SlideShare a Scribd company logo
Electrochemistry and Synthetic Hydrocarbons
from Water and Carbon Dioxide
Glenn Rambach
Third Orbit Power Systems, Inc.
Sept. 2009
Basics
High-temperature solid oxide electrochemistry for:
1) Fuel cells
2) Electrolysis
Electrochemistry and Synthetic Hydrocarbons
from Water and Carbon Dioxide
Electrochemistry and Synthetic Hydrocarbons
from Water and Carbon Dioxide
Water + CO2 to Fuels Like Diesel Fuel
O2 + 4e
_
2O2
_
Porous
metal/ceramic cathodeDense, Solid
Electrolyte
(usually yttrium stabilized zirconia, YSZ)
Porous
metal/ceramic anode
H2O
and/or
CO2
H2 and/or CO
e-
External
Load
O2
Basic solid oxide fuel cell (SOFC) mechanism
and/or
Fuel
side
Air
side
Temperature:
600 - 1000C
H2 + O2
_
H2O + 2e
_
CO + O2
_
CO2 + 2e
_
O2
_
O2
_
O2
_
O2
_
All reactions are
reversible to permit
water and CO2
electrolysis from an
applied voltage.
e-
Applied voltage
2O2
_
O2 + 4e
_
Porous
metal/ceramic cathodeDense, Solid
Electrolyte
(usually yttrium stabilized zirconia, YSZ)
Porous
metal/ceramic anode
H2O
and/or
CO2
H2 and/or CO
O2
Basic solid oxide electrolysis cell (SOEC) mechanism
and/or
Fuel
side
Oxygen
side
Temperature:
600 - 1000C
H2O + 2e
_
H2 + O2
_
CO2 + 2e
_
CO + O2
_
O2
_
O2
_
O2
_
O2
_
How do the reactants and products transport?
Where do reactions take place?
Electrochemical removal of oxygen and selective catalyst choices can favor
efficient use of electrolyzed hydrogen in production of synthetic fuel.
Electrochemically selective removal of half the oxygen from CO2 reduces the
consumption of hydrogen by 33%, compared to the use of reverse water gas
shift reaction, in the production of synthetic hydrocarbon fuel.
Porous cathode
Dense electrolyte
Porous anodeThermo-catalyst/Electro-catalyst
Gaseous flow channel
Electrolysis
electrode-electrolyte assembly
Electrochemical removal of oxygen and selective catalyst choices can favor
efficient use of electrolyzed hydrogen in production of synthetic fuel.
Gaseous flow
e-
O2
_
O2
_
O2
_ O2
_
O2
_ O2
_
O2
_
O2
_
e
_
e
_
e
_
e
_
e
_
e
_
e
_
e
_
CO2
H2O CO
CO2 + 2e
_
 CO + O2-
H2O + 2e
_
 H2 + O2-
H2
2O2-  O2 + 4e
_ O2
H2
CO
To conventional
Fisher-Tropsch
liquid fuel production
2H2 + CO  CH2 + H2O
Lost hydrogen
Electrochemically removed oxygen
Electrochemical removal of oxygen and selective catalyst choices can favor
efficient use of electrolyzed hydrogen in production of synthetic fuel.
Electrochemically selective removal of all oxygen from CO2 reduces the
consumption of hydrogen by 66%, compared to the use of reverse water gas
shift reaction and Fisher-Tropsch reaction 1, in the production of synfuel.
Electrochemical removal of oxygen and selective catalyst choices can favor
efficient use of electrolyzed hydrogen in production of synthetic fuel.
Electrochemical removal of oxygen and selective catalyst choices can favor
efficient use of electrolyzed hydrogen in production of synthetic fuel.
e-
O2
_
O2
_
O2
_ O2
_
O2
_ O2
_
O2
_
O2
_
e
_
e
_
e
_
e
_
e
_
e
_
e
_
e
_
CO2
H2O
CO2 + 2e
_
 CO + O2-
CO* + ½H2 + 2e
_
 CH + O2-
CH + ½H2  –CH2–
H2O + 2e
_
 H2 + O2-
2O2-  O2 + 4e
_ O2
[CH2]n
No lost
hydrogen
Electrochemically removed oxygen
Electrochemical removal of oxygen and selective catalyst choices can favor
efficient use of electrolyzed hydrogen in production of synthetic fuel.
COH2
e-
O2
_
O2
_
O2
_ O2
_
O2
_ O2
_
O2
_
O2
_
e
_
e
_
e
_
e
_
e
_
e
_
e
_
e
_
These and similar reactions may take place far
downstream, at lower temperature and with different catalyst.
CO2
H2O
CO2 + 2e
_
 CO + O2-
CO* + ½H2 + 2e
_
 CH + O2-
CH + ½H2  –CH2–
H2O + 2e
_
 H2 + O2-
2O2-  O2 + 4e
_ O2
[CH2]n
No lost
hydrogen
Electrochemical removal of oxygen and selective catalyst choices can favor
efficient use of electrolyzed hydrogen in production of synthetic fuel.
COH2
How do the flow channels, electrochemical
surface and down stream catalysts look in
a typical configuration?
Synfuel from CO2 and H2O using electrochemistry
Synfuel from CO2 and H2O using electrochemistry
Porous
Cathode Porous
Anode
Solid YSZ
Electrolyte
e-
H2O
and
CO2
Synfuel from CO2 and H2O using electrochemistry
Porous
Cathode Porous
Anode
Solid YSZ
Electrolyte
e-
H2O
and
CO2
Catalyst
Synfuel from CO2 and H2O using electrochemistry
Porous
Cathode Porous
Anode
Solid YSZ
Electrolyte
e-
H2O
and
CO2
H2O
CO2
Catalyst
Synfuel from CO2 and H2O using electrochemistry
Porous
Cathode Porous
Anode
Solid YSZ
Electrolyte
e-
H2O
and
CO2
H2O
CO2
Catalyst
O2
_
O2
_
O2
_
O2
_
O2
_
O2
Synfuel from CO2 and H2O using electrochemistry
