𝜽 + 𝒊 𝐬𝐢𝐧 𝒏𝜽
𝒛 = 𝒓 𝐜𝐨𝐬 𝜽 + 𝒊 𝐬𝐢𝐧 𝜽
𝒂𝒓𝒈. 𝒛 = 𝜽
𝒘𝒉𝒆𝒓𝒆 cos 𝜽 =
𝒙
𝒓
𝒂𝒏𝒅 sin 𝜽 =
𝒚
𝒓
𝒓 = 𝒛 = 𝒙 𝟐 + 𝒚 𝟐
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
𝑴𝒊𝒅𝒑𝒐𝒊𝒏𝒕
𝒙 𝟏 + 𝒙 𝟐
𝟐
,
𝒚 𝟏 + 𝒚 𝟐
𝟐
𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕
𝒎 =
𝒚 𝟐 − 𝒚 𝟏
𝒙 𝟐 − 𝒙 𝟏
𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆
𝒙 𝟏 − 𝒙 𝟐
𝟐 + 𝒚 𝟏 − 𝒚 𝟐
𝟐
𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍 𝑳𝒊𝒏𝒆𝒔
𝒎 𝟏 = 𝒎 𝟐
𝑷𝒆𝒓𝒑𝒆𝒏𝒅𝒊𝒄𝒖𝒍𝒂𝒓 𝑳𝒊𝒏𝒆𝒔
𝒎 𝟏 𝒎 𝟐 = −𝟏
Analytical Geomtery
Line Coordinates and Gradients
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
𝑨𝒙𝒆𝒔 𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕
𝒙
𝒂
+
𝒚
𝒃
= 𝟏
𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒐𝒇 𝒑𝒐𝒊𝒏𝒕 𝒙 𝟏, 𝒚 𝟏
𝒇𝒓𝒐𝒎 𝒍𝒊𝒏𝒆 𝒂𝒙 + 𝒃𝒚 + 𝒄 = 𝟎
𝒂𝒙 𝟏 + 𝒃𝒚 𝟏 + 𝒄
𝒂 𝟐 + 𝒃 𝟐
𝑺𝒊𝒏𝒈𝒍𝒆 𝑷𝒐𝒊𝒏𝒕
𝒚 − 𝒚 𝟏 = 𝒎 𝒙 − 𝒙 𝟏
𝑺𝒍𝒐𝒑𝒆 𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕
𝒚 = 𝒎𝒙 + 𝒄
Analytical Geomtery
Line Equations
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
𝒔𝒊𝒏 𝜽 =
𝒚
𝒓
𝒄𝒐𝒔 𝜽 =
𝒙
𝒓
𝒕𝒂𝒏 𝜽 =
𝒚
𝒙
𝒄𝒐𝒔𝒆𝒄 𝜽 =
𝒓
𝒚
𝒔𝒆𝒄 𝜽 =
𝒓
𝒙
𝒄𝒐𝒕 𝜽 =
𝒙
𝒚
Trigonometry
Ratios
x
y
r
θ
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
cos−1
𝒙
𝒓
= 𝜽
sin−1
𝒚
𝒓
= 𝜽
tan−1
𝒚
𝒙
= 𝜽 cot−1
𝒙
𝒚
= 𝜽
cosec−1
𝒓
𝒚
= 𝜽
sec−1
𝒓
𝒙
= 𝜽
Trigonometry
Inverse of Ratios
x
y
r
θ
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
tan 𝜽 =
sin 𝜽
cos 𝜽
tan2 𝜽 + 1 = sec2 𝜽
sin2 𝜽 + cos2 𝜽 = 1
cosec 𝜽 =
𝟏
sin 𝜽
Trigonometry
Identities
sec 𝜽 =
𝟏
cos 𝜽
cot 𝜽 =
cos 𝜽
sin 𝜽
cot2 𝜽 + 1 = cosec2 𝜽
tan 𝜽 × cot 𝜽 = 1
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Trigonometry
Products
2 cos 𝐴 cos 𝐵 = cos 𝐴 − 𝐵 + cos 𝐴 + 𝐵
2 cos 𝐴 sin 𝐵 = sin 𝐴 + 𝐵 − sin 𝐴 − 𝐵
2 sin 𝐴 cos 𝐵 = sin 𝐴 + 𝐵 + sin 𝐴 − 𝐵
2 sin 𝐴 sin 𝐵 = cos 𝐴 − 𝐵 − cos 𝐴 + 𝐵
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Trigonometry
Sums
