SlideShare a Scribd company logo
1
Ex. no.:1 Date: 22.01.15
INTRODUCTION TO ANSYS
Launch ANSYS from Windows: Start > All Programs > ANSYS13.1 > ANSYS
SOLID MODELLING:
Definitions
–A solid model is defined by volumes, areas, lines, and keypoints.
–Volumes are bounded by areas, areas by lines, and lines by keypoints.
–Hierarchy of entities from low to high as
keypoints < lines < areas < volumes
–You cannot delete an entity if a higher-order entity is attached to it. Also,
a model with just areas and below, such as a shell or 2-D plane model, is
still considered a solid model in ANSYS terminology.
2
METHODS OF SOLID MODELING
There are two approaches to creating a solid model in ANSYS, Top-down and Bottom-up
• Top-down modeling starts with a definition of volumes (or areas), which are then combined in
some fashion to create the final shape.
Bottom-up modeling starts with keypoints, from which you ―build up‖ lines, areas, etc.
PRIMITIVES
The volumes or areas that you initially define are called primitives, which are basic entities for
the
top-down method. ANSYS contains the following 2D and 3D primitives:
3
WORK PLANE (WP)
Primitives are located and oriented with the help of the working plane. The ―WP‖ in the prompts
stands for Working Plane — a movable reference plane used to locate and orient primitives.
By default, the WP origin coincides with the global origin, but you can move it and/or rotate it to
any desired position by using following options:
Utility Menu> WorkPlane> Offset WP by increment >
Utility Menu> WorkPlane> Offset WP to >
Utility Menu> WorkPlane> Align WP with> XYZ Locations >
BOOLEAN OPERATIONS
The final shape of an object is usually not as simple as primitives. However,
it is likely doable to combine a number of primitives through a series of
proper Boolean operations. The ―input‖ to Boolean operations can be any
geometric entity, ranging from simple primitives to complicated volumes
generated in previous steps.
Boolean operations are computations involving combinations of geometric
entities. ANSYS Boolean operations include add, subtract, intersect, divide,
glue, and overlap. •All Boolean operations are available in the GUI:
Main Menu > Preprocessor > Modeling > Operate > Booleans
By default, input entities of a Boolean operation are deleted after the
operation.
4
Add: Combines two or more entities into one.
Glue: Attaches two or more entities by creating a common
boundary between them, which is useful when you want to
maintain the distinction between entities (such as for different
materials).
Overlap: Same as glue, except that the input entities overlap
each other.
Subtract: Removes the overlapping portion of one or more
5
entities from a set of ―base‖ entities, which can be useful for
creating holes or trimming off portions of an entity.
Divide: Cuts an entity into two or more pieces that are still
connected to each other by common boundaries. The ―cutting
tool‖ may be the working plane, an area, a line, or even a
volume. Useful for ―slicing and dicing‖ a complicated
volume into simpler volumes for brick meshing.
Intersect: Keeps only the overlapping portion of two or more
entities.
Partition: Cuts two or more intersecting entities into multiple
6
pieces that are still connected to each other by common
boundaries, e.g., to find the intersection point of two lines and still
retain all four line segments, as shown. (An intersection operation
would return the common keypoint and delete both lines.)
FINITE ELEMENT DISCRETISATION
Finite Element Discretization or Meshing is the process used to ―fill‖ the solid model with nodes
and elements, i.e, to create the FEA model. Remember, you need nodes and elements for the
finite element solution, not just the solid model. The Solid Model in CAD does NOT participate
in the
finite element solution.
ELEMENT TYPE
The element type is an important choice that determines the following element characteristics:
• Degree of Freedom (DOF) set. A thermal element type, for example, has one dof: TEMP,
whereas a structural element type may have up to six dof: UX, UY, UZ, ROTX, ROTY, ROTZ.
• Element shape -- brick, tetrahedron, quadrilateral, triangle, etc.
• Dimensionality -- 2-D solid (X-Y plane only), or 3-D solid.
• Assumed displacement shape -- linear vs. quadratic.
To define an element:
Main Menu>Preprocessor>Element Type> Add/Edit/Delete>Add
7
MESHING METHODS :There are two main meshing methods: free and mapped.
Free Mesh–Has no element shape restrictions.
–The mesh does not follow any pattern.
–Suitable for complex shaped areas and volumes.
–Suitable for complex shaped areas and volumes.
–Volume meshes consist of high order tetrahedral (10 nodes), large dof.
Mapped Mesh–Restricts element shapes to quadrilaterals (areas) and hexahedra
(volume)
–Typically has a regular pattern with obvious rows of elements.
–Suitable only for ―regular‖ shapes such as rectangles and bricks.
Mesh Density Control
ANSYS provides many tools to control mesh density, on a global and local level:
–Global controls: SmartSizing; Global element sizing; Default sizing
6
–Local controls: Keypoint sizing; Line sizing; Area sizing
To bring up the MeshTool:
Main Menu > Preprocessor > Meshing > MeshTool
SmartSizing: by turning on SmartSizing, and set the desired size level. Size level ranges from 1
(fine) to 10 (coarse), defaults to 6. Then mesh all volumes (or all areas) at once, rather than one-
byone.
Advanced SmartSize controls, such as mesh expansion and transition factors, are available by
Main Menu>Preprocessor>Meshing>Size Cntrls>SmartSize>Adv Opts
Global Element Sizing: Allows you to specify a maximum element edge length for the entire
model (or number of divisions per line):
Go to ―Size Controls‖, ―Global‖ ,and click [Set] or
Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Global >Size
8
Material Properties
Every analysis requires some material property input: Young‘s modulus (EX), Poisson‘s ratio
(PRXY) for structural elements, thermal conductivity (KXX) for thermal elements, etc.
To define the material properties:
Main Menu>Preprocessor>Material Props>Material Models
ANSYS FEA PROCEDURE
In general, a finite element solution may be broken into the following three stages.
• Preprocessing: defining the problem; the major steps in preprocessing are given below:
Define keypoints/lines/areas/volumes (Solid Modeling)
Define element type and material/geometric properties
Mesh lines/areas/volumes as required
• Solution: assigning loads, constraints and solving;
Apply the loads (point or pressure), Specify constraints (translational and rotational)
Finally solve the problem.
• Postprocessing: further processing and viewing of the results;
Lists of nodal displacements and show the deformation
Element forces and moments
Stress/strain contour diagrams
9
Ex. no.:2 Date: 29.01.15
2 DIMENSIONAL STATIC STRESS ANALYSIS IN RECTANGULAR
PLATE
AIM:
Determine the stress concentration in a rectangular plate of length 50cm and width 20cm
with hollow circles at the centre. Load on right edge of the rectangular plate is 10x105
N.
Young‘s modulus of 70E9
N/cm2
and of Poission ratio 0.3
SYSTEM CONFIGURATION:
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE:
Preference Structural
Preprocessor elemental type addaddSolidQuad 4node 42OK
Material properties  Material Models  Structural  Linear 
Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio)
modelingcreatearearectangleby dimensions
enter the lower left coordinates(X,Y),the width and height
meshingmesh toolmeshareapick area
loadsnew analysisanalysis typestatic
applyloadsdisplacementUxOK
applypressureon linesOK
Solution solvecurrent LS
General
10
post processorplot results nodal solutionsDOF solutions vector sum plot
list resultsnodal solutionsDOF solutions vector sum plot
RESULTS
Original and deformed shape of 2D plane
Stress distribution of 2D plane
11
Ex. no.:3 Date: 05.02.15
3 DIMENSIONAL STATIC STRESS ANALYSIS IN BLOCK
AIM:
Determine the stress concentration in a large isotropic block subjected to a point
load of 22500 N downward and fixed at the bottom.Youngs modulus 144e7
N/mm2
,
Poisson ratio 0.34
SYSTEM CONFIGURATION:
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE:
Preference Structural
Preprocessor elemental type addaddSolidbrick 8 node 45OK
Material properties  Material Models  Structural  Linear
 Elastic  isotropic (enter Young‘s Modulus Value & Poisson Ratio)
Modelingcreatevolumesblockby dimensions
Enter the coordinates(X, Y)
Meshingmesh toolmeshvolumepick volume
Loadsnew analysisanalysis typestatic
Applyloadsdisplacementall DOFOK
Applyforce and momenton nodeOK
Solution solvecurrent LS
General
Post processorplot results nodal solutionsDOF solutions vector sum plot
12
List resultsnodal solutionsDOF solutions vector sum plot
RESULTS
Original and deformed shape of 3D volume
Stress distribution of 3D volume
13
Ex. no.:4 Date: 12.02.15
2 DIMENSIONAL FRAME WITH MULTIPLE MATERIALS AND