Porous
Cathode Porous
Anode
Solid YSZ
Electrolyte
e-
H2O
and
CO2
H2O
CO2
Catalyst
O2
_
O2
_
O2
_
O2
_
O2
_
2O2
_
O2 + 2e
_
O2
Synfuel from CO2 and H2O using electrochemistry
Porous
Cathode Porous
Anode
Solid YSZ
Electrolyte
e-
H2O
and
CO2
H2O
CO2
Catalyst
CO
O2
_
O2
_
O2
_
O2
_
O2
_
H2
2O2
_
O2 + 2e
_
O2
CnH2n+2
(Synfuel)
Synfuel from CO2 and H2O using electrochemistry
Porous
Cathode Porous
Anode
Solid YSZ
Electrolyte
O2
_
O2
_
O2
_
O2
_
O2
_
e-
H2O
and
CO2
H2O
CO2
Catalyst
2O2
_
O2 + 2e
_
H2
CO
Synfuel from CO2 and H2O using electrochemistry
O2
CnH2n+2
(Synfuel)
Porous
Cathode Porous
Anode
Solid YSZ
Electrolyte
O2
_
O2
_
O2
_
O2
_
O2
_
e-
H2O
and
CO2
H2O
CO2
Catalyst
2O2
_
O2 + 2e
_
H2
CO
Triple
Region
H
O=
e-
e-O
H
H
Electrocatalyst
Cathode
H O=
Synfuel from CO2 and H2O using electrochemistry
CnH2n+2
(Synfuel)
Catalyst
O2
CnH2n+2
(Synfuel)
Porous
Cathode Porous
Anode
Solid YSZ
Electrolyte
O2
_
O2
_
O2
_
O2
_
O2
_
e-
H2O
and
CO2
H2O
CO2
Catalyst
2O2
_
O2 + 2e
_
H2
CO
n[CO2 + 2e
_
CO + O2
_
]
n[H2O + 2e
_
H2 + O2
_
]
Triple
Region
H
O=
e-
e-O
H
H
Electrocatalyst
Cathode
H O=
Synfuel from CO2 and H2O using electrochemistry
Temperature: 600 - 1000C
(Riso uses 650C for
2H2O + CO2  CH4 + 2O2)
CnH2n+2
(Synfuel)
Catalyst
O2
CnH2n+2
(Synfuel)
Porous
Cathode Porous
Anode
Solid YSZ
Electrolyte
O2
_
O2
_
O2
_
O2
_
O2
_
e-
H2O
and
CO2
H2O
CO2
Catalyst
2O2
_
O2 + 2e
_
H2
CO
n[CO2 + 2e
_
CO + O2
_
]
n[H2O + 2e
_
H2 + O2
_
]
Triple
Region
H
O=
e-
e-O
H
H
Electrocatalyst
Cathode
H O=
What configurations with high-temperature
power sources are possible?
How would they compare with synthetic
hydrocarbon production using high-temperature
thermochemical H2 from water, and reverse
WGS CO from CO2?
3(H2O)
S-I
Thermochemical
CO2
Reverse
WGS
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
25H2 + 8CO2  C8H18 + 16H2O
1.2 GJ of H2 to produce 1.0 GJ synfuel
S-I to Hydrogen, WGS to CO,
F-T to Synfuel
Heat
1
CO
and
H2
6 H atoms
2 H atoms
3(H2O)
S-I
Thermochemical
Heat
CO2
Reverse
WGS
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
25H2 + 8CO2  C8H18 + 16H2O
1.2 GJ of H2 to produce 1.0 GJ synfuel
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
17H2 + 8CO2  C8H18 + 8H2O
0.82 GJ of H2 to produce 1.0 GJ synfuel
2(H2O) CO2
Elec
Electrolysis of
H2O and CO2
S-I to Hydrogen, WGS to CO,
F-T to Synfuel
Electrolysis to Hydrogen and CO,
F-T to Synfuel
Heat
1 2
CO
and
H2
CO
and
H2
6 H atoms 4 H atoms 2 H atoms
2 H atoms2 H atoms
3(H2O)
S-I
Thermochemical
Heat
CO2
Reverse
WGS
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
25H2 + 8CO2  C8H18 + 16H2O
1.2 GJ of H2 to produce 1.0 GJ synfuel
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
17H2 + 8CO2  C8H18 + 8H2O
0.82 GJ of H2 to produce 1.0 GJ synfuel
2(H2O) CO2
Elec
Electrolysis of
H2O and CO2
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
9H2 + 8CO2  C8H18
0.43 GJ of H2 to produce 1.0 GJ synfuel
Elec
S-I to Hydrogen, WGS to CO,
F-T to Synfuel
Electrolysis to Hydrogen and CO,
F-T to Synfuel
Electrolysis to Hydrogen and CO,
F-T Polymerization to Synfuel
Heat Heat
1 2 3
CO
and
H2
CO
and
H2
Electrolysis of
H2O, CO2
and electro-
thermo-catalysis
of CO
6 H atoms 4 H atoms 2 H atoms
2 H atoms2 H atoms
2 H atoms -CH2-
H2O CO2
2 H atoms3(H2O)
S-I
Thermochemical
Heat
CO2
Reverse
WGS
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
25H2 + 8CO2  C8H18 + 16H2O
1.2 GJ of H2 to produce 1.0 GJ synfuel
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
17H2 + 8CO2  C8H18 + 8H2O
0.82 GJ of H2 to produce 1.0 GJ synfuel
2(H2O) CO2
Elec
Electrolysis of
H2O and CO2
S-I to Hydrogen, WGS to CO,
F-T to Synfuel
Electrolysis to Hydrogen and CO,
F-T to Synfuel
Electrolysis to Hydrogen and CO,
F-T Polymerization to Synfuel
Heat
1 2 3
CO
and
H2
CO
and
H2
6 H atoms 4 H atoms
2 H atoms2 H atoms
3(H2O)
S-I
Thermochemical
CO2
Reverse
WGS
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
25H2 + 8CO2  C8H18 + 16H2O
1.2 GJ of H2 to produce 1.0 GJ synfuel
Heat
CO
and
H2
6 H atoms
2 H atoms
3(H2O)
S-I
Thermochemical
H2
CO2
Reverse
WGS
CO
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
25H2 + 8CO2  C8H18 + 16H2O
1.2 GJ of H2 to produce 1.0 GJ synfuel
O2
3
2
H2O
H2O
Heat
2H2
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
9H2 + 8CO2  C8H18
0.43 GJ of H2 to produce 1.0 GJ synfuel
Elec
Heat
Electrolysis of
H2O, CO2
and electro-
thermo-catalysis
of CO
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
9H2 + 8CO2  C8H18
0.43 GJ of H2 to produce 1.0 GJ synfuel
-CH2-
H2O CO2
2 H atoms
2 H atoms3(H2O)
