SlideShare a Scribd company logo
Assignment-1
The Temperature Box: An Introductory Control System Project
Objective
● Problem based learning approach
● To design and implementation of a close loop feedback
temperature control system
● Analogue and digital circuit implementation
● Compare and differentiate by LM35 and DS18B20
COMPONENTS OF THIS PROJECT
● Sensor LM35 and DS18B20
● Scale and shift circuit
● Relay
● LED
● DC source
● Arduino uno
● Resistor
● potentiometer
BLOCK DIAGRAM
EQUATIONS AND CONVERSIONS
We get, Vs=0.975+0.0125Tf
Also, Tf= 70 degree F ; Vs=1.85V
Tf=85 degree F ; Vs=2.04V
Tf=95 degree F ; Vs=2.16V
Tc=70 degree C ; Tf= 21.11 degree F
Tc= 85 degree C ; Tf= 29.44 degree F
Tc= 95 degree C ; Tf= 35 degree F
We will put 0.5V and 4.5V at 85 and 95 degree F in scale and shift equation which is
Vt= α+βVs
SCALE AND SHIFT CIRCUIT FOR LM35
Voltage output at 29 degree (low) , Vs=29*0.01=0.29 volts
Voltage output at 35 degree (high) , Vs = 35*0.01=0.35 volts
Vt=0.5V at 29 degree celsius and Vt=4.5V at 35 degree celsius
We know, Vt= α+βVs
0.5=α+β0.29 ……..(1)
4.5=α+β0.35 ……..(2)
From equation (1) and (2) we get,
α= -18.83 and β= 66.67
Let , R=100K
R1=R/β=100/66.67=1.5K
R2=[-5*(R)]/α=[-5*(100)]/(-18.83)= 26.6K
Scale and Shift circuit
COMPARISON CIRCUIT
● Scaled and shifted sensor voltage is compared
to the predetermined high and low
temperatures.
● A decision is made (using digital logic)
whether to open or close the relay and, hence,
turn the device off or on.
● VH denote the voltage corresponding to the
highest desired temperature and VL denote
voltage corresponding to the lowest desired
temperature.
● The decision is based on three rules
1. The relay is on if VT < VL < VH.
2. The relay is off if VT > VH > VL.
3. The relay state is unchanged if VL < VT < VH.
COMPARISON CIRCUIT
● The decision is based on three rules
1. The relay is on if VT < VL < VH.
2. The relay is off if VT > VH > VL.
3. The relay state is unchanged if VL <
VT <VH.
COMPARISON OF LM35
After scaling,
Input voltage at comparison circuit for 29 degree celsius = 0.29 volts
Input voltage at comparison circuit for 35 degree celsius = 0.35 volts
We know, Vt= α+βVs
VL=Vt= (-18.83)+(66.67*0.29)=0.5V
VH=Vt= (-18.83)+(66.67*0.35)=4.5V
ANALOGUE CONTROLLER (LM35)
● Use to measure precise centigrade temperature.
● It is rated to operate over a -55 degree celsius to
150 degree celsius temperature range.
● Output voltage increases 10mV per degree celsius
rise in temperature.
● Input voltage is from 4 volts to 30 volts.
● Consumes about 60 microamperes of current.
● Output voltages are linearly comparative to the
celsius temperature.
RELAY
● Activated for strong positive
voltage.
● Get pulls on the switch and the
circuit is completed for LED and
then shines.
● Pull goes away when voltage is
released.
● Switch remains in original
position when a little voltage is
given.