ELEMENT TYPE ANALYSIS
AIM:
Determine the stress concentration in 2D frame with multiple materials and
element type analysis.Young‘s modulus of 70E9 N/cm2
and of Poisson ratio 0.3.
SYSTEM CONFIGURATION:
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE:
Preference Structural
Preprocessor elemental type addaddLink3D finite stn 180
Material properties  Material Models  Structural  Linear 
Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio)
modelingcreatekeypointsby dimensions
lineslinesstraight linesjoin keypoints
meshingmesh toolmeshlinepick lines
loadsnew analysisanalysis typestatic
applyloadsdisplacementUxOK
applypressureon linesOK
Solution solvecurrent LS
General
post processorplot results nodal solutionsDOF solutions vector sum plot
14
list resultsnodal solutionsDOF solutions vector sum plot
RESULTS
Original and deformed shape of multi frame
Stress distribution of multi frame
15
Ex. No.:5 Date: 19.02.15
3 DIMENSIONAL TRUSS ANALYSIS
AIM:
Determine the stress concentration in 3D truss. Young‘s modulus of 70E9
N/cm2
and of Poission ratio 0.3
SYSTEM CONFIGURATION:
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE:
Preference Structural
Preprocessor elemental type addaddlink3D finite stn 180 OK
Material properties  Material Models  Structural  Linear 
Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio)
modelingcreatekeypoints
lineslinesstraight line join key points
meshingmesh toollinesmeshpick lines
loadsnew analysisanalysis typestatic
applyloadsdisplacementUxOK
applyforce and momentson nodesOK
Solution solvecurrent LS
General
post processorplot results nodal solutionsDOF solutions vector sum plot
list resultsnodal solutionsDOF solutions vector sum plot
16
RESULTS
Original and deformed shape of 3D truss
Stress distribution of 3D truss
17
Ex. No.:6 Date: 26.02.15
MODAL ANALYSIS IN ANSYS
AIM:
Determine the first five modal natural frequency of square plate of area 1m2
. Young‘s
modulus of 70E9
N/cm2
, Poission ratio of 0.3 and density 2.7E3
.
SYSTEM CONFIGURATION:
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE:
Preference Structural
Preprocessor elemental type addaddsolidquad 4 node 182 OK
Material properties  Material Models  Structural  Linear 
Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio)
modelingcreatearearectangleby dimensions
circleby dimensions
operatebooleanssubtractareas
meshingmesh toolareasmeshpick areas
loadsapplyloadsdisplacementUx(upper edge & bottom
edge)OK
 applyloadsdisplacementUy(left edge & right edge)OK
Solution analysis typenew analysismodal
analysis optionsenter no. Modes:5
enter no. of mode expansions:5
18
solvecurrent LS
General
post processorread results first set
list resultsnodal solutionsDOF solutions vector sum plot
 plot results nodal solutionsDOF solutions vector sum plot
RESULTS
Modal frequencies for 5 modes of 2D plane
SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE
1 2289.8 1 1 1
2 2853.0 1 2 2
3 2853.7 1 3 3
4 3379.7 1 4 4
5 4067.9 1 5 5
Modal Displacement distribution of 2D plane
19
Ex. No.:7 Date: 05.03.15
PLATE BUCKING ANALYSIS EIGEN BUCKLING ANALYSIS
AIM:
Determine the plate bucking analysis Eigen buckling analysis of rectangular plate of
width 10cm and height 0f 2cm.Young‘s modulus of 70E9
N/cm2
, Poission ratio of 0.3 and
density 2.7E3
.
SYSTEM CONFIGURATION:
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE:
Preference Structural
Preprocessor elemental type addaddsolidquad 4 node 182 OK
Material properties  Material Models  Structural  Linear 
Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio)
modelingcreatearearectangleby dimensions
meshingmesh toolareasmeshpick areas
loadsapplyloadsdisplacementUx(left edge),Uy(bottom)OK
applyloadspressureon lines(right edge line)enter the
pressure value
Solution analysis typenew analysisstatic
analysis optionsenter no. Modes:5
enter no. of mode expansions:5
20
solvecurrent LS
General
post processorread results first set
list resultsnodal solutionsDOF solutions vector sum plot
 plot results nodal solutionsDOF solutions vector sum plot
RESULTS:
Bucking mode values:
SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE
1 0.77570E+08 1 1 1
2 0.10039E+09 1 2 2
3 0.11611E+09 1 3 3
4 0.11734E+09 1 4 4
5 0.11930E+09 1 5 5
21
Original and buckled deformation
Displacement distribution of buckled deformation
22
Ex. No.:8 Date: 12.03.15
SIMPLE DYNAMIC ANALYSIS
AIM:
Determine the plate bucking analysis Eigen buckling analysis of rectangular plate of
width 10cm and height 0f 2cm.Young‘s modulus of 70E9
N/cm2
, Poission ratio of 0.3 and
density 2.7E3
.
SYSTEM CONFIGURATION:
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE:
Preference Structural
Preprocessor elemental type addaddsolidquad 4 node 182 OK
Material properties  Material Models  Structural  Linear 
Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio)
modelingcreatearearectangleby dimensions
meshingmesh toolareasmeshpick areas
loadsapplyloadsdisplacementUx(left edge),Uy(bottom)OK
applyloadspressureon lines(right edge line)enter the
pressure value
Solution analysis typenew analysisstatic
analysis optionsenter no. Modes:5
enter no. of mode expansions:5
23
solvecurrent LS
General
post processorread results first set
list resultsnodal solutionsDOF solutions vector sum plot
 plot results nodal solutionsDOF solutions vector sum plot
RESULTS:
Dynamic 4 step load data:
SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE
1 0.10000E-04 1 10 10
2 0.50000E-04 2 8 18
3 0.60000E-04 3 10 28
4 0.60000E-01 4 100 128
Time history deflection graph
24
Ex. no.:9 Date: 19.03.15
BOX BEAM ANALYSIS
AIM:
Determine the stress concentration and displacement in box beam materials.
Young‘s modulus of 70E9 N/cm2
and of Poisson ratio 0.3.
SYSTEM CONFIGURATION:
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE:
Preference Structural
Preprocessor elemental type addaddbeam2 Node 188
Material properties  Material Models  Structural  Linear 
Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio)
modelingcreatenodesby dimensions
Elementsthrough nodesjoin nodes
loadsnew analysisanalysis typestatic
applyloadsdisplacementall dof at left edgeOK
applyforce and momenton nodeOK
Solution solvecurrent LS
General
post processorplot results nodal solutionsDOF solutions vector sum plot
list resultsnodal solutionsDOF solutions vector sum plot
25
RESULTS:
Original and deformed box beam
Stress concentration in box beam
26
Ex. no.:10 Date: 26.03.15
STEADY STATE HEAT CONDUCTION IN SOLIDS
AIM:
Determine the temperature distribution in a square plate of side 1m and thichness1m with
thermal conductivity k1=25 W/m 0
C,k2= 50 W/m 0
C ,k3=30 W/m 0
C.The convection takes place
on the right edge of the plate with free stream temperature of 50 0
C.The left edge of the plate is
maintained at a temperature of 100 0
C and the top and bottom edges are insulated.
SYSTEM CONFIGURATION:
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE
Preference thermal
Preprocessor elemental type addaddthermal massbrick 20 node 90
material propertiesisotropic(enter thermal conductivity value K)
modelingcreatearearectangleby two corners
enter the lower left coordinates(X,Y),the width and height
meshingsize controlmanual sizeglobalsize
element edge length
meshareapick area
loadsnew analysisanalysis typesteady state
applytemperatureon linepick the top edgeapply
(enter the temperature value)
applyheat fluxon linepick the right, left and bottom edge.
27
apply (enter heat flux value as 0)
heat generation on area pick all ok
Solution solvecurrent LS
General
post processorplot results nodal solutionsDOF solutions temperature
list resultsnodal solutionsDOF solutions temperature
28
RESULTS:
Temperature distribution
Vector plot of temperature distribution
29
Ex. no.:11 Date: 26.03.15
STEADY STATE HEAT CONVECTION IN SOLIDS
AIM :
Determine the temperature distribution in a square plate of side 2m and thichness1m with
thermal conductivity K=25 W/m 0
C and convection film co-efficient h=20 W/m2 0
C.The
convection takes place on the right edge of the plate with free stream temperature of 50 0
C.The
left edge of the plate is maintained at a temperature of 100 0
C and the top and bottom edges are
insulated.
SYSTEM CONFIGURATION :
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE :
Preference thermal
Preprocessor elemental type addaddthermal massbrick 20 node 90
material propertiesisotropic(enter thermal conductivity value K)
modelingcreatearearectangleby two corners
enter the lower left coordinates(X,Y),the width and height
meshingsize controlmanual sizeglobalsize
element edge length
meshareapick area
loadsnew analysisanalysis typesteady state
applytemperatureon linepick the top edgeapply
(enter the temperature value)
30
applyheat fluxon linepick the right, left and bottom edge.
apply (enter heat flux value as 0)
heat generation on area pick all ok
Solution solvecurrent LS
General