cos 𝐶 + cos 𝐷 = 2 cos
𝐶 + 𝐷
2
× cos
𝐶 − 𝐷
2
sin 𝐶 − sin 𝐷 = 2 cos
𝐶 + 𝐷
2
× sin
𝐶 − 𝐷
2
cos 𝐶 − cos 𝐷 = −2 sin
𝐶 + 𝐷
2
× sin
𝐶 − 𝐷
2
sin 𝐶 + sin 𝐷 = 2 sin
𝐶 + 𝐷
2
× cos
𝐶 − 𝐷
2
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
tan 𝐴 − 𝐵 =
tan 𝐴 − tan 𝐵
1 + tan 𝐴 tan 𝐵
sin 𝐴 − 𝐵 = sin 𝐴 cos 𝐵 − cos 𝐴 sin 𝐵
cos 𝐴 + 𝐵 = cos 𝐴 cos 𝐵 − sin 𝐴 sin 𝐵
sin 𝐴 + 𝐵 = sin 𝐴 cos 𝐵 + cos 𝐴 sin 𝐵
cos 𝐴 − 𝐵 = cos 𝐴 cos 𝐵 + sin 𝐴 sin 𝐵
tan 𝐴 + 𝐵 =
tan 𝐴 + tan 𝐵
1 − tan 𝐴 tan 𝐵
Trigonometry
Compound Angles
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
𝑨 =
𝟏
𝟐
𝒓 𝟐 𝜽
𝝅 𝒓𝒂𝒅𝒊𝒂𝒏𝒔 = 𝟏𝟖𝟎°
𝒂 𝟐
= 𝒃 𝟐
+ 𝒄 𝟐
− 𝟐𝒃𝒄 cos 𝑨
𝒂
sin 𝑨
=
𝒃
sin 𝑩
=
𝒄
sin 𝑪
𝒔 = 𝒓𝜽
𝑨 =
𝟏
𝟐
𝒂𝒃 sin 𝑪
Trigonometry
Rules
Sine Rule
Cosine Rule
Area of a triangle
Radians
Length of arc
Area of sector
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Trigonometry
General Solutions
𝐼𝑓 cos 𝜃 = cos 𝛼 𝑡ℎ𝑒𝑛
𝜃 = 2𝑛𝜋 ± 𝛼, 𝑛 ∈ 𝐼
𝐼𝑓 sin 𝜃 = sin 𝛼 𝑡ℎ𝑒𝑛
𝜃 = 𝑛𝜋 + −1 𝑛 𝛼, 𝑛 ∈ 𝐼
𝐼𝑓 tan 𝜃 = tan 𝛼 𝑡ℎ𝑒𝑛
𝜃 = 𝑛𝜋 + 𝛼, 𝑛 ∈ 𝐼
sin(90 − 𝜃) = cos 𝜃
cos 90 − 𝜃 = sin 𝜃
tan 90 − 𝜃 = cot 𝜃
Complementary angles Multiple angles
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
𝑃 = 2 𝑙 + 2 𝑏 𝐴 = 𝑙 𝑏
𝐶 = 2𝜋𝑟 𝐴 = 𝜋 𝑟2
Geometry
Perimeter AreaShape
a
b
c
h
l
b
r
𝑃 = 𝑎 + 𝑏 + 𝑐
𝐴 =
1
2
𝑏 ℎ
𝑠 =
1
2
(𝑎 + 𝑏 + 𝑐) 𝐴 = 𝑠 𝑠 − 𝑎 𝑠 − 𝑏 𝑠 − 𝑐
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Geometry
Surface AreaShape Volume
𝑆 𝐴 = 4𝜋𝑟2
𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠
𝑉 =
4
3
𝜋𝑟3
𝑆 𝐴 = 2𝜋𝑟ℎ + 2𝜋𝑟2
𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠, ℎ = ℎ𝑒𝑖𝑔ℎ𝑡
𝑉 = 𝜋𝑟2
ℎ
Sphere
Cylinder
Cone
𝑆 𝐴 = 𝜋𝑟𝑙 + 𝜋𝑟2
𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠
𝑙 = 𝑠𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡
𝑉 =
1
3
𝜋𝑟2ℎ
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Geometry
Surface AreaShape Volume