DIGITAL AND LOGIC IMPLEMENTATION
● Here we need to define two logical
functions:
A = Vt < Vh, B = Vt >Vl.
1.VT greater than VH Then A =
1 and B = 0
2. VT less than VL Then B = 1 and A = 0
3.VT between VH and VL then A = B
DIGITAL LOGIC
● Bulb will be ON if
VT≤VL<VH
● Bulb will be OFF if VT
≥VH>VL
● Bulb will be UNCHANGED
if VL<VT<VH
A
A B OUT PUT
0 0 Previous
State
0 1 Previous
State
1 0 Off
1 1 Not Possible
DIGITAL CONTROLLER LM35
ADC Value Calculation
For,
29 Degree Celsius (0.29V)
Val = (0.29 × 1023) ÷ 5 = 59.33 = 59 (Approximately)
For ,
35 Degree Celsius (0.35V)
Val = (0.35 × 1023) ÷ 5 = 71.61 = 71 (Approximately)
1.The relay is on if Vt ≤ Vl < Vh [on]
2. The relay is off if Vt ≥ Vh > Vl [off]
3. State is unchanged if Vl < Vt < Vh
DIGITAL CONTROLLER DS18B20
ADC Value Calculation
For,
29 Degree Celsius (0.29V)
Val = (0.29 × 1023) ÷ 5 = 59.33 = 59 (Approximately)
For ,
35 Degree Celsius (0.35V)
Val = (0.35 × 1023) ÷ 5 = 71.61 = 71 (Approximately)
1.The relay is on if Vt ≤ Vl < Vh [on]
2. The relay is off if Vt ≥ Vh > Vl [off]
3. State is unchanged if Vl < Vt < Vh
Complete circuit with LM35 temperature
sensor
When temperature is 28°C i.e. VT<VL<VH
and Lamp turns On
When temperature is 32°C i.e. VL<VT<VH and Lamp
should remain like its previous state but it becomes off.
When temperature is 36°C i.e. VL<VH<VT and
Lamp become off
Complete circuit using DS18B20 temperature
sensor
Temperature increased but no voltage is
generating from DS18B20
LM35 ANALOGUE CIRCUIT
DS18B20 ANALOGUE CIRCUIT
LM35 DIGITAL CIRCUIT
ARDUINO CODE FOR LM35
int sensor = A0, relay = 7, adc_in=0;
float temp=0;
void setup () {
Serial.begin(9600);
pinMode(relay, OUTPUT);
}
void loop() {
adc_in=analogRead(sensor);
temp= ((adc_in*5000.0)/1023.0)/10.0;
Serial.println(temp);
}
if (temp >=35){
digitalWrite(relay, LOW);
Serial.println("Relay off");
}
if (temp <=30){
digitalWrite(relay, HIGH);
Serial.println("Relay on");
}
delay(1000);
DS1820 DIGITAL CIRCUIT
ARDUINO CODE FOR DS18B20
ARDUINO CODE FOR
DS18B20
void loop(void)
{
sensors.requestTemperatures();
temp=sensors.getTempCByIndex(0);
Serial.println(" C ");
Serial.println(temp);
if (temp >=35){
digitalWrite(relay, LOW);
Serial.println("Relay off");
}
if (temp <=30){
digitalWrite(relay, HIGH);
Serial.println("Relay on");
}
delay(1000);
}
COST ALLOCATION AND COMPARISON
DIGITAL CONTROLLER LM35
● LM35 sensor- 140tk
● Voltage source- 110tk
● Arduino-950tk
● RESISTOR-16tk (8 pisces)
● NPN BJT-4tk
● LED-2tk
● Jumper wire-30tk
● Relay-30tk
Total cost : 1282tk
DIGITAL CONTROLLER DS18B20
● DS18B20 sensor-100tk
● Voltage source-110tk
● Arduino-950tk
● NPN BJT-4tk
● LED-2tk
● Relay-30tk
● Jumper wire-30tk
Total cost : 1226tk
REFERENCE
https://techshopbd.com/
Conclusion
From this project we can say that analog circuit system instantly stops while
VT> VL and we also say that Digital circuit is costly but more efficient.