S-I
Thermochemical
Heat
CO2
Reverse
WGS
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
25H2 + 8CO2  C8H18 + 16H2O
1.2 GJ of H2 to produce 1.0 GJ synfuel
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
17H2 + 8CO2  C8H18 + 8H2O
0.82 GJ of H2 to produce 1.0 GJ synfuel
2(H2O) CO2
Elec
Electrolysis of
H2O and CO2
S-I to Hydrogen, WGS to CO,
F-T to Synfuel
Electrolysis to Hydrogen and CO,
F-T to Synfuel
Electrolysis to Hydrogen and CO,
F-T Polymerization to Synfuel
Heat
1 2 3
CO
and
H2
CO
and
H2
6 H atoms 4 H atoms
2 H atoms2 H atoms
3(H2O)
S-I
Thermochemical
CO2
Reverse
WGS
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
25H2 + 8CO2  C8H18 + 16H2O
1.2 GJ of H2 to produce 1.0 GJ synfuel
Heat
CO
and
H2
6 H atoms
2 H atoms
3(H2O)
S-I
Thermochemical
H2
CO2
Reverse
WGS
CO
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
25H2 + 8CO2  C8H18 + 16H2O
1.2 GJ of H2 to produce 1.0 GJ synfuel
O2
3
2
H2O
H2O
Heat
2H2
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
9H2 + 8CO2  C8H18
0.43 GJ of H2 to produce 1.0 GJ synfuel
Elec
Heat
Electrolysis of
H2O, CO2
and electro-
thermo-catalysis
of CO
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
9H2 + 8CO2  C8H18
0.43 GJ of H2 to produce 1.0 GJ synfuel
-CH2-
H2O CO2
2 H atoms
Heat
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
17H2 + 8CO2  C8H18 + 8H2O
0.82 GJ of H2 to produce 1.0 GJ synfuel
2(H2O) CO2
Elec
Electrolysis of
H2O and CO2
CO
and
H2
4 H atoms
2 H atoms
Heat
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
17H2 + 8CO2  C8H18 + 8H2O
0.82 GJ of H2 to produce 1.0 GJ synfuel
2O O
2(H2O) CO2
COH2
Elec
Electrolysis
membranes
2H2 CO
O2
3
2
H2O
2 H atoms3(H2O)
S-I
Thermochemical
Heat
CO2
Reverse
WGS
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
25H2 + 8CO2  C8H18 + 16H2O
1.2 GJ of H2 to produce 1.0 GJ synfuel
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
17H2 + 8CO2  C8H18 + 8H2O
0.82 GJ of H2 to produce 1.0 GJ synfuel
2(H2O) CO2
Elec
Electrolysis of
H2O and CO2
S-I to Hydrogen, WGS to CO,
F-T to Synfuel
Electrolysis to Hydrogen and CO,
F-T to Synfuel
Electrolysis to Hydrogen and CO,
F-T Polymerization to Synfuel
Heat
1 2 3
CO
and
H2
CO
and
H2
6 H atoms 4 H atoms
2 H atoms2 H atoms
Heat
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
17H2 + 8CO2  C8H18 + 8H2O
0.82 GJ of H2 to produce 1.0 GJ synfuel
2(H2O) CO2
Elec
Electrolysis of
H2O and CO2
CO
and
H2
4 H atoms
2 H atoms
Heat
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
17H2 + 8CO2  C8H18 + 8H2O
0.82 GJ of H2 to produce 1.0 GJ synfuel
2O O
2(H2O) CO2
COH2
Elec
Electrolysis
membranes
2H2 CO
O2
3
2
H2O
3(H2O)
S-I
Thermochemical
CO2
Reverse
WGS
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
25H2 + 8CO2  C8H18 + 16H2O
1.2 GJ of H2 to produce 1.0 GJ synfuel
Heat
CO
and
H2
6 H atoms
2 H atoms
3(H2O)
S-I
Thermochemical
H2
CO2
Reverse
WGS
CO
Fischer-Tropsch 1
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
25H2 + 8CO2  C8H18 + 16H2O
1.2 GJ of H2 to produce 1.0 GJ synfuel
O2
3
2
H2O
H2O
Heat
2H2
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
9H2 + 8CO2  C8H18
0.43 GJ of H2 to produce 1.0 GJ synfuel
Elec
Heat
Electrolysis of
H2O, CO2
and electro-
thermo-catalysis
of CO
-CH2-
Fischer-Tropsch 2
CH2 + CH2 + . . . + CH2 + H2
CnH2n+2 (synfuel)
For Octane:
9H2 + 8CO2  C8H18
0.43 GJ of H2 to produce 1.0 GJ synfuel
-CH2-
H2O CO2
2 H atoms
O2
3
2
O
H2
O
CO
O
CH
CH2
Electrolysis
membrane
What do the electrolysis an electrocatalytic reactions
look like?
What are the possible steric effects that may help
define the specific catalytic formulations that can
permit reduction of CO in the presence of hydrogen?
O2
_Solid oxide
electrolyte
O2
_
O2
_O2
_
O2
_
O-C-O
C-O
O
H H H-C-H
Cathode
Catalyst
Out
C-H
e-
Porous cathode
Gas in
O-C-O*
C-O*
C-H
Cathode
Catalyste
_
e
_
e
_
O2
_
A-B* = metastable state of A-B
CO2 + 2e-  CO + O2- +2e- + nXHm  CHn.m +nX + 2O2-
Cathode Cathode
Electrocatalysis
e- e-
H2O + + 2e-  2H + O2-
Cathode
e-
O2
X = C or O or H
Possible electro-catalytic and thermo-catalytic sterics, metastable states and reaction
schemes. This is where the research lies for electrochemical replacement of both
reverse water gas shift and the Fisher-Tropsch reactions thermochemistry.
Solid Oxide Fuel Cell Examples
Ceramatec solid oxide fuel cell/electrolyser
Planar cells
120 kWe tubular solid oxide fuel cell. The system design can essentially be the same for a synthetic
hydrocarbon production system reversing the electrochemical process.
Courtesy: Siemens Westinghouse