𝑆 𝐴 = 6𝑙2
𝑙 = 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
𝑉 = 𝑙3
𝑆 𝐴 = 2𝑙𝑏 + 2𝑙ℎ + 2𝑏ℎ
𝑙 = 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
𝑏 = 𝑏𝑟𝑒𝑎𝑑𝑡ℎ
ℎ = ℎ𝑒𝑖𝑔ℎ𝑡
𝑉 = 𝑙𝑏ℎ
𝑆 𝐴 = 3𝑙ℎ + 2𝐵𝐴
𝑙 = 𝑏𝑎𝑠𝑒 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
ℎ = 𝑝𝑟𝑖𝑠𝑚 ℎ𝑒𝑖𝑔ℎ𝑡
𝐵𝐴 = 𝑏𝑎𝑠𝑒 𝑎𝑟𝑒𝑎
𝑉 = 𝐵𝐴 ℎ
Cube
Cuboid
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Geometry
Conic Sections
𝑥2
𝑎2
+
𝑦2
𝑏2
= 1
𝑥 = 𝑎 cos 𝜃 , 𝑦 = 𝑏 sin 𝜃
𝑜𝑟 𝑥 = 𝑎𝑡2
, 𝑦 = 2𝑎𝑡
𝑥 − 𝑎 2 + 𝑦 − 𝑏 2 = 𝑟2
ℎ𝑎𝑠 𝑐𝑒𝑛𝑡𝑟𝑒 𝑎𝑡 𝑎, 𝑏
𝑎𝑛𝑑 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟
𝑥 = 𝑎 + 𝑟 cos 𝜃
𝑦 = (𝑏 + 𝑟 sin 𝜃)
AlgebraicShape Parametric
Circle
Ellipse
𝑥2
𝑎2
−
𝑦2
𝑏2
= 1 𝑥 = 𝑎 sec 𝜃 , 𝑦 = 𝑏 tan 𝜃
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Geometry
Conic Sections
𝑥2
= 4𝑎𝑦
Algebraic EquationShape
𝑎𝑥2
+ 𝑏𝑦2
+ 2𝑔𝑥 + 2𝑓𝑦 + 2ℎ𝑥𝑦 + 𝑐 = 0
𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐, 𝑓, 𝑔, ℎ ∈ 𝑅
Parabola
General Equation to a Conic
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Calculus
Limits
lim
𝑥→0
sin 𝜃
𝜃
= 1 lim
𝑛→∞
𝑎
𝑥 𝑛
= 𝑎
Incremental Limits
𝑑𝑦
𝑑𝑥
= 𝑓′ 𝑥 = lim
ℎ→0
𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Calculus
Differentiation
𝐺𝑖𝑣𝑒𝑛 𝑦 = 𝑓 𝑥 𝑎𝑛𝑑 𝑦′ = 𝑓′ 𝑥 =
𝑑𝑦
𝑑𝑥
𝑓 𝑥 𝑓′ 𝑥
c 0
𝑥 𝑛
𝑛𝑥 𝑛−1
ln 𝑥
1
𝑥
𝑒 𝑎𝑥 𝑎𝑒 𝑎𝑥
𝑎 𝑥 𝑎 𝑥 ln 𝑎
𝑓 𝑥 𝑓′ 𝑥
sin 𝑥 cos 𝑥
cos 𝑥 −sin 𝑥
tan 𝑥 sec2
𝑥
sec 𝑥 sec 𝑥 tan 𝑥
cosec 𝑥 cosec 𝑥 cot 𝑥
cot 𝑥 − cosec2 𝑥
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Calculus
Differentiation Rules
𝐺𝑖𝑣𝑒𝑛 𝑢 = 𝑓 𝑥 𝑎𝑛𝑑 𝑣 = 𝑔 𝑥
𝑢𝑣 ′
= 𝑓′
𝑥 𝑔 𝑥 + 𝑓 𝑥 𝑔′
𝑥
𝑜𝑟 𝑖𝑓 𝑦 = 𝑢𝑣
𝑑𝑦
𝑑𝑥
=
𝑑𝑢
𝑑𝑥
𝑣 + 𝑢
𝑑𝑣
𝑑𝑥
Product Rule Quotient Rule
𝑢
𝑣
′
=
𝑣𝑢′ − 𝑢𝑣′
𝑣2
𝑜𝑟 𝑖𝑓 𝑦 = 𝑢/𝑣
𝑑𝑦
𝑑𝑥
=
𝑣
𝑑𝑢
𝑑𝑥
− 𝑢
𝑑𝑣
𝑑𝑥
𝑣2
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Calculus
Differentiation Rules
𝐺𝑖𝑣𝑒𝑛 𝑢 = 𝑔 𝑥 𝑎𝑛𝑑 𝑦 = 𝑓 𝑢
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