post processorplot results nodal solutionsDOF solutions temperature
list resultsnodal solutionsDOF solutions temperature
31
RESULTS:
Temperature distribution by convection
‗
Vector plot of temperature
32
Ex. no.:12 Date: 02.04.15
STEADY STATE RADIATIVE HEAT TRANSFER
AIM:
Determine the temperature distribution in a square plate of side 2m and thickness
1m with Thermal conductivity K = 25W/mo
C and Boltzmann Constant σ = 5.67x10-8
W m-2
K-
4
. The Radiation takes place on the right edge of the plate with free stream temperature of 50o
c.
The left edge of the plate is maintained at a temperature of 100o
c and the top and bottom edge
are insulated.
SYSTEM CONFIGURATION:
ANSYS Version 12.1
17‖ VGA Color monitor
Intel I3 Processor
320 GB HDD
2 GB RAM
ANSYS PROCEDURE :
Preference thermal
Preprocessor elemental type addaddthermal massbrick 20 node 90
material propertiesisotropic(enter thermal conductivity value K)
modelingcreatearearectangleby two corners
enter the lower left coordinates(X,Y),the width and height
meshingsize controlmanual sizeglobalsize
element edge length
meshareapick area
loadsnew analysisanalysis typesteady state
applytemperatureon linepick the top edgeapply
(enter the temperature value)
33
Radiation  Solution Options( enter the Boltzmann Constant, σ = 5.67x10-8
W m-2
K-4
)
Option
applyheat fluxon linepick the right, left and bottom edge.
apply (enter heat flux value as 0)
heat generation on area pick all ok
Solution solvecurrent LS
General
post processorplot results nodal solutionsDOF solutions temperature
listresultsnodalsolutionsDOFsolutionstemperature
34
RESULTS:
Temperature distribution by radiation
Vector plot of temperature distribution
35
Ex. no.:13 Date: 09.04.15
COMBINED CONDUCTION AND CONVECTION HEAT HEAT
TRANSFER ANALYSIS
AIM :
Determine the temperature distribution in a square plate of side 2m and thichness1m with
thermal conductivity K=25 W/m 0
C and convection film co-efficient h=20 W/m2 0
C.The
convection takes place on the right edge of the plate with free stream temperature of 50 0
C.The
left edge of the plate is maintained at a temperature of 100 0
C and the top and bottom edges are
insulated.
SYSTEM CONFIGURATION :
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE
Preference thermal
Preprocessor elemental type addaddthermal massbrick 20 node 90
material propertiesisotropic(enter thermal conductivity value K)
modelingcreatearearectangleby two corners
enter the lower left coordinates(X,Y),the width and height
meshingsize controlmanual sizeglobalsize
element edge length
meshareapick area
loadsnew analysisanalysis typesteady state
applytemperatureon linepick the top edgeapply
36
(enter the temperature value)
applyheat fluxon linepick the right, left and bottom edge.
apply (enter heat flux value as 0)
heat generation on area pick all ok
Solution solvecurrent LS
General
post processorplot results nodal solutionsDOF solutions temperature
list resultsnodal solutionsDOF solutions temperature
37
RESULTS:
Temperature distribution with combined conduction and convection
.
Vector plot of temperature distribution
38
Ex. no.:14 Date: 09.04.15
COMBINED CONDUCTION AND RADIATION HEAT TRANSFER
ANALYSIS
AIM:
Determine the temperature distribution in a square plate of side 2m and thickness 1m
with thermal conductivity K=25 W/m 0
C and Boltzmann‘s constant (σ)= 5.67*10-8
W.m-2
.k-4
.The
radiation takes place on the right edge of the plate with free stream temperature of 50 0
C. The left
edge of the plate is maintained at a temperature of 100 0
C.
SYSTEM CONFIGURATION:
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE :
Preferencethermal
Preprocessorelemental type addaddthermal massbrick 20 node 90
material propertiesisotropic(enter thermal conductivity value K)
modelingcreatearearectangleby two corners
enter the lower left coordinates(X,Y),the width and height
meshingsize controlmanual sizeglobalsize
element edge length
meshareapick area
loadsnew analysisanalysis typesteady state
applytemperatureon linepick the top edgeapply
39
(enter the temperature value)
Radiation optionssolution optionsBoltzmann‘s constant(σ)= 5.67*10-8
W.m-2
.k-4
applyheat fluxon linepick the right, left and bottom edge.
apply (enter heat flux value as 0)
heat generation on area pick all ok
Solutionsolvecurrent LS
General post processorplot results nodal solutionsDOF solutions temperature
list resultsnodal solutionsDOF solutions temperature
40
RESULTS:
Temperature distribution with combined conduction and radiation
Vector plot of temperature distribution
41
Ex. no.:15 Date: 16.04.15
COMBINED CONVECTION AND RADIATION HEAT TRANSFER IN
CYLINDER
AIM:
Determine the temperature distribution in a cylinder of radius 2m and thickness 10m with
thermal conductivity K=25 W/m 0
C and radiation Boltzman‘s constant =5.67^10
-8
W/m-2
K-4
.
The convection and radiation takes place on the right edge of the cylinder with free stream
temperature of 50 0
C.The left edge of the plate is maintained at a temperature of 100 0
C.
SYSTEM CONFIGURATION:
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE:
Preference thermal
Preprocessor elemental type addaddthermal massbrick 20 node 90
material propertiesisotropic(enter thermal conductivity value K)
modelingcreatearearectangleby two corners
enter the lower left coordinates(X,Y),the width and height
meshingsize controlmanual sizeglobalsize
element edge length
meshareapick area
loadsnew analysisanalysis typesteady state
applytemperatureon linepick the top edgeapply
(enter the temperature value)
42
radiation options solution options Stefen-Boltzman’s
constant=5.67^10
-8
W/m-2
K-4
applyheat fluxon linepick the right, left and bottom edge.
apply (enter heat flux value as 0)
heat generation on area pick all ok
Solution solvecurrent LS
General
post processorplot results nodal solutionsDOF solutions temperature
list resultsnodal solutionsDOF solutions temperature
43
RESULTS:
Temperature distribution with combined convection and radiation
Vector plot of temperature distribution
44
Ex. no.:16 Date: 23.04.15
UNSTEADY STATE CONDUCTION AND CONVECTION HEAT
TRANSFER IN SQUARE PLATE
AIM :
Determine the temperature distribution in a square plate of side 2m and thichness1m with
thermal conductivity K=25 W/m 0
C and convection film co-efficient h=20 W/m2 0
C.The
convection takes place on the right edge of the plate with free stream temperature of 50 0
C.The
left edge of the plate is maintained at a temperature of 100 0
C and the top and bottom edges are
insulated.
SYSTEM CONFIGURATION :
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE:
Preference thermal
Preprocessor elemental type addaddthermal massbrick 20 node 90
material propertiesisotropic(enter thermal conductivity value K)
modelingcreatearearectangleby two corners
enter the lower left coordinates(X,Y),the width and height
meshingsize controlmanual sizeglobalsize
element edge length
meshareapick area
loadsnew analysisanalysis typesteady state
applytemperatureon linepick the top edgeapply
(enter the temperature value)
45
applyheat fluxon linepick the right, left and bottom edge.
apply (enter heat flux value as 0)
heat generation on area pick all ok
Solution solvecurrent LS
General
post processorplot results nodal solutionsDOF solutions temperature
list resultsnodal solutionsDOF solutions temperature
46
RESULTS:
Unsteady Temperature distribution with combined conduction and convection
Vector plot of unsteady temperature distribution
47
Ex. no.:17 Date: 30.04.15
UNSTEADY STATE CONDUCTION AND RADIATION HEAT
TRANSFER ANALYSIS
AIM:
Determine the temperature distribution in a square plate of side 2m and thickness 1m
with thermal conductivity K=25 W/m 0
C and Boltzmann‘s constant (σ)= 5.67*10-8
W.m-2
.k-4
.The
radiation takes place on the right edge of the plate with free stream temperature of 50 0
C. The left
edge of the plate is maintained at a temperature of 100 0
C.
SYSTEM CONFIGURATION:
ANSYS Version 12.1
17‖ VGA color Monitor
Intel I3 processor
320 GB HDD
2GB RAM
ANSYS PROCEDURE
Preferencethermal
Preprocessorelemental type addaddthermal massbrick 20 node 90
material propertiesisotropic(enter thermal conductivity value K)
modelingcreatearearectangleby two corners
enter the lower left coordinates(X,Y),the width and height
meshingsize controlmanual sizeglobalsize
element edge length
meshareapick area
loadsnew analysisanalysis typesteady state
applytemperatureon linepick the top edgeapply
48
(enter the temperature value)
Radiation optionssolution optionsBoltzmann‘s constant(σ)= 5.67*10-8
W.m-2
.k-4
applyheat fluxon linepick the right, left and bottom edge.
apply (enter heat flux value as 0)
heat generation on area pick all ok
Solutionsolvecurrent LS
General post processorplot results nodal solutionsDOF solutions temperature
list resultsnodal solutionsDOF solutions temperature
49
RESULTS:
Unsteady Temperature distribution with combined conduction and radiation
Vector plot of unsteady temperature distribution