More Related Content

What's hot

Catalytic Converter Made of Non-noble Material for an Automobile
Catalytic Converter Made of Non-noble Material for an AutomobileCatalytic Converter Made of Non-noble Material for an Automobile
Catalytic Converter Made of Non-noble Material for an Automobile
ijsrd.com
 
Hydrogen fuel cells
Hydrogen fuel cells Hydrogen fuel cells
Hydrogen fuel cells
Girish Panchal
 
Hydrogen fuel cell Technology
Hydrogen fuel cell TechnologyHydrogen fuel cell Technology
Hydrogen fuel cell Technology
jignesh parmar
 
Hydrogen engine
Hydrogen engineHydrogen engine
Hydrogen engine
9600763376
 
Hydrogen powered tractor .ppt
Hydrogen powered tractor .pptHydrogen powered tractor .ppt
Hydrogen powered tractor .ppt
pratiknayi97
 
Hydrogen & Fuel Cells
Hydrogen & Fuel CellsHydrogen & Fuel Cells
Hydrogen & Fuel Cells
Debajyoti Bose
 
Hydrogen fuel & its sustainable development
Hydrogen fuel & its sustainable developmentHydrogen fuel & its sustainable development
Hydrogen fuel & its sustainable development
Sridhar Sibi
 
Hydrogen fuel cell vehicle
Hydrogen fuel cell vehicleHydrogen fuel cell vehicle
Hydrogen fuel cell vehicle
Umesh Jaiswal
 
Oxy hydrogen generator
Oxy hydrogen generatorOxy hydrogen generator
Oxy hydrogen generator
Dennis Paulraj
 
Shaik hussain abbas technical seminar ppt
Shaik hussain abbas technical seminar pptShaik hussain abbas technical seminar ppt
Shaik hussain abbas technical seminar ppt
Syedmuhammed Hussainabbas
 
CONVERSION OF PETROL BIKE INTO LPG AND EMISSION CHECK
CONVERSION OF PETROL BIKE INTO LPG AND EMISSION CHECK CONVERSION OF PETROL BIKE INTO LPG AND EMISSION CHECK
CONVERSION OF PETROL BIKE INTO LPG AND EMISSION CHECK
IAEME Publication
 
Alternative fuel hho gas ieee
Alternative fuel hho gas ieeeAlternative fuel hho gas ieee
Alternative fuel hho gas ieee
Reliance Power
 
Hydrogen Vehicle
Hydrogen VehicleHydrogen Vehicle
Hydrogen Vehicle
Sarthak Muttha
 
Oxy- Hydrogen Generator (www.watercar.in)
Oxy- Hydrogen Generator (www.watercar.in)Oxy- Hydrogen Generator (www.watercar.in)
Oxy- Hydrogen Generator (www.watercar.in)
Abilashh
 
Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...
Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...
Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...
IJSRD
 
Hydrogen fuel cell vehicles
Hydrogen fuel cell vehiclesHydrogen fuel cell vehicles
Hydrogen fuel cell vehicles
Manoja m h
 
Bonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinalBonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinal
Atiek Rostika
 
Hydrogen as an alternative fuel
Hydrogen as an alternative fuelHydrogen as an alternative fuel
Hydrogen as an alternative fuel
Rajani Kanth
 
Dimethyl ether and Oxygenating fuel
Dimethyl ether and Oxygenating fuel  Dimethyl ether and Oxygenating fuel
Dimethyl ether and Oxygenating fuel
jiodadi
 

What's hot (19)

Catalytic Converter Made of Non-noble Material for an Automobile
Catalytic Converter Made of Non-noble Material for an AutomobileCatalytic Converter Made of Non-noble Material for an Automobile
Catalytic Converter Made of Non-noble Material for an Automobile
 
Hydrogen fuel cells
Hydrogen fuel cells Hydrogen fuel cells
Hydrogen fuel cells
 
Hydrogen fuel cell Technology
Hydrogen fuel cell TechnologyHydrogen fuel cell Technology
Hydrogen fuel cell Technology
 
Hydrogen engine
Hydrogen engineHydrogen engine
Hydrogen engine
 
Hydrogen powered tractor .ppt
Hydrogen powered tractor .pptHydrogen powered tractor .ppt
Hydrogen powered tractor .ppt
 
Hydrogen & Fuel Cells
Hydrogen & Fuel CellsHydrogen & Fuel Cells
Hydrogen & Fuel Cells
 
Hydrogen fuel & its sustainable development
Hydrogen fuel & its sustainable developmentHydrogen fuel & its sustainable development
Hydrogen fuel & its sustainable development
 
Hydrogen fuel cell vehicle
Hydrogen fuel cell vehicleHydrogen fuel cell vehicle
Hydrogen fuel cell vehicle
 
Oxy hydrogen generator
Oxy hydrogen generatorOxy hydrogen generator
Oxy hydrogen generator
 
Shaik hussain abbas technical seminar ppt
Shaik hussain abbas technical seminar pptShaik hussain abbas technical seminar ppt
Shaik hussain abbas technical seminar ppt
 
CONVERSION OF PETROL BIKE INTO LPG AND EMISSION CHECK
CONVERSION OF PETROL BIKE INTO LPG AND EMISSION CHECK CONVERSION OF PETROL BIKE INTO LPG AND EMISSION CHECK
CONVERSION OF PETROL BIKE INTO LPG AND EMISSION CHECK
 
Alternative fuel hho gas ieee
Alternative fuel hho gas ieeeAlternative fuel hho gas ieee
Alternative fuel hho gas ieee
 
Hydrogen Vehicle
Hydrogen VehicleHydrogen Vehicle
Hydrogen Vehicle
 
Oxy- Hydrogen Generator (www.watercar.in)
Oxy- Hydrogen Generator (www.watercar.in)Oxy- Hydrogen Generator (www.watercar.in)
Oxy- Hydrogen Generator (www.watercar.in)
 
Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...
Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...
Application of Hydrogen as Fuel Supplement in Internal Combustion Engines-A B...
 
Hydrogen fuel cell vehicles
Hydrogen fuel cell vehiclesHydrogen fuel cell vehicles
Hydrogen fuel cell vehicles
 
Bonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinalBonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinal
 
Hydrogen as an alternative fuel
Hydrogen as an alternative fuelHydrogen as an alternative fuel
Hydrogen as an alternative fuel
 
Dimethyl ether and Oxygenating fuel
Dimethyl ether and Oxygenating fuel  Dimethyl ether and Oxygenating fuel
Dimethyl ether and Oxygenating fuel
 

Similar to Electrochemical synthetic hydrocarbons - Rambach - for printing with title page

sufficient method of hydrogen production by water gas shift reactions
sufficient method of hydrogen production by water gas shift reactions sufficient method of hydrogen production by water gas shift reactions
sufficient method of hydrogen production by water gas shift reactions
MUKULsethi5
 
Fuel cell
Fuel cellFuel cell
Hydrogen
HydrogenHydrogen
Hydrogen
Kodanda Ramarao
 
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...
Lawrence kok
 
Lec 3 Combustion Equiliprium- Fuel and Advanced Combustion.pptx
Lec 3  Combustion Equiliprium- Fuel and Advanced Combustion.pptxLec 3  Combustion Equiliprium- Fuel and Advanced Combustion.pptx
Lec 3 Combustion Equiliprium- Fuel and Advanced Combustion.pptx
mohamedorif
 
Fuel cells
Fuel cellsFuel cells
Fuel cells
Maeera Iqbal
 
5-hydrogen-production-by-electrolysis-ann-cornell-kth.pdf
5-hydrogen-production-by-electrolysis-ann-cornell-kth.pdf5-hydrogen-production-by-electrolysis-ann-cornell-kth.pdf
5-hydrogen-production-by-electrolysis-ann-cornell-kth.pdf
AdnanBaig49
 
Alkane
AlkaneAlkane
Alkane
rudi_z
 
Chemistry of hydrogen and its advancements.
Chemistry of hydrogen and its advancements.Chemistry of hydrogen and its advancements.
Chemistry of hydrogen and its advancements.
Santosh Damkondwar
 
The Atmosphere and Environment
The Atmosphere and EnvironmentThe Atmosphere and Environment
The Atmosphere and Environment
Sharizah
 
Heat transfer
Heat transferHeat transfer
Heat transfer
hisham ahmed
 
Sces2340 p3 hydrogen_synthesis_041218
Sces2340 p3 hydrogen_synthesis_041218Sces2340 p3 hydrogen_synthesis_041218
Sces2340 p3 hydrogen_synthesis_041218
Nazrul Amin Muhammad
 
Automobile Fuel cell.pptx
Automobile Fuel cell.pptxAutomobile Fuel cell.pptx
Automobile Fuel cell.pptx
AkashM227648
 
An Environmental Trifecta
An Environmental TrifectaAn Environmental Trifecta
An Environmental Trifecta
John Hoaglund, III, Ph.D.
 