Chain Rule or Composite Function Rule
Gradient
𝑑𝑦
𝑑𝑥
𝑜𝑓 𝑓 𝑥 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 𝑥1, 𝑦1 = 𝑚
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Calculus
Integration
𝐲 = 𝑓 𝑥 𝒇 𝒙 𝒅𝒙
k 𝑘𝑥 + 𝑐
𝑥 𝑛 𝑥 𝑛+1
𝑛 + 1
+ 𝑐
1
𝑥
ln 𝑥 + 𝑐
sin 𝑥 −cos 𝑥 + 𝑐
cos 𝑥 sin 𝑥 + 𝑐
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Calculus
Integration Rules
𝑎
𝑏
𝑓′ 𝑥 𝑑𝑥 = 𝑓 𝑏 − 𝑓 𝑎
𝑓 𝑥 𝑔 𝑥 𝑑𝑥 = 𝑓(𝑥) 𝑔 𝑥 𝑑𝑥 − 𝑔(𝑥) 𝑑𝑥
𝑑𝑓(𝑥)
𝑑𝑥
Volume Integral
𝑉 = 𝜋
𝑎
𝑏
𝑦2 𝑑𝑥
FORMULAE
FOR STUDENTS
MATHEMATICS
©2014 MDR www.learningforknowledge.com/glg
Author: M. D. Raghu
Email: glg@learningforknowledge.com
Ganit Learning Guides
Thank you
Design-Layout: www.narayanasoftware.com
For exemplars and proofs of formulae
Visit: www.learningforknowledge.com/glg

Mathematics Formulae

  • 1.
    Mathematics Formulae for SchoolStudents M. D. Raghu
  • 2.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg 𝒙 𝒎. 𝒙 𝒏 = 𝒙 𝒎+𝒏 𝒙 𝒎 𝒙 𝒏 = 𝒙 𝒎−𝒏 𝒙 𝒎 𝒏 = 𝒙 𝒎𝒏 𝒙 𝒑 𝒒 = 𝒒 𝒙 𝒑 Algebra Indices Logarithms 𝑰𝒇 𝒚 = 𝒃 𝒙 𝒕𝒉𝒆𝒏 𝒙 = log 𝒃 𝒚 log 𝒃 𝒙𝒚 = log 𝒃 𝒙 + log 𝒃 𝒚 log 𝒃 𝒙 𝒚 = log 𝑏 𝒙 − log 𝒃 𝒚 log 𝒃 𝒙 𝒏 = 𝒏 log 𝒃 𝒙 log 𝒂 𝒙 = log 𝑏 𝒙 log 𝒃 𝒂
  • 3.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg 𝐼𝑓 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, 𝑡ℎ𝑒𝑛 𝑥 = −𝑏 ± 𝑏2 − 4𝑎𝑐 2𝑎 Algebra Quadratic Equations 𝑎2 − 𝑏2 = (𝑎 − 𝑏)(𝑎 + 𝑏) 𝑎 − 𝑏 2 = 𝑎2 − 2𝑎𝑏 + 𝑏2 𝑎 + 𝑏 2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 Binomial Expansion
  • 4.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg 𝑎 + 𝑏 𝑛 = 𝑛 𝐶0 𝑎 𝑛 + 𝑛 𝐶1 𝑎 𝑛−1 𝑏 + ⋯ + 𝑛 𝐶 𝑟 𝑎 𝑛−𝑟 𝑏 𝑟 + ⋯ + 𝑛 𝐶 𝑛 𝑏 𝑛 Algebra Binomial Theorem 𝑤ℎ𝑒𝑟𝑒 𝑛 𝐶 𝑟 = 𝑛! 𝑛 − 𝑟 ! × 𝑟! 1 + 𝑥 𝑛 = 1 + 𝑛 𝐶1 𝑥 + ⋯ + 𝑛 𝐶 𝑟 𝑥 𝑟 + ⋯ 𝐼𝑓 𝑥 < 1, 𝑡ℎ𝑒𝑛 𝑥 𝑟 → 0 𝑎𝑠 𝑟 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠, 𝑟 ∈ 𝑁