More Related Content

What's hot

Simple stresses in machine parts
Simple stresses in machine partsSimple stresses in machine parts
Simple stresses in machine parts
Mohamed Mohamed El-Sayed
 
Chapter02.structural design using staad pro
Chapter02.structural design using staad proChapter02.structural design using staad pro
Chapter02.structural design using staad pro
devaraj pavan kumar
 
Tutorial Staad-Pro
Tutorial Staad-ProTutorial Staad-Pro
Tutorial Staad-ProNabeh Wildan
 
Introduction to Strength of Materials
Introduction to Strength of MaterialsIntroduction to Strength of Materials
Introduction to Strength of MaterialsMsheer Bargaray
 
FEA Analysis - Thin Plate
FEA Analysis - Thin PlateFEA Analysis - Thin Plate
FEA Analysis - Thin Plate
Stasik Nemirovsky
 
Direct analysis method - Sap2000
Direct analysis method - Sap2000Direct analysis method - Sap2000
Direct analysis method - Sap2000
Hassan Yamout
 
11 (l)random vibrations methodology
11 (l)random vibrations  methodology11 (l)random vibrations  methodology
11 (l)random vibrations methodology
chowdavaramsaiprasad
 
Concrete Mix Design Manual
Concrete Mix Design ManualConcrete Mix Design Manual
Concrete Mix Design ManualNirman Pokharel
 
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8 ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
Eur Ing Valentinos Neophytou BEng (Hons), MSc, CEng MICE
 
water tank analysis
water tank analysiswater tank analysis
water tank analysis
CADmantra Technologies
 
Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)
Md. Shahadat Hossain
 
Staad. pro tuto
Staad. pro tutoStaad. pro tuto
Staad. pro tuto
Ramil Artates
 
Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5
propaul
 
Unit 5.2 Welded joints
Unit 5.2 Welded jointsUnit 5.2 Welded joints
Unit 5.2 Welded joints
Yugal Kishor Sahu
 
Design and analysis of cantilever beam
Design and analysis of cantilever beamDesign and analysis of cantilever beam
Design and analysis of cantilever beam
College
 
Classification of cross section
Classification of cross sectionClassification of cross section
Classification of cross section
Valmik Mahajan
 
Stress concentration
Stress concentrationStress concentration
Stress concentration
Osta Eslam Chetos
 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design steps
DYPCET
 

What's hot (20)

Simple stresses in machine parts
Simple stresses in machine partsSimple stresses in machine parts
Simple stresses in machine parts
 
Chapter02.structural design using staad pro
Chapter02.structural design using staad proChapter02.structural design using staad pro
Chapter02.structural design using staad pro
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
Tutorial Staad-Pro
Tutorial Staad-ProTutorial Staad-Pro
Tutorial Staad-Pro
 
Introduction to Strength of Materials
Introduction to Strength of MaterialsIntroduction to Strength of Materials
Introduction to Strength of Materials
 
FEA Analysis - Thin Plate
FEA Analysis - Thin PlateFEA Analysis - Thin Plate
FEA Analysis - Thin Plate
 
Direct analysis method - Sap2000
Direct analysis method - Sap2000Direct analysis method - Sap2000
Direct analysis method - Sap2000
 
11 (l)random vibrations methodology
11 (l)random vibrations  methodology11 (l)random vibrations  methodology
11 (l)random vibrations methodology
 
Tensile testing experiment
Tensile testing experimentTensile testing experiment
Tensile testing experiment
 
Concrete Mix Design Manual
Concrete Mix Design ManualConcrete Mix Design Manual
Concrete Mix Design Manual
 
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8 ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
 
water tank analysis
water tank analysiswater tank analysis
water tank analysis
 
Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)
 
Staad. pro tuto
Staad. pro tutoStaad. pro tuto
Staad. pro tuto
 
Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5
 
Unit 5.2 Welded joints
Unit 5.2 Welded jointsUnit 5.2 Welded joints
Unit 5.2 Welded joints
 
Design and analysis of cantilever beam
Design and analysis of cantilever beamDesign and analysis of cantilever beam
Design and analysis of cantilever beam
 
Classification of cross section
Classification of cross sectionClassification of cross section
Classification of cross section
 
Stress concentration
Stress concentrationStress concentration
Stress concentration
 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design steps
 

Similar to ED7211 ANSYS lab_manual

Casa lab manual
Casa lab manualCasa lab manual
Casa lab manual
BHARATNIKKAM
 
ansys tutorial
ansys tutorialansys tutorial
ansys tutorial
yashdeep nimje
 
ABAQUS LEC.ppt
ABAQUS LEC.pptABAQUS LEC.ppt
ABAQUS LEC.ppt
AdalImtiaz
 
Tutorial_01_Quick_Start.pdf
Tutorial_01_Quick_Start.pdfTutorial_01_Quick_Start.pdf
Tutorial_01_Quick_Start.pdf
ChunaramChoudhary1
 
EDM_SEMINAR.pptx
EDM_SEMINAR.pptxEDM_SEMINAR.pptx
EDM_SEMINAR.pptx
JiaJunWang17
 
Introduction to fem
Introduction to femIntroduction to fem
Introduction to fem
Anubhav Singh
 
Introduction of finite element analysis1
Introduction of finite element analysis1Introduction of finite element analysis1
Introduction of finite element analysis1
ssuser2209b4
 
Layout planning
Layout planningLayout planning
Layout planning8979473684
 
Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)
SHAMJITH KM
 
NX_CAD
NX_CADNX_CAD
NX_CAD
Barney Day
 
CONCEPT OF FINITE ELEMENT MODELLING FOR TRUSSES AND BEAMS USING ABAQUS
CONCEPT OF FINITE ELEMENT MODELLING FOR TRUSSES AND BEAMS USING ABAQUSCONCEPT OF FINITE ELEMENT MODELLING FOR TRUSSES AND BEAMS USING ABAQUS
CONCEPT OF FINITE ELEMENT MODELLING FOR TRUSSES AND BEAMS USING ABAQUS
IAEME Publication
 
Introduction_to_AUTOCAD
Introduction_to_AUTOCADIntroduction_to_AUTOCAD
Introduction_to_AUTOCAD
KennRodriguez2
 
1585848522Basic_Introduction_to_AUTOCAD.ppt
1585848522Basic_Introduction_to_AUTOCAD.ppt1585848522Basic_Introduction_to_AUTOCAD.ppt
1585848522Basic_Introduction_to_AUTOCAD.ppt
ssuser0d82cd
 
1585848522Basic_Introduction_to_AUTOCAD.ppt
1585848522Basic_Introduction_to_AUTOCAD.ppt1585848522Basic_Introduction_to_AUTOCAD.ppt
1585848522Basic_Introduction_to_AUTOCAD.ppt
pradeepdubey73
 
Introduction_to_AUTOCAD.ppt
Introduction_to_AUTOCAD.pptIntroduction_to_AUTOCAD.ppt
Introduction_to_AUTOCAD.ppt
CHANDANKUMAR431371
 
Two dimensional truss
Two dimensional trussTwo dimensional truss
Two dimensional truss
ESWARANM92
 
Introduction fea 2.12.13
Introduction fea 2.12.13Introduction fea 2.12.13
Introduction fea 2.12.13
Suhaimi Alhakimi
 
auto cad ppt.pptx
auto cad ppt.pptxauto cad ppt.pptx
auto cad ppt.pptx
JatinAggarwal84
 

Similar to ED7211 ANSYS lab_manual (20)

Casa lab manual
Casa lab manualCasa lab manual
Casa lab manual
 
ansys tutorial
ansys tutorialansys tutorial
ansys tutorial
 
ABAQUS LEC.ppt
ABAQUS LEC.pptABAQUS LEC.ppt
ABAQUS LEC.ppt
 
Tutorial_01_Quick_Start.pdf
Tutorial_01_Quick_Start.pdfTutorial_01_Quick_Start.pdf
Tutorial_01_Quick_Start.pdf
 
EDM_SEMINAR.pptx
EDM_SEMINAR.pptxEDM_SEMINAR.pptx
EDM_SEMINAR.pptx
 
Analysis reference
Analysis referenceAnalysis reference
Analysis reference
 
Introduction to fem
Introduction to femIntroduction to fem
Introduction to fem
 
ansys tutorial
ansys tutorialansys tutorial
ansys tutorial
 
Introduction of finite element analysis1
Introduction of finite element analysis1Introduction of finite element analysis1
Introduction of finite element analysis1
 
Layout planning
Layout planningLayout planning
Layout planning
 
Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)
 
NX_CAD
NX_CADNX_CAD
NX_CAD
 
CONCEPT OF FINITE ELEMENT MODELLING FOR TRUSSES AND BEAMS USING ABAQUS
CONCEPT OF FINITE ELEMENT MODELLING FOR TRUSSES AND BEAMS USING ABAQUSCONCEPT OF FINITE ELEMENT MODELLING FOR TRUSSES AND BEAMS USING ABAQUS
CONCEPT OF FINITE ELEMENT MODELLING FOR TRUSSES AND BEAMS USING ABAQUS
 
Introduction_to_AUTOCAD
Introduction_to_AUTOCADIntroduction_to_AUTOCAD
Introduction_to_AUTOCAD
 
1585848522Basic_Introduction_to_AUTOCAD.ppt
1585848522Basic_Introduction_to_AUTOCAD.ppt1585848522Basic_Introduction_to_AUTOCAD.ppt
1585848522Basic_Introduction_to_AUTOCAD.ppt
 
1585848522Basic_Introduction_to_AUTOCAD.ppt
1585848522Basic_Introduction_to_AUTOCAD.ppt1585848522Basic_Introduction_to_AUTOCAD.ppt
1585848522Basic_Introduction_to_AUTOCAD.ppt
 