Science 10th Class
Science 10th Class Science 10th Class
Science 10th Class
Rahul Thakur
 
6578b504bd0d770018c06553_##_Hydrocarbons Class Notes (One Shot) .pdf
6578b504bd0d770018c06553_##_Hydrocarbons  Class Notes (One Shot) .pdf6578b504bd0d770018c06553_##_Hydrocarbons  Class Notes (One Shot) .pdf
6578b504bd0d770018c06553_##_Hydrocarbons Class Notes (One Shot) .pdf
rainaman0704
 
Tang 03 enthalpy of formation and combustion
Tang 03   enthalpy of formation and combustionTang 03   enthalpy of formation and combustion
Tang 03 enthalpy of formation and combustion
mrtangextrahelp
 
Fischer_Tropsch_Catalysts.pdf
Fischer_Tropsch_Catalysts.pdfFischer_Tropsch_Catalysts.pdf
Fischer_Tropsch_Catalysts.pdf
peyman40
 
6.3 (b) half equations
6.3 (b) half equations6.3 (b) half equations
6.3 (b) half equations
Azieda Dot
 
Aresta energia roma, 18 10 2011
Aresta energia roma, 18 10 2011Aresta energia roma, 18 10 2011
Aresta energia roma, 18 10 2011
canaleenergia
 

Similar to Electrochemical synthetic hydrocarbons - Rambach - for printing with title page (20)

sufficient method of hydrogen production by water gas shift reactions
sufficient method of hydrogen production by water gas shift reactions sufficient method of hydrogen production by water gas shift reactions
sufficient method of hydrogen production by water gas shift reactions
 
Fuel cell
Fuel cellFuel cell
Fuel cell
 
Hydrogen
HydrogenHydrogen
Hydrogen
 
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...
 
Lec 3 Combustion Equiliprium- Fuel and Advanced Combustion.pptx
Lec 3  Combustion Equiliprium- Fuel and Advanced Combustion.pptxLec 3  Combustion Equiliprium- Fuel and Advanced Combustion.pptx
Lec 3 Combustion Equiliprium- Fuel and Advanced Combustion.pptx
 
Fuel cells
Fuel cellsFuel cells
Fuel cells
 
5-hydrogen-production-by-electrolysis-ann-cornell-kth.pdf
5-hydrogen-production-by-electrolysis-ann-cornell-kth.pdf5-hydrogen-production-by-electrolysis-ann-cornell-kth.pdf
5-hydrogen-production-by-electrolysis-ann-cornell-kth.pdf
 
Alkane
AlkaneAlkane
Alkane
 
Chemistry of hydrogen and its advancements.
Chemistry of hydrogen and its advancements.Chemistry of hydrogen and its advancements.
Chemistry of hydrogen and its advancements.
 
The Atmosphere and Environment
The Atmosphere and EnvironmentThe Atmosphere and Environment
The Atmosphere and Environment
 
Heat transfer
Heat transferHeat transfer
Heat transfer
 
Sces2340 p3 hydrogen_synthesis_041218
Sces2340 p3 hydrogen_synthesis_041218Sces2340 p3 hydrogen_synthesis_041218
Sces2340 p3 hydrogen_synthesis_041218
 
Automobile Fuel cell.pptx
Automobile Fuel cell.pptxAutomobile Fuel cell.pptx
Automobile Fuel cell.pptx
 
An Environmental Trifecta
An Environmental TrifectaAn Environmental Trifecta
An Environmental Trifecta
 
Science 10th Class
Science 10th Class Science 10th Class
Science 10th Class
 
6578b504bd0d770018c06553_##_Hydrocarbons Class Notes (One Shot) .pdf
6578b504bd0d770018c06553_##_Hydrocarbons  Class Notes (One Shot) .pdf6578b504bd0d770018c06553_##_Hydrocarbons  Class Notes (One Shot) .pdf
6578b504bd0d770018c06553_##_Hydrocarbons Class Notes (One Shot) .pdf
 
Tang 03 enthalpy of formation and combustion
Tang 03   enthalpy of formation and combustionTang 03   enthalpy of formation and combustion
Tang 03 enthalpy of formation and combustion
 
Fischer_Tropsch_Catalysts.pdf
Fischer_Tropsch_Catalysts.pdfFischer_Tropsch_Catalysts.pdf
Fischer_Tropsch_Catalysts.pdf
 
6.3 (b) half equations
6.3 (b) half equations6.3 (b) half equations
6.3 (b) half equations
 
Aresta energia roma, 18 10 2011
Aresta energia roma, 18 10 2011Aresta energia roma, 18 10 2011
Aresta energia roma, 18 10 2011
 

More from Glenn Rambach

Fuel Cells and Hydrogen in Transportation - An Introduction
Fuel Cells and Hydrogen in Transportation - An IntroductionFuel Cells and Hydrogen in Transportation - An Introduction
Fuel Cells and Hydrogen in Transportation - An Introduction
Glenn Rambach
 
Fuel Cell introduction class presentation-2022
Fuel Cell introduction class presentation-2022Fuel Cell introduction class presentation-2022
Fuel Cell introduction class presentation-2022
Glenn Rambach
 
First market approach slide and statements for fuel cells
First market approach slide and statements for fuel cellsFirst market approach slide and statements for fuel cells
First market approach slide and statements for fuel cells
Glenn Rambach
 
Integrated Renewable H2 Utility Systems
Integrated Renewable H2 Utility SystemsIntegrated Renewable H2 Utility Systems
Integrated Renewable H2 Utility Systems
Glenn Rambach
 
Oil price surcharge from the geopolitics of oil.
Oil price surcharge from the geopolitics of oil.Oil price surcharge from the geopolitics of oil.
Oil price surcharge from the geopolitics of oil.
Glenn Rambach
 
