This paper reviews load forecasting using a neuro-fuzzy system. It discusses how neural networks and fuzzy logic can be combined in a neuro-fuzzy system to improve load forecasting accuracy. The paper first provides background on load forecasting and different techniques used. It then proposes using a neuro-fuzzy approach where load data is classified with fuzzy sets and a neural network is trained on each classification to forecast loads. Combining the learning ability of neural networks with the symbolic reasoning of fuzzy logic in a neuro-fuzzy system can potentially provide more accurate short-term load forecasts. The paper concludes that neuro-fuzzy systems show advantages over other statistical and AI methods for load forecasting.