Introduction_to_AUTOCAD.ppt
Introduction_to_AUTOCAD.pptIntroduction_to_AUTOCAD.ppt
Introduction_to_AUTOCAD.ppt
 
Two dimensional truss
Two dimensional trussTwo dimensional truss
Two dimensional truss
 
Introduction fea 2.12.13
Introduction fea 2.12.13Introduction fea 2.12.13
Introduction fea 2.12.13
 
auto cad ppt.pptx
auto cad ppt.pptxauto cad ppt.pptx
auto cad ppt.pptx
 

More from KIT-Kalaignar Karunanidhi Institute of Technology

Unit 1 automotive engine auxiliary systems
Unit 1 automotive engine auxiliary systemsUnit 1 automotive engine auxiliary systems
Unit 1 automotive engine auxiliary systems
KIT-Kalaignar Karunanidhi Institute of Technology
 
Unconventional machining processes
Unconventional machining processesUnconventional machining processes
Unconventional machining processes
KIT-Kalaignar Karunanidhi Institute of Technology
 
TOTAL QUALITY MANAGEMENT
TOTAL QUALITY MANAGEMENTTOTAL QUALITY MANAGEMENT
ME6403 - ENGINEERING MATERIALS AND METALLURGY BY Mr.ARIVUMANI RAVANAN /AP/MEC...
ME6403 - ENGINEERING MATERIALS AND METALLURGY BY Mr.ARIVUMANI RAVANAN /AP/MEC...ME6403 - ENGINEERING MATERIALS AND METALLURGY BY Mr.ARIVUMANI RAVANAN /AP/MEC...
ME6403 - ENGINEERING MATERIALS AND METALLURGY BY Mr.ARIVUMANI RAVANAN /AP/MEC...
KIT-Kalaignar Karunanidhi Institute of Technology
 
ME6302 MANUFACTURING TECHNOLOGY – I BY Mr.K.SIVAKUMAR /AP/MECH/KIT/CBE
ME6302 MANUFACTURING TECHNOLOGY – I BY Mr.K.SIVAKUMAR /AP/MECH/KIT/CBEME6302 MANUFACTURING TECHNOLOGY – I BY Mr.K.SIVAKUMAR /AP/MECH/KIT/CBE
ME6302 MANUFACTURING TECHNOLOGY – I BY Mr.K.SIVAKUMAR /AP/MECH/KIT/CBE
KIT-Kalaignar Karunanidhi Institute of Technology
 
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISHME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
KIT-Kalaignar Karunanidhi Institute of Technology
 
ME2041 ADVANCED I.C. ENGINES BY Mr.P.BALAKRISHNAN/AP/MECH/KIT/CBE
ME2041 ADVANCED I.C. ENGINES BY Mr.P.BALAKRISHNAN/AP/MECH/KIT/CBEME2041 ADVANCED I.C. ENGINES BY Mr.P.BALAKRISHNAN/AP/MECH/KIT/CBE
ME2041 ADVANCED I.C. ENGINES BY Mr.P.BALAKRISHNAN/AP/MECH/KIT/CBE
KIT-Kalaignar Karunanidhi Institute of Technology
 
ME6004 - UNCONVENTIONAL MACHINING PROCESS BY Mr.P.HARIPRASAD/AP/MECH/KIT/CBE
ME6004 - UNCONVENTIONAL MACHINING PROCESS BY Mr.P.HARIPRASAD/AP/MECH/KIT/CBEME6004 - UNCONVENTIONAL MACHINING PROCESS BY Mr.P.HARIPRASAD/AP/MECH/KIT/CBE
ME6004 - UNCONVENTIONAL MACHINING PROCESS BY Mr.P.HARIPRASAD/AP/MECH/KIT/CBE
KIT-Kalaignar Karunanidhi Institute of Technology
 
ME 2029 - DESIGN OF JIGS AND FIXTURES NOTES BY Mr.K.SATHISHKUMAR/AP/MECH/KIT/CBE
ME 2029 - DESIGN OF JIGS AND FIXTURES NOTES BY Mr.K.SATHISHKUMAR/AP/MECH/KIT/CBEME 2029 - DESIGN OF JIGS AND FIXTURES NOTES BY Mr.K.SATHISHKUMAR/AP/MECH/KIT/CBE
ME 2029 - DESIGN OF JIGS AND FIXTURES NOTES BY Mr.K.SATHISHKUMAR/AP/MECH/KIT/CBE
KIT-Kalaignar Karunanidhi Institute of Technology
 
Mech ma6452 snm_notes
Mech ma6452 snm_notesMech ma6452 snm_notes
Mech GE6351 ESE_notes
Mech GE6351 ESE_notesMech GE6351 ESE_notes
Mech GE6075 PEE_notes
Mech GE6075 PEE_notesMech GE6075 PEE_notes
Mech EE6365 EE lab_manual
Mech EE6365 EE lab_manualMech EE6365 EE lab_manual
Mech EE6351 EDC_notes
Mech EE6351 EDC_notesMech EE6351 EDC_notes
Mech CE6461 FMM lab_manual
Mech CE6461 FMM lab_manualMech CE6461 FMM lab_manual

More from KIT-Kalaignar Karunanidhi Institute of Technology (20)

Unit 1 automotive engine auxiliary systems
Unit 1 automotive engine auxiliary systemsUnit 1 automotive engine auxiliary systems
Unit 1 automotive engine auxiliary systems
 
Unconventional machining processes
Unconventional machining processesUnconventional machining processes
Unconventional machining processes
 
TOTAL QUALITY MANAGEMENT
TOTAL QUALITY MANAGEMENTTOTAL QUALITY MANAGEMENT
TOTAL QUALITY MANAGEMENT
 
PROCESS PLANNING AND COST ESTIMATION
PROCESS PLANNING AND COST ESTIMATIONPROCESS PLANNING AND COST ESTIMATION
PROCESS PLANNING AND COST ESTIMATION
 
INTRODUCTION TO ROBOTICS
INTRODUCTION TO ROBOTICSINTRODUCTION TO ROBOTICS
INTRODUCTION TO ROBOTICS
 
Cmm
CmmCmm
Cmm
 
Basic of metrology
Basic of metrology Basic of metrology
Basic of metrology
 
ME6403 - ENGINEERING MATERIALS AND METALLURGY BY Mr.ARIVUMANI RAVANAN /AP/MEC...
ME6403 - ENGINEERING MATERIALS AND METALLURGY BY Mr.ARIVUMANI RAVANAN /AP/MEC...ME6403 - ENGINEERING MATERIALS AND METALLURGY BY Mr.ARIVUMANI RAVANAN /AP/MEC...
ME6403 - ENGINEERING MATERIALS AND METALLURGY BY Mr.ARIVUMANI RAVANAN /AP/MEC...
 
ME6302 MANUFACTURING TECHNOLOGY – I BY Mr.K.SIVAKUMAR /AP/MECH/KIT/CBE
ME6302 MANUFACTURING TECHNOLOGY – I BY Mr.K.SIVAKUMAR /AP/MECH/KIT/CBEME6302 MANUFACTURING TECHNOLOGY – I BY Mr.K.SIVAKUMAR /AP/MECH/KIT/CBE
ME6302 MANUFACTURING TECHNOLOGY – I BY Mr.K.SIVAKUMAR /AP/MECH/KIT/CBE
 
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISHME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
 
ME2041 ADVANCED I.C. ENGINES BY Mr.P.BALAKRISHNAN/AP/MECH/KIT/CBE
ME2041 ADVANCED I.C. ENGINES BY Mr.P.BALAKRISHNAN/AP/MECH/KIT/CBEME2041 ADVANCED I.C. ENGINES BY Mr.P.BALAKRISHNAN/AP/MECH/KIT/CBE
ME2041 ADVANCED I.C. ENGINES BY Mr.P.BALAKRISHNAN/AP/MECH/KIT/CBE
 
ME6004 - UNCONVENTIONAL MACHINING PROCESS BY Mr.P.HARIPRASAD/AP/MECH/KIT/CBE
ME6004 - UNCONVENTIONAL MACHINING PROCESS BY Mr.P.HARIPRASAD/AP/MECH/KIT/CBEME6004 - UNCONVENTIONAL MACHINING PROCESS BY Mr.P.HARIPRASAD/AP/MECH/KIT/CBE
ME6004 - UNCONVENTIONAL MACHINING PROCESS BY Mr.P.HARIPRASAD/AP/MECH/KIT/CBE
 
ME 2029 - DESIGN OF JIGS AND FIXTURES NOTES BY Mr.K.SATHISHKUMAR/AP/MECH/KIT/CBE
ME 2029 - DESIGN OF JIGS AND FIXTURES NOTES BY Mr.K.SATHISHKUMAR/AP/MECH/KIT/CBEME 2029 - DESIGN OF JIGS AND FIXTURES NOTES BY Mr.K.SATHISHKUMAR/AP/MECH/KIT/CBE
ME 2029 - DESIGN OF JIGS AND FIXTURES NOTES BY Mr.K.SATHISHKUMAR/AP/MECH/KIT/CBE
 
Mech MA6351 tpde_notes
Mech MA6351 tpde_notes Mech MA6351 tpde_notes
Mech MA6351 tpde_notes
 