More Related Content

Similar to EEE305 Assignment-1.pdf

EE 330 Lect 26 Spring 2015.pdf
EE 330 Lect 26 Spring 2015.pdfEE 330 Lect 26 Spring 2015.pdf
EE 330 Lect 26 Spring 2015.pdf
RafikCherni
 
PLC LADDER DIAGRAM
PLC LADDER DIAGRAMPLC LADDER DIAGRAM
PLC LADDER DIAGRAM
Shruti Bhatnagar Dasgupta
 
MATH (PPT).pptx
MATH (PPT).pptxMATH (PPT).pptx
MATH (PPT).pptx
KaushalAbc
 
431378390 convertirdor-sepic
431378390 convertirdor-sepic431378390 convertirdor-sepic
431378390 convertirdor-sepic
Divar4
 
Datasheet lm358
Datasheet lm358Datasheet lm358
Datasheet lm358
Domingo Cordova
 
SE ECS EC Module6 555 Timer.pdf
SE ECS EC Module6 555  Timer.pdfSE ECS EC Module6 555  Timer.pdf
SE ECS EC Module6 555 Timer.pdf
ramkumar649780
 
Multivibrators-Astable, Bistable and Monostable.pptx
Multivibrators-Astable, Bistable and Monostable.pptxMultivibrators-Astable, Bistable and Monostable.pptx
Multivibrators-Astable, Bistable and Monostable.pptx
padmapriyaMarineEngg
 
Initial condition
Initial conditionInitial condition
Initial condition
Ravi Patel
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdf
LiewChiaPing
 
Datasheet
DatasheetDatasheet
Datasheet
Ichsan Izatul
 
Introduction to Interfacing Temperature_Sensor.ppt
Introduction to Interfacing Temperature_Sensor.pptIntroduction to Interfacing Temperature_Sensor.ppt
Introduction to Interfacing Temperature_Sensor.ppt
PratheepVGMTS
 
7_Temperature_Sensor.ppt_ajinkya_xxxxxxxx
7_Temperature_Sensor.ppt_ajinkya_xxxxxxxx7_Temperature_Sensor.ppt_ajinkya_xxxxxxxx
7_Temperature_Sensor.ppt_ajinkya_xxxxxxxx
Ajinkyakamble29
 
Temperature sensor_Ajinkya kamble_pptxxx
Temperature sensor_Ajinkya kamble_pptxxxTemperature sensor_Ajinkya kamble_pptxxx
Temperature sensor_Ajinkya kamble_pptxxx
Ajinkyakamble29
 
Komponen ecu lm393 d
Komponen ecu lm393 dKomponen ecu lm393 d
Komponen ecu lm393 d
Rochimunaja
 
Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)
altaf423
 
le roludes the tiofuture research directions
le roludes the tiofuture research directionsle roludes the tiofuture research directions
le roludes the tiofuture research directions
ARNABPAL81
 
Initial and final condition for circuit
Initial and final condition for circuitInitial and final condition for circuit
Initial and final condition for circuit
vishalgohel12195
 
6 ee462_l_dc_dc_buck_ppt
 6 ee462_l_dc_dc_buck_ppt 6 ee462_l_dc_dc_buck_ppt
6 ee462_l_dc_dc_buck_ppt
gibs leo
 
555 timer
555 timer555 timer
555 timer
saideepism
 
Unit 3
Unit 3Unit 3

Similar to EEE305 Assignment-1.pdf (20)

EE 330 Lect 26 Spring 2015.pdf
EE 330 Lect 26 Spring 2015.pdfEE 330 Lect 26 Spring 2015.pdf
EE 330 Lect 26 Spring 2015.pdf
 
PLC LADDER DIAGRAM
PLC LADDER DIAGRAMPLC LADDER DIAGRAM
PLC LADDER DIAGRAM
 
MATH (PPT).pptx
MATH (PPT).pptxMATH (PPT).pptx
MATH (PPT).pptx
 
431378390 convertirdor-sepic
431378390 convertirdor-sepic431378390 convertirdor-sepic
431378390 convertirdor-sepic
 
Datasheet lm358
Datasheet lm358Datasheet lm358
Datasheet lm358
 
SE ECS EC Module6 555 Timer.pdf
SE ECS EC Module6 555  Timer.pdfSE ECS EC Module6 555  Timer.pdf
SE ECS EC Module6 555 Timer.pdf
 
Multivibrators-Astable, Bistable and Monostable.pptx
Multivibrators-Astable, Bistable and Monostable.pptxMultivibrators-Astable, Bistable and Monostable.pptx
Multivibrators-Astable, Bistable and Monostable.pptx
 
Initial condition
Initial conditionInitial condition
Initial condition
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdf
 
Datasheet
DatasheetDatasheet
Datasheet
 
Introduction to Interfacing Temperature_Sensor.ppt
Introduction to Interfacing Temperature_Sensor.pptIntroduction to Interfacing Temperature_Sensor.ppt
Introduction to Interfacing Temperature_Sensor.ppt
 
7_Temperature_Sensor.ppt_ajinkya_xxxxxxxx
7_Temperature_Sensor.ppt_ajinkya_xxxxxxxx7_Temperature_Sensor.ppt_ajinkya_xxxxxxxx
7_Temperature_Sensor.ppt_ajinkya_xxxxxxxx
 