H2 energy storage presentation to russian acad of sciences oct 99 a
H2 energy storage presentation to russian acad of sciences   oct 99 aH2 energy storage presentation to russian acad of sciences   oct 99 a
H2 energy storage presentation to russian acad of sciences oct 99 a
Glenn Rambach
 
H2 storage mfg presentation rambach-8 11-2011 v7 general
H2 storage mfg presentation rambach-8 11-2011 v7 generalH2 storage mfg presentation rambach-8 11-2011 v7 general
H2 storage mfg presentation rambach-8 11-2011 v7 general
Glenn Rambach
 

More from Glenn Rambach (7)

Fuel Cells and Hydrogen in Transportation - An Introduction
Fuel Cells and Hydrogen in Transportation - An IntroductionFuel Cells and Hydrogen in Transportation - An Introduction
Fuel Cells and Hydrogen in Transportation - An Introduction
 
Fuel Cell introduction class presentation-2022
Fuel Cell introduction class presentation-2022Fuel Cell introduction class presentation-2022
Fuel Cell introduction class presentation-2022
 
First market approach slide and statements for fuel cells
First market approach slide and statements for fuel cellsFirst market approach slide and statements for fuel cells
First market approach slide and statements for fuel cells
 
Integrated Renewable H2 Utility Systems
Integrated Renewable H2 Utility SystemsIntegrated Renewable H2 Utility Systems
Integrated Renewable H2 Utility Systems
 
Oil price surcharge from the geopolitics of oil.
Oil price surcharge from the geopolitics of oil.Oil price surcharge from the geopolitics of oil.
Oil price surcharge from the geopolitics of oil.
 
H2 energy storage presentation to russian acad of sciences oct 99 a
H2 energy storage presentation to russian acad of sciences   oct 99 aH2 energy storage presentation to russian acad of sciences   oct 99 a
H2 energy storage presentation to russian acad of sciences oct 99 a
 
H2 storage mfg presentation rambach-8 11-2011 v7 general
H2 storage mfg presentation rambach-8 11-2011 v7 generalH2 storage mfg presentation rambach-8 11-2011 v7 general
H2 storage mfg presentation rambach-8 11-2011 v7 general
 