  • 5.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Arithmetic 𝒏 𝒕𝒉 𝒕𝒆𝒓𝒎 𝒕 𝒏 = 𝒂 + 𝒏 − 𝟏 𝒅 𝑴𝒆𝒂𝒏 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒅 = 𝒕 𝒏+𝟏 − 𝒕 𝒏 𝑺𝒖𝒎 𝒐𝒇 𝒏 𝒕𝒆𝒓𝒎𝒔 𝒔 𝒏 = 𝒏 𝟐 𝟐𝒂 + 𝒏 − 𝟏 𝒅 𝒔 𝒏 = 𝒂 𝟏−𝒓 𝒏 𝟏−𝒓 , 𝒓 ≠ 𝟏 𝒕 𝒏 = 𝒂 𝒓 𝒏−𝟏 𝒓 = 𝒕 𝒏 𝒕 𝒏−𝟏 𝒔∞ = 𝒂 𝟏−𝒓 , 𝒓 < 𝟏 Arithmetic Series 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, … Geometric Series 𝑎, 𝑎𝑟, 𝑎𝑟2, …
  • 6.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Arithmetic 𝒛 = 𝒙 − 𝒊𝒚 𝒘𝒉𝒆𝒓𝒆 𝒛 𝒊𝒔 𝒄𝒐𝒏𝒋𝒖𝒈𝒂𝒕𝒆 𝒐𝒇 𝒛 𝑹𝒆𝒂𝒍 𝒑𝒂𝒓𝒕 𝒛 = 𝒛 + 𝒛 𝟐 𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚 𝒑𝒂𝒓𝒕 𝒛 = 𝒛 − 𝒛 𝟐𝒊 𝒛 = 𝒙 + 𝒊𝒚 𝒘𝒉𝒆𝒓𝒆 𝒊 = −𝟏 Complex Numbers 𝒛 𝟏 ± 𝒛 𝟐 = 𝒛 𝟏 . 𝒛 𝟐 𝒛 𝒛 = 𝒛 𝟐 𝒛 𝟏. 𝒛 𝟐 = 𝒛 𝟏 𝒛 𝟐
  • 7.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Arithmetic Parametric Complex Numbers De Moivre’s Theorem 𝒓 𝐜𝐢𝐬 𝜽 𝒏 = 𝒓 𝒏 𝐜𝐢𝐬 𝒏𝜽 𝒘𝒉𝒆𝒓𝒆 𝐜𝐢𝐬 𝜽 = 𝐜𝐨𝐬 𝜽 + 𝒊 𝐬𝐢𝐧 𝜽 , 𝒏 ∈ 𝑰 𝐜𝐨𝐬 𝜽 + 𝒊 𝐬𝐢𝐧 𝜽 𝒏 = 𝐜𝐨𝐬 𝒏𝜽 + 𝒊 𝐬𝐢𝐧 𝒏𝜽 𝒛 = 𝒓 𝐜𝐨𝐬 𝜽 + 𝒊 𝐬𝐢𝐧 𝜽 𝒂𝒓𝒈. 𝒛 = 𝜽 𝒘𝒉𝒆𝒓𝒆 cos 𝜽 = 𝒙 𝒓 𝒂𝒏𝒅 sin 𝜽 = 𝒚 𝒓 𝒓 = 𝒛 = 𝒙 𝟐 + 𝒚 𝟐
  • 8.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg 𝑴𝒊𝒅𝒑𝒐𝒊𝒏𝒕 𝒙 𝟏 + 𝒙 𝟐 𝟐 , 𝒚 𝟏 + 𝒚 𝟐 𝟐 𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕 𝒎 = 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒙 𝟏 − 𝒙 𝟐 𝟐 + 𝒚 𝟏 − 𝒚 𝟐 𝟐 𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍 𝑳𝒊𝒏𝒆𝒔 𝒎 𝟏 = 𝒎 𝟐 𝑷𝒆𝒓𝒑𝒆𝒏𝒅𝒊𝒄𝒖𝒍𝒂𝒓 𝑳𝒊𝒏𝒆𝒔 𝒎 𝟏 𝒎 𝟐 = −𝟏 Analytical Geomtery Line Coordinates and Gradients
  • 9.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg 𝑨𝒙𝒆𝒔 𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 𝒙 𝒂 + 𝒚 𝒃 = 𝟏 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒐𝒇 𝒑𝒐𝒊𝒏𝒕 𝒙 𝟏, 𝒚 𝟏 𝒇𝒓𝒐𝒎 𝒍𝒊𝒏𝒆 𝒂𝒙 + 𝒃𝒚 + 𝒄 = 𝟎 𝒂𝒙 𝟏 + 𝒃𝒚 𝟏 + 𝒄 𝒂 𝟐 + 𝒃 𝟐 𝑺𝒊𝒏𝒈𝒍𝒆 𝑷𝒐𝒊𝒏𝒕 𝒚 − 𝒚 𝟏 = 𝒎 𝒙 − 𝒙 𝟏 𝑺𝒍𝒐𝒑𝒆 𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 𝒚 = 𝒎𝒙 + 𝒄 Analytical Geomtery Line Equations