Mech ma6452 snm_notes
Mech ma6452 snm_notesMech ma6452 snm_notes
Mech ma6452 snm_notes
 
Mech GE6351 ESE_notes
Mech GE6351 ESE_notesMech GE6351 ESE_notes
Mech GE6351 ESE_notes
 
Mech GE6075 PEE_notes
Mech GE6075 PEE_notesMech GE6075 PEE_notes
Mech GE6075 PEE_notes
 
Mech EE6365 EE lab_manual
Mech EE6365 EE lab_manualMech EE6365 EE lab_manual
Mech EE6365 EE lab_manual
 
Mech EE6351 EDC_notes
Mech EE6351 EDC_notesMech EE6351 EDC_notes
Mech EE6351 EDC_notes
 
Mech CE6461 FMM lab_manual
Mech CE6461 FMM lab_manualMech CE6461 FMM lab_manual
Mech CE6461 FMM lab_manual
 

Recently uploaded

Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Po-Chuan Chen
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 

Recently uploaded (20)

Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 

ED7211 ANSYS lab_manual

  • 1. 1 Ex. no.:1 Date: 22.01.15 INTRODUCTION TO ANSYS Launch ANSYS from Windows: Start > All Programs > ANSYS13.1 > ANSYS SOLID MODELLING: Definitions –A solid model is defined by volumes, areas, lines, and keypoints. –Volumes are bounded by areas, areas by lines, and lines by keypoints. –Hierarchy of entities from low to high as keypoints < lines < areas < volumes –You cannot delete an entity if a higher-order entity is attached to it. Also, a model with just areas and below, such as a shell or 2-D plane model, is still considered a solid model in ANSYS terminology.
  • 2. 2 METHODS OF SOLID MODELING There are two approaches to creating a solid model in ANSYS, Top-down and Bottom-up • Top-down modeling starts with a definition of volumes (or areas), which are then combined in some fashion to create the final shape. Bottom-up modeling starts with keypoints, from which you ―build up‖ lines, areas, etc. PRIMITIVES The volumes or areas that you initially define are called primitives, which are basic entities for the top-down method. ANSYS contains the following 2D and 3D primitives:
  • 3. 3 WORK PLANE (WP) Primitives are located and oriented with the help of the working plane. The ―WP‖ in the prompts stands for Working Plane — a movable reference plane used to locate and orient primitives. By default, the WP origin coincides with the global origin, but you can move it and/or rotate it to any desired position by using following options: Utility Menu> WorkPlane> Offset WP by increment > Utility Menu> WorkPlane> Offset WP to > Utility Menu> WorkPlane> Align WP with> XYZ Locations > BOOLEAN OPERATIONS The final shape of an object is usually not as simple as primitives. However, it is likely doable to combine a number of primitives through a series of proper Boolean operations. The ―input‖ to Boolean operations can be any geometric entity, ranging from simple primitives to complicated volumes generated in previous steps. Boolean operations are computations involving combinations of geometric entities. ANSYS Boolean operations include add, subtract, intersect, divide, glue, and overlap. •All Boolean operations are available in the GUI: Main Menu > Preprocessor > Modeling > Operate > Booleans By default, input entities of a Boolean operation are deleted after the operation.
  • 4. 4 Add: Combines two or more entities into one. Glue: Attaches two or more entities by creating a common boundary between them, which is useful when you want to maintain the distinction between entities (such as for different materials). Overlap: Same as glue, except that the input entities overlap each other. Subtract: Removes the overlapping portion of one or more
  • 5. 5 entities from a set of ―base‖ entities, which can be useful for creating holes or trimming off portions of an entity. Divide: Cuts an entity into two or more pieces that are still connected to each other by common boundaries. The ―cutting tool‖ may be the working plane, an area, a line, or even a volume. Useful for ―slicing and dicing‖ a complicated volume into simpler volumes for brick meshing. Intersect: Keeps only the overlapping portion of two or more entities. Partition: Cuts two or more intersecting entities into multiple
  • 6. 6 pieces that are still connected to each other by common boundaries, e.g., to find the intersection point of two lines and still retain all four line segments, as shown. (An intersection operation would return the common keypoint and delete both lines.) FINITE ELEMENT DISCRETISATION Finite Element Discretization or Meshing is the process used to ―fill‖ the solid model with nodes and elements, i.e, to create the FEA model. Remember, you need nodes and elements for the finite element solution, not just the solid model. The Solid Model in CAD does NOT participate in the finite element solution. ELEMENT TYPE The element type is an important choice that determines the following element characteristics: • Degree of Freedom (DOF) set. A thermal element type, for example, has one dof: TEMP, whereas a structural element type may have up to six dof: UX, UY, UZ, ROTX, ROTY, ROTZ. • Element shape -- brick, tetrahedron, quadrilateral, triangle, etc. • Dimensionality -- 2-D solid (X-Y plane only), or 3-D solid. • Assumed displacement shape -- linear vs. quadratic. To define an element: Main Menu>Preprocessor>Element Type> Add/Edit/Delete>Add
  • 7. 7 MESHING METHODS :There are two main meshing methods: free and mapped. Free Mesh–Has no element shape restrictions. –The mesh does not follow any pattern. –Suitable for complex shaped areas and volumes. –Suitable for complex shaped areas and volumes. –Volume meshes consist of high order tetrahedral (10 nodes), large dof. Mapped Mesh–Restricts element shapes to quadrilaterals (areas) and hexahedra (volume) –Typically has a regular pattern with obvious rows of elements. –Suitable only for ―regular‖ shapes such as rectangles and bricks. Mesh Density Control ANSYS provides many tools to control mesh density, on a global and local level: –Global controls: SmartSizing; Global element sizing; Default sizing 6 –Local controls: Keypoint sizing; Line sizing; Area sizing To bring up the MeshTool: Main Menu > Preprocessor > Meshing > MeshTool SmartSizing: by turning on SmartSizing, and set the desired size level. Size level ranges from 1 (fine) to 10 (coarse), defaults to 6. Then mesh all volumes (or all areas) at once, rather than one- byone. Advanced SmartSize controls, such as mesh expansion and transition factors, are available by Main Menu>Preprocessor>Meshing>Size Cntrls>SmartSize>Adv Opts Global Element Sizing: Allows you to specify a maximum element edge length for the entire model (or number of divisions per line): Go to ―Size Controls‖, ―Global‖ ,and click [Set] or Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Global >Size
  • 8. 8 Material Properties Every analysis requires some material property input: Young‘s modulus (EX), Poisson‘s ratio (PRXY) for structural elements, thermal conductivity (KXX) for thermal elements, etc. To define the material properties: Main Menu>Preprocessor>Material Props>Material Models ANSYS FEA PROCEDURE In general, a finite element solution may be broken into the following three stages. • Preprocessing: defining the problem; the major steps in preprocessing are given below: Define keypoints/lines/areas/volumes (Solid Modeling) Define element type and material/geometric properties Mesh lines/areas/volumes as required • Solution: assigning loads, constraints and solving; Apply the loads (point or pressure), Specify constraints (translational and rotational) Finally solve the problem. • Postprocessing: further processing and viewing of the results; Lists of nodal displacements and show the deformation Element forces and moments Stress/strain contour diagrams
  • 9. 9 Ex. no.:2 Date: 29.01.15 2 DIMENSIONAL STATIC STRESS ANALYSIS IN RECTANGULAR PLATE AIM: Determine the stress concentration in a rectangular plate of length 50cm and width 20cm with hollow circles at the centre. Load on right edge of the rectangular plate is 10x105 N. Young‘s modulus of 70E9 N/cm2 and of Poission ratio 0.3 SYSTEM CONFIGURATION: ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE: Preference Structural Preprocessor elemental type addaddSolidQuad 4node 42OK Material properties  Material Models  Structural  Linear  Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio) modelingcreatearearectangleby dimensions enter the lower left coordinates(X,Y),the width and height meshingmesh toolmeshareapick area loadsnew analysisanalysis typestatic applyloadsdisplacementUxOK applypressureon linesOK Solution solvecurrent LS General
  • 10. 10 post processorplot results nodal solutionsDOF solutions vector sum plot list resultsnodal solutionsDOF solutions vector sum plot RESULTS Original and deformed shape of 2D plane Stress distribution of 2D plane
  • 11. 11 Ex. no.:3 Date: 05.02.15 3 DIMENSIONAL STATIC STRESS ANALYSIS IN BLOCK AIM: Determine the stress concentration in a large isotropic block subjected to a point load of 22500 N downward and fixed at the bottom.Youngs modulus 144e7 N/mm2 , Poisson ratio 0.34 SYSTEM CONFIGURATION: ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE: Preference Structural Preprocessor elemental type addaddSolidbrick 8 node 45OK Material properties  Material Models  Structural  Linear  Elastic  isotropic (enter Young‘s Modulus Value & Poisson Ratio) Modelingcreatevolumesblockby dimensions Enter the coordinates(X, Y) Meshingmesh toolmeshvolumepick volume Loadsnew analysisanalysis typestatic Applyloadsdisplacementall DOFOK Applyforce and momenton nodeOK Solution solvecurrent LS General Post processorplot results nodal solutionsDOF solutions vector sum plot