Electrochemical synthetic hydrocarbons - Rambach - for printing with title page

  • 1. Electrochemistry and Synthetic Hydrocarbons from Water and Carbon Dioxide Glenn Rambach Third Orbit Power Systems, Inc. Sept. 2009
  • 2. Basics High-temperature solid oxide electrochemistry for: 1) Fuel cells 2) Electrolysis Electrochemistry and Synthetic Hydrocarbons from Water and Carbon Dioxide Electrochemistry and Synthetic Hydrocarbons from Water and Carbon Dioxide Water + CO2 to Fuels Like Diesel Fuel
  • 3. O2 + 4e _ 2O2 _ Porous metal/ceramic cathodeDense, Solid Electrolyte (usually yttrium stabilized zirconia, YSZ) Porous metal/ceramic anode H2O and/or CO2 H2 and/or CO e- External Load O2 Basic solid oxide fuel cell (SOFC) mechanism and/or Fuel side Air side Temperature: 600 - 1000C H2 + O2 _ H2O + 2e _ CO + O2 _ CO2 + 2e _ O2 _ O2 _ O2 _ O2 _ All reactions are reversible to permit water and CO2 electrolysis from an applied voltage.
  • 4. e- Applied voltage 2O2 _ O2 + 4e _ Porous metal/ceramic cathodeDense, Solid Electrolyte (usually yttrium stabilized zirconia, YSZ) Porous metal/ceramic anode H2O and/or CO2 H2 and/or CO O2 Basic solid oxide electrolysis cell (SOEC) mechanism and/or Fuel side Oxygen side Temperature: 600 - 1000C H2O + 2e _ H2 + O2 _ CO2 + 2e _ CO + O2 _ O2 _ O2 _ O2 _ O2 _
  • 5. How do the reactants and products transport? Where do reactions take place?
  • 6. Electrochemical removal of oxygen and selective catalyst choices can favor efficient use of electrolyzed hydrogen in production of synthetic fuel. Electrochemically selective removal of half the oxygen from CO2 reduces the consumption of hydrogen by 33%, compared to the use of reverse water gas shift reaction, in the production of synthetic hydrocarbon fuel.
  • 7. Porous cathode Dense electrolyte Porous anodeThermo-catalyst/Electro-catalyst Gaseous flow channel Electrolysis electrode-electrolyte assembly Electrochemical removal of oxygen and selective catalyst choices can favor efficient use of electrolyzed hydrogen in production of synthetic fuel. Gaseous flow
  • 8. e- O2 _ O2 _ O2 _ O2 _ O2 _ O2 _ O2 _ O2 _ e _ e _ e _ e _ e _ e _ e _ e _ CO2 H2O CO CO2 + 2e _  CO + O2- H2O + 2e _  H2 + O2- H2 2O2-  O2 + 4e _ O2 H2 CO To conventional Fisher-Tropsch liquid fuel production 2H2 + CO  CH2 + H2O Lost hydrogen Electrochemically removed oxygen Electrochemical removal of oxygen and selective catalyst choices can favor efficient use of electrolyzed hydrogen in production of synthetic fuel.
  • 9. Electrochemically selective removal of all oxygen from CO2 reduces the consumption of hydrogen by 66%, compared to the use of reverse water gas shift reaction and Fisher-Tropsch reaction 1, in the production of synfuel. Electrochemical removal of oxygen and selective catalyst choices can favor efficient use of electrolyzed hydrogen in production of synthetic fuel. Electrochemical removal of oxygen and selective catalyst choices can favor efficient use of electrolyzed hydrogen in production of synthetic fuel.
  • 10. e- O2 _ O2 _ O2 _ O2 _ O2 _ O2 _ O2 _ O2 _ e _ e _ e _ e _ e _ e _ e _ e _ CO2 H2O CO2 + 2e _  CO + O2- CO* + ½H2 + 2e _  CH + O2- CH + ½H2  –CH2– H2O + 2e _  H2 + O2- 2O2-  O2 + 4e _ O2 [CH2]n No lost hydrogen Electrochemically removed oxygen Electrochemical removal of oxygen and selective catalyst choices can favor efficient use of electrolyzed hydrogen in production of synthetic fuel. COH2
  • 11. e- O2 _ O2 _ O2 _ O2 _ O2 _ O2 _ O2 _ O2 _ e _ e _ e _ e _ e _ e _ e _ e _ These and similar reactions may take place far downstream, at lower temperature and with different catalyst. CO2 H2O CO2 + 2e _  CO + O2- CO* + ½H2 + 2e _  CH + O2- CH + ½H2  –CH2– H2O + 2e _  H2 + O2- 2O2-  O2 + 4e _ O2 [CH2]n No lost hydrogen Electrochemical removal of oxygen and selective catalyst choices can favor efficient use of electrolyzed hydrogen in production of synthetic fuel. COH2
  • 12. How do the flow channels, electrochemical surface and down stream catalysts look in a typical configuration?
  • 13. Synfuel from CO2 and H2O using electrochemistry
  • 14. Synfuel from CO2 and H2O using electrochemistry Porous Cathode Porous Anode Solid YSZ Electrolyte e- H2O and CO2
  • 15. Synfuel from CO2 and H2O using electrochemistry Porous Cathode Porous Anode Solid YSZ Electrolyte e- H2O and CO2 Catalyst
  • 16. Synfuel from CO2 and H2O using electrochemistry Porous Cathode Porous Anode Solid YSZ Electrolyte e- H2O and CO2 H2O CO2 Catalyst
  • 17. Synfuel from CO2 and H2O using electrochemistry Porous Cathode Porous Anode Solid YSZ Electrolyte e- H2O and CO2 H2O CO2 Catalyst O2 _ O2 _ O2 _ O2 _ O2 _
  • 18. O2 Synfuel from CO2 and H2O using electrochemistry Porous Cathode Porous Anode Solid YSZ Electrolyte e- H2O and CO2 H2O CO2 Catalyst O2 _ O2 _ O2 _ O2 _ O2 _ 2O2 _ O2 + 2e _
  • 19. O2 Synfuel from CO2 and H2O using electrochemistry Porous Cathode Porous Anode Solid YSZ Electrolyte e- H2O and CO2 H2O CO2 Catalyst CO O2 _ O2 _ O2 _ O2 _ O2 _ H2 2O2 _ O2 + 2e _
  • 20. O2 CnH2n+2 (Synfuel) Synfuel from CO2 and H2O using electrochemistry Porous Cathode Porous Anode Solid YSZ Electrolyte O2 _ O2 _ O2 _ O2 _ O2 _ e- H2O and CO2 H2O CO2 Catalyst 2O2 _ O2 + 2e _ H2 CO
  • 21. Synfuel from CO2 and H2O using electrochemistry O2 CnH2n+2 (Synfuel) Porous Cathode Porous Anode Solid YSZ Electrolyte O2 _ O2 _ O2 _ O2 _ O2 _ e- H2O and CO2 H2O CO2 Catalyst 2O2 _ O2 + 2e _ H2 CO Triple Region H O= e- e-O H H Electrocatalyst Cathode H O=
  • 22. Synfuel from CO2 and H2O using electrochemistry CnH2n+2 (Synfuel) Catalyst O2 CnH2n+2 (Synfuel) Porous Cathode Porous Anode Solid YSZ Electrolyte O2 _ O2 _ O2 _ O2 _ O2 _ e- H2O and CO2 H2O CO2 Catalyst 2O2 _ O2 + 2e _ H2 CO n[CO2 + 2e _ CO + O2 _ ] n[H2O + 2e _ H2 + O2 _ ] Triple Region H O= e- e-O H H Electrocatalyst Cathode H O=
  • 23. Synfuel from CO2 and H2O using electrochemistry Temperature: 600 - 1000C (Riso uses 650C for 2H2O + CO2  CH4 + 2O2) CnH2n+2 (Synfuel) Catalyst O2 CnH2n+2 (Synfuel) Porous Cathode Porous Anode Solid YSZ Electrolyte O2 _ O2 _ O2 _ O2 _ O2 _ e- H2O and CO2 H2O CO2 Catalyst 2O2 _ O2 + 2e _ H2 CO n[CO2 + 2e _ CO + O2 _ ] n[H2O + 2e _ H2 + O2 _ ] Triple Region H O= e- e-O H H Electrocatalyst Cathode H O=
  • 24. What configurations with high-temperature power sources are possible? How would they compare with synthetic hydrocarbon production using high-temperature thermochemical H2 from water, and reverse WGS CO from CO2?
  • 25. 3(H2O) S-I Thermochemical CO2 Reverse WGS Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 25H2 + 8CO2  C8H18 + 16H2O 1.2 GJ of H2 to produce 1.0 GJ synfuel S-I to Hydrogen, WGS to CO, F-T to Synfuel Heat 1 CO and H2 6 H atoms 2 H atoms