  • 10.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg 𝒔𝒊𝒏 𝜽 = 𝒚 𝒓 𝒄𝒐𝒔 𝜽 = 𝒙 𝒓 𝒕𝒂𝒏 𝜽 = 𝒚 𝒙 𝒄𝒐𝒔𝒆𝒄 𝜽 = 𝒓 𝒚 𝒔𝒆𝒄 𝜽 = 𝒓 𝒙 𝒄𝒐𝒕 𝜽 = 𝒙 𝒚 Trigonometry Ratios x y r θ
  • 11.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg cos−1 𝒙 𝒓 = 𝜽 sin−1 𝒚 𝒓 = 𝜽 tan−1 𝒚 𝒙 = 𝜽 cot−1 𝒙 𝒚 = 𝜽 cosec−1 𝒓 𝒚 = 𝜽 sec−1 𝒓 𝒙 = 𝜽 Trigonometry Inverse of Ratios x y r θ
  • 12.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg tan 𝜽 = sin 𝜽 cos 𝜽 tan2 𝜽 + 1 = sec2 𝜽 sin2 𝜽 + cos2 𝜽 = 1 cosec 𝜽 = 𝟏 sin 𝜽 Trigonometry Identities sec 𝜽 = 𝟏 cos 𝜽 cot 𝜽 = cos 𝜽 sin 𝜽 cot2 𝜽 + 1 = cosec2 𝜽 tan 𝜽 × cot 𝜽 = 1
  • 13.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Trigonometry Products 2 cos 𝐴 cos 𝐵 = cos 𝐴 − 𝐵 + cos 𝐴 + 𝐵 2 cos 𝐴 sin 𝐵 = sin 𝐴 + 𝐵 − sin 𝐴 − 𝐵 2 sin 𝐴 cos 𝐵 = sin 𝐴 + 𝐵 + sin 𝐴 − 𝐵 2 sin 𝐴 sin 𝐵 = cos 𝐴 − 𝐵 − cos 𝐴 + 𝐵
  • 14.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Trigonometry Sums cos 𝐶 + cos 𝐷 = 2 cos 𝐶 + 𝐷 2 × cos 𝐶 − 𝐷 2 sin 𝐶 − sin 𝐷 = 2 cos 𝐶 + 𝐷 2 × sin 𝐶 − 𝐷 2 cos 𝐶 − cos 𝐷 = −2 sin 𝐶 + 𝐷 2 × sin 𝐶 − 𝐷 2 sin 𝐶 + sin 𝐷 = 2 sin 𝐶 + 𝐷 2 × cos 𝐶 − 𝐷 2
  • 15.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg tan 𝐴 − 𝐵 = tan 𝐴 − tan 𝐵 1 + tan 𝐴 tan 𝐵 sin 𝐴 − 𝐵 = sin 𝐴 cos 𝐵 − cos 𝐴 sin 𝐵 cos 𝐴 + 𝐵 = cos 𝐴 cos 𝐵 − sin 𝐴 sin 𝐵 sin 𝐴 + 𝐵 = sin 𝐴 cos 𝐵 + cos 𝐴 sin 𝐵 cos 𝐴 − 𝐵 = cos 𝐴 cos 𝐵 + sin 𝐴 sin 𝐵 tan 𝐴 + 𝐵 = tan 𝐴 + tan 𝐵 1 − tan 𝐴 tan 𝐵 Trigonometry Compound Angles
  • 16.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg 𝑨 = 𝟏 𝟐 𝒓 𝟐 𝜽 𝝅 𝒓𝒂𝒅𝒊𝒂𝒏𝒔 = 𝟏𝟖𝟎° 𝒂 𝟐 = 𝒃 𝟐 + 𝒄 𝟐 − 𝟐𝒃𝒄 cos 𝑨 𝒂 sin 𝑨 = 𝒃 sin 𝑩 = 𝒄 sin 𝑪 𝒔 = 𝒓𝜽 𝑨 = 𝟏 𝟐 𝒂𝒃 sin 𝑪 Trigonometry Rules Sine Rule Cosine Rule Area of a triangle Radians Length of arc Area of sector