Temperature sensor_Ajinkya kamble_pptxxx
Temperature sensor_Ajinkya kamble_pptxxxTemperature sensor_Ajinkya kamble_pptxxx
Temperature sensor_Ajinkya kamble_pptxxx
 
Komponen ecu lm393 d
Komponen ecu lm393 dKomponen ecu lm393 d
Komponen ecu lm393 d
 
Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)
 
le roludes the tiofuture research directions
le roludes the tiofuture research directionsle roludes the tiofuture research directions
le roludes the tiofuture research directions
 
Initial and final condition for circuit
Initial and final condition for circuitInitial and final condition for circuit
Initial and final condition for circuit
 
6 ee462_l_dc_dc_buck_ppt
 6 ee462_l_dc_dc_buck_ppt 6 ee462_l_dc_dc_buck_ppt
6 ee462_l_dc_dc_buck_ppt
 
555 timer
555 timer555 timer
555 timer
 
Unit 3
Unit 3Unit 3
Unit 3
 

Recently uploaded

SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdfSELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
Pallavi Sharma
 
OOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming languageOOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming language
PreethaV16
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
nedcocy
 
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
upoux
 
Ericsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.pptEricsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.ppt
wafawafa52
 
Beckhoff Programmable Logic Control Overview Presentation
Beckhoff Programmable Logic Control Overview PresentationBeckhoff Programmable Logic Control Overview Presentation
Beckhoff Programmable Logic Control Overview Presentation
VanTuDuong1
 
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
PriyankaKilaniya
 
Determination of Equivalent Circuit parameters and performance characteristic...
Determination of Equivalent Circuit parameters and performance characteristic...Determination of Equivalent Circuit parameters and performance characteristic...
Determination of Equivalent Circuit parameters and performance characteristic...
pvpriya2
 
Presentation on Food Delivery Systems
Presentation on Food Delivery SystemsPresentation on Food Delivery Systems
Presentation on Food Delivery Systems
Abdullah Al Noman
 
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
upoux
 
Digital Image Processing Unit -2 Notes complete
Digital Image Processing Unit -2 Notes completeDigital Image Processing Unit -2 Notes complete
Digital Image Processing Unit -2 Notes complete
shubhamsaraswat8740
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
VANDANAMOHANGOUDA
 
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptxSENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
b0754201
 
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
MadhavJungKarki
 
Digital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptxDigital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptx
aryanpankaj78
 
Introduction to Computer Networks & OSI MODEL.ppt
Introduction to Computer Networks & OSI MODEL.pptIntroduction to Computer Networks & OSI MODEL.ppt
Introduction to Computer Networks & OSI MODEL.ppt
Dwarkadas J Sanghvi College of Engineering
 
Call Girls Chennai +91-8824825030 Vip Call Girls Chennai
Call Girls Chennai +91-8824825030 Vip Call Girls ChennaiCall Girls Chennai +91-8824825030 Vip Call Girls Chennai
Call Girls Chennai +91-8824825030 Vip Call Girls Chennai
paraasingh12 #V08
 
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICSUNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
vmspraneeth
 
SCALING OF MOS CIRCUITS m .pptx
SCALING OF MOS CIRCUITS m                 .pptxSCALING OF MOS CIRCUITS m                 .pptx
SCALING OF MOS CIRCUITS m .pptx
harshapolam10
 
EV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptx
EV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptxEV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptx
EV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptx
nikshimanasa
 

Recently uploaded (20)

SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdfSELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
 
OOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming languageOOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming language
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
 
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
 
Ericsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.pptEricsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.ppt
 
Beckhoff Programmable Logic Control Overview Presentation
Beckhoff Programmable Logic Control Overview PresentationBeckhoff Programmable Logic Control Overview Presentation
Beckhoff Programmable Logic Control Overview Presentation
 
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
 
Determination of Equivalent Circuit parameters and performance characteristic...
Determination of Equivalent Circuit parameters and performance characteristic...Determination of Equivalent Circuit parameters and performance characteristic...
Determination of Equivalent Circuit parameters and performance characteristic...
 