  • 12. 12 List resultsnodal solutionsDOF solutions vector sum plot RESULTS Original and deformed shape of 3D volume Stress distribution of 3D volume
  • 13. 13 Ex. no.:4 Date: 12.02.15 2 DIMENSIONAL FRAME WITH MULTIPLE MATERIALS AND ELEMENT TYPE ANALYSIS AIM: Determine the stress concentration in 2D frame with multiple materials and element type analysis.Young‘s modulus of 70E9 N/cm2 and of Poisson ratio 0.3. SYSTEM CONFIGURATION: ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE: Preference Structural Preprocessor elemental type addaddLink3D finite stn 180 Material properties  Material Models  Structural  Linear  Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio) modelingcreatekeypointsby dimensions lineslinesstraight linesjoin keypoints meshingmesh toolmeshlinepick lines loadsnew analysisanalysis typestatic applyloadsdisplacementUxOK applypressureon linesOK Solution solvecurrent LS General post processorplot results nodal solutionsDOF solutions vector sum plot
  • 14. 14 list resultsnodal solutionsDOF solutions vector sum plot RESULTS Original and deformed shape of multi frame Stress distribution of multi frame
  • 15. 15 Ex. No.:5 Date: 19.02.15 3 DIMENSIONAL TRUSS ANALYSIS AIM: Determine the stress concentration in 3D truss. Young‘s modulus of 70E9 N/cm2 and of Poission ratio 0.3 SYSTEM CONFIGURATION: ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE: Preference Structural Preprocessor elemental type addaddlink3D finite stn 180 OK Material properties  Material Models  Structural  Linear  Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio) modelingcreatekeypoints lineslinesstraight line join key points meshingmesh toollinesmeshpick lines loadsnew analysisanalysis typestatic applyloadsdisplacementUxOK applyforce and momentson nodesOK Solution solvecurrent LS General post processorplot results nodal solutionsDOF solutions vector sum plot list resultsnodal solutionsDOF solutions vector sum plot
  • 16. 16 RESULTS Original and deformed shape of 3D truss Stress distribution of 3D truss
  • 17. 17 Ex. No.:6 Date: 26.02.15 MODAL ANALYSIS IN ANSYS AIM: Determine the first five modal natural frequency of square plate of area 1m2 . Young‘s modulus of 70E9 N/cm2 , Poission ratio of 0.3 and density 2.7E3 . SYSTEM CONFIGURATION: ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE: Preference Structural Preprocessor elemental type addaddsolidquad 4 node 182 OK Material properties  Material Models  Structural  Linear  Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio) modelingcreatearearectangleby dimensions circleby dimensions operatebooleanssubtractareas meshingmesh toolareasmeshpick areas loadsapplyloadsdisplacementUx(upper edge & bottom edge)OK  applyloadsdisplacementUy(left edge & right edge)OK Solution analysis typenew analysismodal analysis optionsenter no. Modes:5 enter no. of mode expansions:5
  • 18. 18 solvecurrent LS General post processorread results first set list resultsnodal solutionsDOF solutions vector sum plot  plot results nodal solutionsDOF solutions vector sum plot RESULTS Modal frequencies for 5 modes of 2D plane SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE 1 2289.8 1 1 1 2 2853.0 1 2 2 3 2853.7 1 3 3 4 3379.7 1 4 4 5 4067.9 1 5 5 Modal Displacement distribution of 2D plane
  • 19. 19 Ex. No.:7 Date: 05.03.15 PLATE BUCKING ANALYSIS EIGEN BUCKLING ANALYSIS AIM: Determine the plate bucking analysis Eigen buckling analysis of rectangular plate of width 10cm and height 0f 2cm.Young‘s modulus of 70E9 N/cm2 , Poission ratio of 0.3 and density 2.7E3 . SYSTEM CONFIGURATION: ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE: Preference Structural Preprocessor elemental type addaddsolidquad 4 node 182 OK Material properties  Material Models  Structural  Linear  Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio) modelingcreatearearectangleby dimensions meshingmesh toolareasmeshpick areas loadsapplyloadsdisplacementUx(left edge),Uy(bottom)OK applyloadspressureon lines(right edge line)enter the pressure value Solution analysis typenew analysisstatic analysis optionsenter no. Modes:5 enter no. of mode expansions:5
  • 20. 20 solvecurrent LS General post processorread results first set list resultsnodal solutionsDOF solutions vector sum plot  plot results nodal solutionsDOF solutions vector sum plot RESULTS: Bucking mode values: SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE 1 0.77570E+08 1 1 1 2 0.10039E+09 1 2 2 3 0.11611E+09 1 3 3 4 0.11734E+09 1 4 4 5 0.11930E+09 1 5 5
  • 21. 21 Original and buckled deformation Displacement distribution of buckled deformation
  • 22. 22 Ex. No.:8 Date: 12.03.15 SIMPLE DYNAMIC ANALYSIS AIM: Determine the plate bucking analysis Eigen buckling analysis of rectangular plate of width 10cm and height 0f 2cm.Young‘s modulus of 70E9 N/cm2 , Poission ratio of 0.3 and density 2.7E3 . SYSTEM CONFIGURATION: ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE: Preference Structural Preprocessor elemental type addaddsolidquad 4 node 182 OK Material properties  Material Models  Structural  Linear  Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio) modelingcreatearearectangleby dimensions meshingmesh toolareasmeshpick areas loadsapplyloadsdisplacementUx(left edge),Uy(bottom)OK applyloadspressureon lines(right edge line)enter the pressure value Solution analysis typenew analysisstatic analysis optionsenter no. Modes:5 enter no. of mode expansions:5
  • 23. 23 solvecurrent LS General post processorread results first set list resultsnodal solutionsDOF solutions vector sum plot  plot results nodal solutionsDOF solutions vector sum plot RESULTS: Dynamic 4 step load data: SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE 1 0.10000E-04 1 10 10 2 0.50000E-04 2 8 18 3 0.60000E-04 3 10 28 4 0.60000E-01 4 100 128 Time history deflection graph
  • 24. 24 Ex. no.:9 Date: 19.03.15 BOX BEAM ANALYSIS AIM: Determine the stress concentration and displacement in box beam materials. Young‘s modulus of 70E9 N/cm2 and of Poisson ratio 0.3. SYSTEM CONFIGURATION: ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE: Preference Structural Preprocessor elemental type addaddbeam2 Node 188 Material properties  Material Models  Structural  Linear  Elastic  isotropic (enter Young‘s Modulus Value & Possion Ratio) modelingcreatenodesby dimensions Elementsthrough nodesjoin nodes loadsnew analysisanalysis typestatic applyloadsdisplacementall dof at left edgeOK applyforce and momenton nodeOK Solution solvecurrent LS General post processorplot results nodal solutionsDOF solutions vector sum plot list resultsnodal solutionsDOF solutions vector sum plot
  • 25. 25 RESULTS: Original and deformed box beam Stress concentration in box beam
  • 26. 26 Ex. no.:10 Date: 26.03.15 STEADY STATE HEAT CONDUCTION IN SOLIDS AIM: Determine the temperature distribution in a square plate of side 1m and thichness1m with thermal conductivity k1=25 W/m 0 C,k2= 50 W/m 0 C ,k3=30 W/m 0 C.The convection takes place on the right edge of the plate with free stream temperature of 50 0 C.The left edge of the plate is maintained at a temperature of 100 0 C and the top and bottom edges are insulated. SYSTEM CONFIGURATION: ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE Preference thermal Preprocessor elemental type addaddthermal massbrick 20 node 90 material propertiesisotropic(enter thermal conductivity value K) modelingcreatearearectangleby two corners enter the lower left coordinates(X,Y),the width and height meshingsize controlmanual sizeglobalsize element edge length meshareapick area loadsnew analysisanalysis typesteady state applytemperatureon linepick the top edgeapply (enter the temperature value) applyheat fluxon linepick the right, left and bottom edge.
  • 27. 27 apply (enter heat flux value as 0) heat generation on area pick all ok Solution solvecurrent LS General post processorplot results nodal solutionsDOF solutions temperature list resultsnodal solutionsDOF solutions temperature
  • 29. 29 Ex. no.:11 Date: 26.03.15 STEADY STATE HEAT CONVECTION IN SOLIDS AIM : Determine the temperature distribution in a square plate of side 2m and thichness1m with thermal conductivity K=25 W/m 0 C and convection film co-efficient h=20 W/m2 0 C.The convection takes place on the right edge of the plate with free stream temperature of 50 0 C.The left edge of the plate is maintained at a temperature of 100 0 C and the top and bottom edges are insulated. SYSTEM CONFIGURATION : ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE : Preference thermal Preprocessor elemental type addaddthermal massbrick 20 node 90 material propertiesisotropic(enter thermal conductivity value K) modelingcreatearearectangleby two corners enter the lower left coordinates(X,Y),the width and height meshingsize controlmanual sizeglobalsize element edge length meshareapick area loadsnew analysisanalysis typesteady state applytemperatureon linepick the top edgeapply (enter the temperature value)