  • 17.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Trigonometry General Solutions 𝐼𝑓 cos 𝜃 = cos 𝛼 𝑡ℎ𝑒𝑛 𝜃 = 2𝑛𝜋 ± 𝛼, 𝑛 ∈ 𝐼 𝐼𝑓 sin 𝜃 = sin 𝛼 𝑡ℎ𝑒𝑛 𝜃 = 𝑛𝜋 + −1 𝑛 𝛼, 𝑛 ∈ 𝐼 𝐼𝑓 tan 𝜃 = tan 𝛼 𝑡ℎ𝑒𝑛 𝜃 = 𝑛𝜋 + 𝛼, 𝑛 ∈ 𝐼 sin(90 − 𝜃) = cos 𝜃 cos 90 − 𝜃 = sin 𝜃 tan 90 − 𝜃 = cot 𝜃 Complementary angles Multiple angles
  • 18.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg 𝑃 = 2 𝑙 + 2 𝑏 𝐴 = 𝑙 𝑏 𝐶 = 2𝜋𝑟 𝐴 = 𝜋 𝑟2 Geometry Perimeter AreaShape a b c h l b r 𝑃 = 𝑎 + 𝑏 + 𝑐 𝐴 = 1 2 𝑏 ℎ 𝑠 = 1 2 (𝑎 + 𝑏 + 𝑐) 𝐴 = 𝑠 𝑠 − 𝑎 𝑠 − 𝑏 𝑠 − 𝑐
  • 19.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Geometry Surface AreaShape Volume 𝑆 𝐴 = 4𝜋𝑟2 𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑉 = 4 3 𝜋𝑟3 𝑆 𝐴 = 2𝜋𝑟ℎ + 2𝜋𝑟2 𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠, ℎ = ℎ𝑒𝑖𝑔ℎ𝑡 𝑉 = 𝜋𝑟2 ℎ Sphere Cylinder Cone 𝑆 𝐴 = 𝜋𝑟𝑙 + 𝜋𝑟2 𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑙 = 𝑠𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 𝑉 = 1 3 𝜋𝑟2ℎ
  • 20.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Geometry Surface AreaShape Volume 𝑆 𝐴 = 6𝑙2 𝑙 = 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑉 = 𝑙3 𝑆 𝐴 = 2𝑙𝑏 + 2𝑙ℎ + 2𝑏ℎ 𝑙 = 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏 = 𝑏𝑟𝑒𝑎𝑑𝑡ℎ ℎ = ℎ𝑒𝑖𝑔ℎ𝑡 𝑉 = 𝑙𝑏ℎ 𝑆 𝐴 = 3𝑙ℎ + 2𝐵𝐴 𝑙 = 𝑏𝑎𝑠𝑒 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ ℎ = 𝑝𝑟𝑖𝑠𝑚 ℎ𝑒𝑖𝑔ℎ𝑡 𝐵𝐴 = 𝑏𝑎𝑠𝑒 𝑎𝑟𝑒𝑎 𝑉 = 𝐵𝐴 ℎ Cube Cuboid
  • 21.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Geometry Conic Sections 𝑥2 𝑎2 + 𝑦2 𝑏2 = 1 𝑥 = 𝑎 cos 𝜃 , 𝑦 = 𝑏 sin 𝜃 𝑜𝑟 𝑥 = 𝑎𝑡2 , 𝑦 = 2𝑎𝑡 𝑥 − 𝑎 2 + 𝑦 − 𝑏 2 = 𝑟2 ℎ𝑎𝑠 𝑐𝑒𝑛𝑡𝑟𝑒 𝑎𝑡 𝑎, 𝑏 𝑎𝑛𝑑 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟 𝑥 = 𝑎 + 𝑟 cos 𝜃 𝑦 = (𝑏 + 𝑟 sin 𝜃) AlgebraicShape Parametric Circle Ellipse 𝑥2 𝑎2 − 𝑦2 𝑏2 = 1 𝑥 = 𝑎 sec 𝜃 , 𝑦 = 𝑏 tan 𝜃
  • 22.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Geometry Conic Sections 𝑥2 = 4𝑎𝑦 Algebraic EquationShape 𝑎𝑥2 + 𝑏𝑦2 + 2𝑔𝑥 + 2𝑓𝑦 + 2ℎ𝑥𝑦 + 𝑐 = 0 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐, 𝑓, 𝑔, ℎ ∈ 𝑅 Parabola General Equation to a Conic