Presentation on Food Delivery Systems
Presentation on Food Delivery SystemsPresentation on Food Delivery Systems
Presentation on Food Delivery Systems
 
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
 
Digital Image Processing Unit -2 Notes complete
Digital Image Processing Unit -2 Notes completeDigital Image Processing Unit -2 Notes complete
Digital Image Processing Unit -2 Notes complete
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
 
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptxSENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
 
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
 
Digital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptxDigital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptx
 
Introduction to Computer Networks & OSI MODEL.ppt
Introduction to Computer Networks & OSI MODEL.pptIntroduction to Computer Networks & OSI MODEL.ppt
Introduction to Computer Networks & OSI MODEL.ppt
 
Call Girls Chennai +91-8824825030 Vip Call Girls Chennai
Call Girls Chennai +91-8824825030 Vip Call Girls ChennaiCall Girls Chennai +91-8824825030 Vip Call Girls Chennai
Call Girls Chennai +91-8824825030 Vip Call Girls Chennai
 
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICSUNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
 
SCALING OF MOS CIRCUITS m .pptx
SCALING OF MOS CIRCUITS m                 .pptxSCALING OF MOS CIRCUITS m                 .pptx
SCALING OF MOS CIRCUITS m .pptx
 
EV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptx
EV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptxEV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptx
EV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptx
 