  • 30. 30 applyheat fluxon linepick the right, left and bottom edge. apply (enter heat flux value as 0) heat generation on area pick all ok Solution solvecurrent LS General post processorplot results nodal solutionsDOF solutions temperature list resultsnodal solutionsDOF solutions temperature
  • 31. 31 RESULTS: Temperature distribution by convection ‗ Vector plot of temperature
  • 32. 32 Ex. no.:12 Date: 02.04.15 STEADY STATE RADIATIVE HEAT TRANSFER AIM: Determine the temperature distribution in a square plate of side 2m and thickness 1m with Thermal conductivity K = 25W/mo C and Boltzmann Constant σ = 5.67x10-8 W m-2 K- 4 . The Radiation takes place on the right edge of the plate with free stream temperature of 50o c. The left edge of the plate is maintained at a temperature of 100o c and the top and bottom edge are insulated. SYSTEM CONFIGURATION: ANSYS Version 12.1 17‖ VGA Color monitor Intel I3 Processor 320 GB HDD 2 GB RAM ANSYS PROCEDURE : Preference thermal Preprocessor elemental type addaddthermal massbrick 20 node 90 material propertiesisotropic(enter thermal conductivity value K) modelingcreatearearectangleby two corners enter the lower left coordinates(X,Y),the width and height meshingsize controlmanual sizeglobalsize element edge length meshareapick area loadsnew analysisanalysis typesteady state applytemperatureon linepick the top edgeapply (enter the temperature value)
  • 33. 33 Radiation  Solution Options( enter the Boltzmann Constant, σ = 5.67x10-8 W m-2 K-4 ) Option applyheat fluxon linepick the right, left and bottom edge. apply (enter heat flux value as 0) heat generation on area pick all ok Solution solvecurrent LS General post processorplot results nodal solutionsDOF solutions temperature listresultsnodalsolutionsDOFsolutionstemperature
  • 34. 34 RESULTS: Temperature distribution by radiation Vector plot of temperature distribution
  • 35. 35 Ex. no.:13 Date: 09.04.15 COMBINED CONDUCTION AND CONVECTION HEAT HEAT TRANSFER ANALYSIS AIM : Determine the temperature distribution in a square plate of side 2m and thichness1m with thermal conductivity K=25 W/m 0 C and convection film co-efficient h=20 W/m2 0 C.The convection takes place on the right edge of the plate with free stream temperature of 50 0 C.The left edge of the plate is maintained at a temperature of 100 0 C and the top and bottom edges are insulated. SYSTEM CONFIGURATION : ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE Preference thermal Preprocessor elemental type addaddthermal massbrick 20 node 90 material propertiesisotropic(enter thermal conductivity value K) modelingcreatearearectangleby two corners enter the lower left coordinates(X,Y),the width and height meshingsize controlmanual sizeglobalsize element edge length meshareapick area loadsnew analysisanalysis typesteady state applytemperatureon linepick the top edgeapply
  • 36. 36 (enter the temperature value) applyheat fluxon linepick the right, left and bottom edge. apply (enter heat flux value as 0) heat generation on area pick all ok Solution solvecurrent LS General post processorplot results nodal solutionsDOF solutions temperature list resultsnodal solutionsDOF solutions temperature
  • 37. 37 RESULTS: Temperature distribution with combined conduction and convection . Vector plot of temperature distribution
  • 38. 38 Ex. no.:14 Date: 09.04.15 COMBINED CONDUCTION AND RADIATION HEAT TRANSFER ANALYSIS AIM: Determine the temperature distribution in a square plate of side 2m and thickness 1m with thermal conductivity K=25 W/m 0 C and Boltzmann‘s constant (σ)= 5.67*10-8 W.m-2 .k-4 .The radiation takes place on the right edge of the plate with free stream temperature of 50 0 C. The left edge of the plate is maintained at a temperature of 100 0 C. SYSTEM CONFIGURATION: ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE : Preferencethermal Preprocessorelemental type addaddthermal massbrick 20 node 90 material propertiesisotropic(enter thermal conductivity value K) modelingcreatearearectangleby two corners enter the lower left coordinates(X,Y),the width and height meshingsize controlmanual sizeglobalsize element edge length meshareapick area loadsnew analysisanalysis typesteady state applytemperatureon linepick the top edgeapply
  • 39. 39 (enter the temperature value) Radiation optionssolution optionsBoltzmann‘s constant(σ)= 5.67*10-8 W.m-2 .k-4 applyheat fluxon linepick the right, left and bottom edge. apply (enter heat flux value as 0) heat generation on area pick all ok Solutionsolvecurrent LS General post processorplot results nodal solutionsDOF solutions temperature list resultsnodal solutionsDOF solutions temperature
  • 40. 40 RESULTS: Temperature distribution with combined conduction and radiation Vector plot of temperature distribution
  • 41. 41 Ex. no.:15 Date: 16.04.15 COMBINED CONVECTION AND RADIATION HEAT TRANSFER IN CYLINDER AIM: Determine the temperature distribution in a cylinder of radius 2m and thickness 10m with thermal conductivity K=25 W/m 0 C and radiation Boltzman‘s constant =5.67^10 -8 W/m-2 K-4 . The convection and radiation takes place on the right edge of the cylinder with free stream temperature of 50 0 C.The left edge of the plate is maintained at a temperature of 100 0 C. SYSTEM CONFIGURATION: ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE: Preference thermal Preprocessor elemental type addaddthermal massbrick 20 node 90 material propertiesisotropic(enter thermal conductivity value K) modelingcreatearearectangleby two corners enter the lower left coordinates(X,Y),the width and height meshingsize controlmanual sizeglobalsize element edge length meshareapick area loadsnew analysisanalysis typesteady state applytemperatureon linepick the top edgeapply (enter the temperature value)
  • 42. 42 radiation options solution options Stefen-Boltzman’s constant=5.67^10 -8 W/m-2 K-4 applyheat fluxon linepick the right, left and bottom edge. apply (enter heat flux value as 0) heat generation on area pick all ok Solution solvecurrent LS General post processorplot results nodal solutionsDOF solutions temperature list resultsnodal solutionsDOF solutions temperature
  • 43. 43 RESULTS: Temperature distribution with combined convection and radiation Vector plot of temperature distribution
  • 44. 44 Ex. no.:16 Date: 23.04.15 UNSTEADY STATE CONDUCTION AND CONVECTION HEAT TRANSFER IN SQUARE PLATE AIM : Determine the temperature distribution in a square plate of side 2m and thichness1m with thermal conductivity K=25 W/m 0 C and convection film co-efficient h=20 W/m2 0 C.The convection takes place on the right edge of the plate with free stream temperature of 50 0 C.The left edge of the plate is maintained at a temperature of 100 0 C and the top and bottom edges are insulated. SYSTEM CONFIGURATION : ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE: Preference thermal Preprocessor elemental type addaddthermal massbrick 20 node 90 material propertiesisotropic(enter thermal conductivity value K) modelingcreatearearectangleby two corners enter the lower left coordinates(X,Y),the width and height meshingsize controlmanual sizeglobalsize element edge length meshareapick area loadsnew analysisanalysis typesteady state applytemperatureon linepick the top edgeapply (enter the temperature value)
  • 45. 45 applyheat fluxon linepick the right, left and bottom edge. apply (enter heat flux value as 0) heat generation on area pick all ok Solution solvecurrent LS General post processorplot results nodal solutionsDOF solutions temperature list resultsnodal solutionsDOF solutions temperature
  • 46. 46 RESULTS: Unsteady Temperature distribution with combined conduction and convection Vector plot of unsteady temperature distribution
  • 47. 47 Ex. no.:17 Date: 30.04.15 UNSTEADY STATE CONDUCTION AND RADIATION HEAT TRANSFER ANALYSIS AIM: Determine the temperature distribution in a square plate of side 2m and thickness 1m with thermal conductivity K=25 W/m 0 C and Boltzmann‘s constant (σ)= 5.67*10-8 W.m-2 .k-4 .The radiation takes place on the right edge of the plate with free stream temperature of 50 0 C. The left edge of the plate is maintained at a temperature of 100 0 C. SYSTEM CONFIGURATION: ANSYS Version 12.1 17‖ VGA color Monitor Intel I3 processor 320 GB HDD 2GB RAM ANSYS PROCEDURE Preferencethermal Preprocessorelemental type addaddthermal massbrick 20 node 90 material propertiesisotropic(enter thermal conductivity value K) modelingcreatearearectangleby two corners enter the lower left coordinates(X,Y),the width and height meshingsize controlmanual sizeglobalsize element edge length meshareapick area loadsnew analysisanalysis typesteady state applytemperatureon linepick the top edgeapply
  • 48. 48 (enter the temperature value) Radiation optionssolution optionsBoltzmann‘s constant(σ)= 5.67*10-8 W.m-2 .k-4 applyheat fluxon linepick the right, left and bottom edge. apply (enter heat flux value as 0) heat generation on area pick all ok Solutionsolvecurrent LS General post processorplot results nodal solutionsDOF solutions temperature list resultsnodal solutionsDOF solutions temperature
  • 49. 49 RESULTS: Unsteady Temperature distribution with combined conduction and radiation Vector plot of unsteady temperature distribution