  • 23.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Calculus Limits lim 𝑥→0 sin 𝜃 𝜃 = 1 lim 𝑛→∞ 𝑎 𝑥 𝑛 = 𝑎 Incremental Limits 𝑑𝑦 𝑑𝑥 = 𝑓′ 𝑥 = lim ℎ→0 𝑓 𝑥 + ℎ − 𝑓(𝑥) ℎ
  • 24.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Calculus Differentiation 𝐺𝑖𝑣𝑒𝑛 𝑦 = 𝑓 𝑥 𝑎𝑛𝑑 𝑦′ = 𝑓′ 𝑥 = 𝑑𝑦 𝑑𝑥 𝑓 𝑥 𝑓′ 𝑥 c 0 𝑥 𝑛 𝑛𝑥 𝑛−1 ln 𝑥 1 𝑥 𝑒 𝑎𝑥 𝑎𝑒 𝑎𝑥 𝑎 𝑥 𝑎 𝑥 ln 𝑎 𝑓 𝑥 𝑓′ 𝑥 sin 𝑥 cos 𝑥 cos 𝑥 −sin 𝑥 tan 𝑥 sec2 𝑥 sec 𝑥 sec 𝑥 tan 𝑥 cosec 𝑥 cosec 𝑥 cot 𝑥 cot 𝑥 − cosec2 𝑥
  • 25.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Calculus Differentiation Rules 𝐺𝑖𝑣𝑒𝑛 𝑢 = 𝑓 𝑥 𝑎𝑛𝑑 𝑣 = 𝑔 𝑥 𝑢𝑣 ′ = 𝑓′ 𝑥 𝑔 𝑥 + 𝑓 𝑥 𝑔′ 𝑥 𝑜𝑟 𝑖𝑓 𝑦 = 𝑢𝑣 𝑑𝑦 𝑑𝑥 = 𝑑𝑢 𝑑𝑥 𝑣 + 𝑢 𝑑𝑣 𝑑𝑥 Product Rule Quotient Rule 𝑢 𝑣 ′ = 𝑣𝑢′ − 𝑢𝑣′ 𝑣2 𝑜𝑟 𝑖𝑓 𝑦 = 𝑢/𝑣 𝑑𝑦 𝑑𝑥 = 𝑣 𝑑𝑢 𝑑𝑥 − 𝑢 𝑑𝑣 𝑑𝑥 𝑣2
  • 26.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Calculus Differentiation Rules 𝐺𝑖𝑣𝑒𝑛 𝑢 = 𝑔 𝑥 𝑎𝑛𝑑 𝑦 = 𝑓 𝑢 𝑑𝑦 𝑑𝑥 = 𝑑𝑦 𝑑𝑢 . 𝑑𝑢 𝑑𝑥 Chain Rule or Composite Function Rule Gradient 𝑑𝑦 𝑑𝑥 𝑜𝑓 𝑓 𝑥 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 𝑥1, 𝑦1 = 𝑚
  • 27.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Calculus Integration 𝐲 = 𝑓 𝑥 𝒇 𝒙 𝒅𝒙 k 𝑘𝑥 + 𝑐 𝑥 𝑛 𝑥 𝑛+1 𝑛 + 1 + 𝑐 1 𝑥 ln 𝑥 + 𝑐 sin 𝑥 −cos 𝑥 + 𝑐 cos 𝑥 sin 𝑥 + 𝑐
  • 28.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Calculus Integration Rules 𝑎 𝑏 𝑓′ 𝑥 𝑑𝑥 = 𝑓 𝑏 − 𝑓 𝑎 𝑓 𝑥 𝑔 𝑥 𝑑𝑥 = 𝑓(𝑥) 𝑔 𝑥 𝑑𝑥 − 𝑔(𝑥) 𝑑𝑥 𝑑𝑓(𝑥) 𝑑𝑥 Volume Integral 𝑉 = 𝜋 𝑎 𝑏 𝑦2 𝑑𝑥
  • 29.
    FORMULAE FOR STUDENTS MATHEMATICS ©2014 MDRwww.learningforknowledge.com/glg Author: M. D. Raghu Email: glg@learningforknowledge.com Ganit Learning Guides Thank you Design-Layout: www.narayanasoftware.com For exemplars and proofs of formulae Visit: www.learningforknowledge.com/glg