  • 26. 3(H2O) S-I Thermochemical Heat CO2 Reverse WGS Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 25H2 + 8CO2  C8H18 + 16H2O 1.2 GJ of H2 to produce 1.0 GJ synfuel Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 17H2 + 8CO2  C8H18 + 8H2O 0.82 GJ of H2 to produce 1.0 GJ synfuel 2(H2O) CO2 Elec Electrolysis of H2O and CO2 S-I to Hydrogen, WGS to CO, F-T to Synfuel Electrolysis to Hydrogen and CO, F-T to Synfuel Heat 1 2 CO and H2 CO and H2 6 H atoms 4 H atoms 2 H atoms 2 H atoms2 H atoms
  • 27. 3(H2O) S-I Thermochemical Heat CO2 Reverse WGS Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 25H2 + 8CO2  C8H18 + 16H2O 1.2 GJ of H2 to produce 1.0 GJ synfuel Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 17H2 + 8CO2  C8H18 + 8H2O 0.82 GJ of H2 to produce 1.0 GJ synfuel 2(H2O) CO2 Elec Electrolysis of H2O and CO2 Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 9H2 + 8CO2  C8H18 0.43 GJ of H2 to produce 1.0 GJ synfuel Elec S-I to Hydrogen, WGS to CO, F-T to Synfuel Electrolysis to Hydrogen and CO, F-T to Synfuel Electrolysis to Hydrogen and CO, F-T Polymerization to Synfuel Heat Heat 1 2 3 CO and H2 CO and H2 Electrolysis of H2O, CO2 and electro- thermo-catalysis of CO 6 H atoms 4 H atoms 2 H atoms 2 H atoms2 H atoms 2 H atoms -CH2- H2O CO2
  • 28. 2 H atoms3(H2O) S-I Thermochemical Heat CO2 Reverse WGS Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 25H2 + 8CO2  C8H18 + 16H2O 1.2 GJ of H2 to produce 1.0 GJ synfuel Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 17H2 + 8CO2  C8H18 + 8H2O 0.82 GJ of H2 to produce 1.0 GJ synfuel 2(H2O) CO2 Elec Electrolysis of H2O and CO2 S-I to Hydrogen, WGS to CO, F-T to Synfuel Electrolysis to Hydrogen and CO, F-T to Synfuel Electrolysis to Hydrogen and CO, F-T Polymerization to Synfuel Heat 1 2 3 CO and H2 CO and H2 6 H atoms 4 H atoms 2 H atoms2 H atoms 3(H2O) S-I Thermochemical CO2 Reverse WGS Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 25H2 + 8CO2  C8H18 + 16H2O 1.2 GJ of H2 to produce 1.0 GJ synfuel Heat CO and H2 6 H atoms 2 H atoms 3(H2O) S-I Thermochemical H2 CO2 Reverse WGS CO Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 25H2 + 8CO2  C8H18 + 16H2O 1.2 GJ of H2 to produce 1.0 GJ synfuel O2 3 2 H2O H2O Heat 2H2 Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 9H2 + 8CO2  C8H18 0.43 GJ of H2 to produce 1.0 GJ synfuel Elec Heat Electrolysis of H2O, CO2 and electro- thermo-catalysis of CO -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 9H2 + 8CO2  C8H18 0.43 GJ of H2 to produce 1.0 GJ synfuel -CH2- H2O CO2 2 H atoms
  • 29. 2 H atoms3(H2O) S-I Thermochemical Heat CO2 Reverse WGS Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 25H2 + 8CO2  C8H18 + 16H2O 1.2 GJ of H2 to produce 1.0 GJ synfuel Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 17H2 + 8CO2  C8H18 + 8H2O 0.82 GJ of H2 to produce 1.0 GJ synfuel 2(H2O) CO2 Elec Electrolysis of H2O and CO2 S-I to Hydrogen, WGS to CO, F-T to Synfuel Electrolysis to Hydrogen and CO, F-T to Synfuel Electrolysis to Hydrogen and CO, F-T Polymerization to Synfuel Heat 1 2 3 CO and H2 CO and H2 6 H atoms 4 H atoms 2 H atoms2 H atoms 3(H2O) S-I Thermochemical CO2 Reverse WGS Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 25H2 + 8CO2  C8H18 + 16H2O 1.2 GJ of H2 to produce 1.0 GJ synfuel Heat CO and H2 6 H atoms 2 H atoms 3(H2O) S-I Thermochemical H2 CO2 Reverse WGS CO Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 25H2 + 8CO2  C8H18 + 16H2O 1.2 GJ of H2 to produce 1.0 GJ synfuel O2 3 2 H2O H2O Heat 2H2 Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 9H2 + 8CO2  C8H18 0.43 GJ of H2 to produce 1.0 GJ synfuel Elec Heat Electrolysis of H2O, CO2 and electro- thermo-catalysis of CO -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 9H2 + 8CO2  C8H18 0.43 GJ of H2 to produce 1.0 GJ synfuel -CH2- H2O CO2 2 H atoms Heat Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 17H2 + 8CO2  C8H18 + 8H2O 0.82 GJ of H2 to produce 1.0 GJ synfuel 2(H2O) CO2 Elec Electrolysis of H2O and CO2 CO and H2 4 H atoms 2 H atoms Heat Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 17H2 + 8CO2  C8H18 + 8H2O 0.82 GJ of H2 to produce 1.0 GJ synfuel 2O O 2(H2O) CO2 COH2 Elec Electrolysis membranes 2H2 CO O2 3 2 H2O
  • 30. 2 H atoms3(H2O) S-I Thermochemical Heat CO2 Reverse WGS Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 25H2 + 8CO2  C8H18 + 16H2O 1.2 GJ of H2 to produce 1.0 GJ synfuel Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 17H2 + 8CO2  C8H18 + 8H2O 0.82 GJ of H2 to produce 1.0 GJ synfuel 2(H2O) CO2 Elec Electrolysis of H2O and CO2 S-I to Hydrogen, WGS to CO, F-T to Synfuel Electrolysis to Hydrogen and CO, F-T to Synfuel Electrolysis to Hydrogen and CO, F-T Polymerization to Synfuel Heat 1 2 3 CO and H2 CO and H2 6 H atoms 4 H atoms 2 H atoms2 H atoms Heat Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 17H2 + 8CO2  C8H18 + 8H2O 0.82 GJ of H2 to produce 1.0 GJ synfuel 2(H2O) CO2 Elec Electrolysis of H2O and CO2 CO and H2 4 H atoms 2 H atoms Heat Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 17H2 + 8CO2  C8H18 + 8H2O 0.82 GJ of H2 to produce 1.0 GJ synfuel 2O O 2(H2O) CO2 COH2 Elec Electrolysis membranes 2H2 CO O2 3 2 H2O 3(H2O) S-I Thermochemical CO2 Reverse WGS Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 25H2 + 8CO2  C8H18 + 16H2O 1.2 GJ of H2 to produce 1.0 GJ synfuel Heat CO and H2 6 H atoms 2 H atoms 3(H2O) S-I Thermochemical H2 CO2 Reverse WGS CO Fischer-Tropsch 1 -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 25H2 + 8CO2  C8H18 + 16H2O 1.2 GJ of H2 to produce 1.0 GJ synfuel O2 3 2 H2O H2O Heat 2H2 Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 9H2 + 8CO2  C8H18 0.43 GJ of H2 to produce 1.0 GJ synfuel Elec Heat Electrolysis of H2O, CO2 and electro- thermo-catalysis of CO -CH2- Fischer-Tropsch 2 CH2 + CH2 + . . . + CH2 + H2 CnH2n+2 (synfuel) For Octane: 9H2 + 8CO2  C8H18 0.43 GJ of H2 to produce 1.0 GJ synfuel -CH2- H2O CO2 2 H atoms O2 3 2 O H2 O CO O CH CH2 Electrolysis membrane
  • 31. What do the electrolysis an electrocatalytic reactions look like? What are the possible steric effects that may help define the specific catalytic formulations that can permit reduction of CO in the presence of hydrogen?
  • 32. O2 _Solid oxide electrolyte O2 _ O2 _O2 _ O2 _ O-C-O C-O O H H H-C-H Cathode Catalyst Out C-H e- Porous cathode Gas in O-C-O* C-O* C-H Cathode Catalyste _ e _ e _ O2 _ A-B* = metastable state of A-B CO2 + 2e-  CO + O2- +2e- + nXHm  CHn.m +nX + 2O2- Cathode Cathode Electrocatalysis e- e- H2O + + 2e-  2H + O2- Cathode e- O2 X = C or O or H Possible electro-catalytic and thermo-catalytic sterics, metastable states and reaction schemes. This is where the research lies for electrochemical replacement of both reverse water gas shift and the Fisher-Tropsch reactions thermochemistry.
  • 33. Solid Oxide Fuel Cell Examples
  • 34. Ceramatec solid oxide fuel cell/electrolyser Planar cells
  • 35. 120 kWe tubular solid oxide fuel cell. The system design can essentially be the same for a synthetic hydrocarbon production system reversing the electrochemical process. Courtesy: Siemens Westinghouse