EEE305 Assignment-1.pdf

  • 1. Assignment-1 The Temperature Box: An Introductory Control System Project
  • 2. Objective ● Problem based learning approach ● To design and implementation of a close loop feedback temperature control system ● Analogue and digital circuit implementation ● Compare and differentiate by LM35 and DS18B20
  • 3. COMPONENTS OF THIS PROJECT ● Sensor LM35 and DS18B20 ● Scale and shift circuit ● Relay ● LED ● DC source ● Arduino uno ● Resistor ● potentiometer
  • 5. EQUATIONS AND CONVERSIONS We get, Vs=0.975+0.0125Tf Also, Tf= 70 degree F ; Vs=1.85V Tf=85 degree F ; Vs=2.04V Tf=95 degree F ; Vs=2.16V Tc=70 degree C ; Tf= 21.11 degree F Tc= 85 degree C ; Tf= 29.44 degree F Tc= 95 degree C ; Tf= 35 degree F We will put 0.5V and 4.5V at 85 and 95 degree F in scale and shift equation which is Vt= α+βVs
  • 6. SCALE AND SHIFT CIRCUIT FOR LM35 Voltage output at 29 degree (low) , Vs=29*0.01=0.29 volts Voltage output at 35 degree (high) , Vs = 35*0.01=0.35 volts Vt=0.5V at 29 degree celsius and Vt=4.5V at 35 degree celsius We know, Vt= α+βVs 0.5=α+β0.29 ……..(1) 4.5=α+β0.35 ……..(2) From equation (1) and (2) we get, α= -18.83 and β= 66.67 Let , R=100K R1=R/β=100/66.67=1.5K R2=[-5*(R)]/α=[-5*(100)]/(-18.83)= 26.6K
  • 7. Scale and Shift circuit
  • 8. COMPARISON CIRCUIT ● Scaled and shifted sensor voltage is compared to the predetermined high and low temperatures. ● A decision is made (using digital logic) whether to open or close the relay and, hence, turn the device off or on. ● VH denote the voltage corresponding to the highest desired temperature and VL denote voltage corresponding to the lowest desired temperature. ● The decision is based on three rules 1. The relay is on if VT < VL < VH. 2. The relay is off if VT > VH > VL. 3. The relay state is unchanged if VL < VT < VH.
  • 9. COMPARISON CIRCUIT ● The decision is based on three rules 1. The relay is on if VT < VL < VH. 2. The relay is off if VT > VH > VL. 3. The relay state is unchanged if VL < VT <VH.
  • 10. COMPARISON OF LM35 After scaling, Input voltage at comparison circuit for 29 degree celsius = 0.29 volts Input voltage at comparison circuit for 35 degree celsius = 0.35 volts We know, Vt= α+βVs VL=Vt= (-18.83)+(66.67*0.29)=0.5V VH=Vt= (-18.83)+(66.67*0.35)=4.5V
  • 11. ANALOGUE CONTROLLER (LM35) ● Use to measure precise centigrade temperature. ● It is rated to operate over a -55 degree celsius to 150 degree celsius temperature range. ● Output voltage increases 10mV per degree celsius rise in temperature. ● Input voltage is from 4 volts to 30 volts. ● Consumes about 60 microamperes of current. ● Output voltages are linearly comparative to the celsius temperature.
  • 12. RELAY ● Activated for strong positive voltage. ● Get pulls on the switch and the circuit is completed for LED and then shines. ● Pull goes away when voltage is released. ● Switch remains in original position when a little voltage is given.
  • 13. DIGITAL AND LOGIC IMPLEMENTATION ● Here we need to define two logical functions: A = Vt < Vh, B = Vt >Vl. 1.VT greater than VH Then A = 1 and B = 0 2. VT less than VL Then B = 1 and A = 0 3.VT between VH and VL then A = B
  • 14. DIGITAL LOGIC ● Bulb will be ON if VT≤VL<VH ● Bulb will be OFF if VT ≥VH>VL ● Bulb will be UNCHANGED if VL<VT<VH A A B OUT PUT 0 0 Previous State 0 1 Previous State 1 0 Off 1 1 Not Possible
  • 15. DIGITAL CONTROLLER LM35 ADC Value Calculation For, 29 Degree Celsius (0.29V) Val = (0.29 × 1023) ÷ 5 = 59.33 = 59 (Approximately) For , 35 Degree Celsius (0.35V) Val = (0.35 × 1023) ÷ 5 = 71.61 = 71 (Approximately) 1.The relay is on if Vt ≤ Vl < Vh [on] 2. The relay is off if Vt ≥ Vh > Vl [off] 3. State is unchanged if Vl < Vt < Vh
  • 16. DIGITAL CONTROLLER DS18B20 ADC Value Calculation For, 29 Degree Celsius (0.29V) Val = (0.29 × 1023) ÷ 5 = 59.33 = 59 (Approximately) For , 35 Degree Celsius (0.35V) Val = (0.35 × 1023) ÷ 5 = 71.61 = 71 (Approximately) 1.The relay is on if Vt ≤ Vl < Vh [on] 2. The relay is off if Vt ≥ Vh > Vl [off] 3. State is unchanged if Vl < Vt < Vh
  • 17. Complete circuit with LM35 temperature sensor
  • 18. When temperature is 28°C i.e. VT<VL<VH and Lamp turns On
  • 19. When temperature is 32°C i.e. VL<VT<VH and Lamp should remain like its previous state but it becomes off.
  • 20. When temperature is 36°C i.e. VL<VH<VT and Lamp become off
  • 21. Complete circuit using DS18B20 temperature sensor
  • 22. Temperature increased but no voltage is generating from DS18B20
  • 26. ARDUINO CODE FOR LM35 int sensor = A0, relay = 7, adc_in=0; float temp=0; void setup () { Serial.begin(9600); pinMode(relay, OUTPUT); } void loop() { adc_in=analogRead(sensor); temp= ((adc_in*5000.0)/1023.0)/10.0; Serial.println(temp); } if (temp >=35){ digitalWrite(relay, LOW); Serial.println("Relay off"); } if (temp <=30){ digitalWrite(relay, HIGH); Serial.println("Relay on"); } delay(1000);
  • 28. ARDUINO CODE FOR DS18B20 ARDUINO CODE FOR DS18B20 void loop(void) { sensors.requestTemperatures(); temp=sensors.getTempCByIndex(0); Serial.println(" C "); Serial.println(temp); if (temp >=35){ digitalWrite(relay, LOW); Serial.println("Relay off"); } if (temp <=30){ digitalWrite(relay, HIGH); Serial.println("Relay on"); } delay(1000); }
  • 29. COST ALLOCATION AND COMPARISON DIGITAL CONTROLLER LM35 ● LM35 sensor- 140tk ● Voltage source- 110tk ● Arduino-950tk ● RESISTOR-16tk (8 pisces) ● NPN BJT-4tk ● LED-2tk ● Jumper wire-30tk ● Relay-30tk Total cost : 1282tk DIGITAL CONTROLLER DS18B20 ● DS18B20 sensor-100tk ● Voltage source-110tk ● Arduino-950tk ● NPN BJT-4tk ● LED-2tk ● Relay-30tk ● Jumper wire-30tk Total cost : 1226tk
  • 31. Conclusion From this project we can say that analog circuit system instantly stops while VT> VL and we also say that Digital circuit is costly but more efficient.