SlideShare a Scribd company logo
Application of Inverse analysis to
the Material Point Method
Pooyan Ghasemi and Mario Martinelli
Geo Klantendag 2018
Workshop Anura3D Modelleren met MPM
dykes, dams, landslides
installation, impact, SSI
flowslides, erosion, liquefaction, SWI
Applications
Applications
• How can we benefit? What can we gain?
• study beyond “initial” failure
> progressive failures and dynamic processes
• prediction of consequences
> catastrophic failures
• study the efficiency of remedial actions
> location, type and strength of reinforcement
• or defence structure
• improve risk assessment
dykes, dams, landslides
installation, impact, SSI
flowslides, erosion, liquefaction, SWI
Applications
small
deformation
onset of
failure
dykes, dams, landslides
installation, impact, SSI
flowslides, erosion, liquefaction, SWI
Applications
small
deformation
onset of
failure
Results depend on the value of the CONSTITUTIVE MODELS PARAMETERS
->> parameter calibration is crucial! <<-
Applications
Most of the time multiple sets of data are available:
• Lab tests (TX tests, …. )
• Field tests (SPT, CPT…)
• Field monitoring observations
CPT Real field data
Applications
Most of the time multiple sets of data are available:
• Lab tests (TX tests, …. )
• Field tests (SPT, CPT…)
• Field monitoring observations
CPT Real field data
?
Outline
• What is inverse analysis
• Inverse analysis in Geotechnical problem
• Example 1
• Example 2
• Main case study
• Remarks and conclusion
What is the Inverse Analysis
Much research in science and engineering is devoted to constructing numerical models of physical
systems. Given a complete description of the physical system, these models can be used to predict
how the system affects its surroundings. This is called the direct or forward problem. When some
aspects of physical system are unknown, however, it is sometimes possible to infer these
characteristics from a known system response; this is the inverse problem.
Inverse problem
Forward problem Regular Simulation, Physical or Numerical
Parameter estimation
Design optimization Infer the optimal design
Infer the system characteristics
from experimental Data
More popular in Geotechnical engineering
Definition:
What is the Inverse Analysis
We are already using inverse analysis in our mind
Base on the our observation
we are looking for the cause
This is a difficult task if many types of
dragon produce similar footprints, and
becomes impossible if the footprints are
even slightly smeared in mud.
The roles of prior Information
• Numerical geotechnical models are mathematically ill-
posed due to an information deficit. Sometimes,
measurements barely provide sufficient information
• Some models’ parameters do not have physical meaning
Curve Fitting + Prior Information +
(e.g. max or min value of
parameter, relation between
parameters)
Combinations of the observations =
(e.g. choose the most appropriate
observation for the corresponding
parameter)
Inverse Analysis
• In inverse Analysis method , we are trying to get closer to the solution step by step,
considering only the correct parameters and the corresponding tests observations
• Adding the new observations together with other remaining parameters and complete the
inverse analysis -> step by step procedure
• Care must be taken to ensure that the information available are used appropriately!
(i.e. reasonable parameter value?, correct test to calibrate that parameter?)
Elementary soil behavior
Triggering stage
Propagation Stage
• mobilized volume?
• mode of collapse?
• Yielding surface ?
• Final run-out
• final geometry
What we need to do in order to calibrate a simulation of large deformation phenomenon
Inverse analysis in Geotechnical problems
Different Stage of Simulation and Calibration
Eckersley, D. (1990). Instrumented laboratory flowslides. Geotechnique, 40(3), 489-502.
Inverse analysis in Geotechnical problem
Observations :
Result of Laboratory testing
Calculation model
testtest
Model
test
Model
Optimization
algorithm
Update
parameters
Input
Parameters
test
BEST
Fit
Is min error?
No
Yes
End and report
the optimal
parameters
Error
• Particle swarm method
• Genetic algorithm
• Neural Network
Fuzzy Methods:
Inverse analysis in Geotechnical problem
Soil Test toolbox element test
Large deformation tests suite
Landslide
basal surface
Observation
Inverse analysis in Geotechnical problem
Numerical model
SPH, MPM, FEM
Optimization
algorithm
Update
parameters
Input
Parameters
Is min error?
No
Yes
End and report
the optimal
parameters
Observations :
Physical experiments or
Site inspecting
Landslide
basal surface
Observation
Simulation
Landslide
basal surface
Observation
Simulation
Landslide
basal surface
Observation
Best Fit
Error
Calvello M, Cuomo S, Ghasemi P (2017). The role of observations in the inverse analysis of landslide propagation. Computers and Geotechnics, 92:11-21)
• Kalaman Filter
• Nonlinear Regression
• Modified Guass Newoton
Gradient base method:
Elements of Inverse Analysis
• There are many options for components of the procedure, for each specific problem , the best
option might be varied
Optimization algorithm Objective Function
Examples for optimization methods :
Optimization algorithm Problem Ref.
• Ucode algorithm Excavation Calvello (2002)
• Genetic algorithms Excavation Levasseur (2007)
• PSO Constitutive model of Clay Knabe (2013)
• Differential evolution (DE) Excavation Zhao (2014)
• Artificial bee colony algorithm Excavation Zhao (2016)
• Nelder-Mead Excavation Tian (2016)
• Genetic algorithms constitutive model of rock salt Khaledi (2016)
• Ensemble Kalman Filter Slope Stability Varden (2016)
• hybrid methods Excavations De Santus (2015)
Objective Function
Observation
Which Type of observation
How many observation?
Error Calculation
Weighted Least squared Error
(WSE)
Robust and interpolation-free
technique (Horn 2015)
Calculation the area between two figures
Gradient base method:
• Give the Sensitivity of each Parameters
• Fewer number of Iteration
• Weak in the case of large number of
parameters and High correlated parameters
Fuzzy Method :
• Robust in the Case of high correlated Parameters
• Compatible for large number of parameters
• Large number of Iteration is needed
Implementation in Anura 3D
Numerical
Calculation
Input Parameters
Output
Desired Results
(observation)
Input.txt
OutPut.txt
Regression
(Optimization Engine)
Updated Parameters
Model
optimized?
Anura3D
INV. Interface (1st Phase of the Project)
Initial Values
No
Yes
End
Start
2nd Phase of the Project
Matlab and Python, Ucode
Anura3D
Example 1: Inverse Analysis of CPT
example to check the software performances
• Creating the synthetic observation:
MPM model while using the
a set of assumed parameter value
Mohr Coulomb Constitutive model:
Parameters Value
Porosity 0.2
Density Solid 2650
Young Modules (Kpa) 6000
Poisson Ratio 0.2
Cohesion(KPa) 1
Frictional angle 30
Dilatancy Angle 0
• Forward Model : MPM-2D Axisymmetric
• Cone Diameter = 3.57 Cm
GIP SIMON Project , MPM 2D Code Provided By Mario Martineli , Vahid Galavi and Faraz Sadeghi Tehrani
Iteration No Young
Module
KPa
Frictional
angle
Weighted
Error
1 4289 27.11 211.15
2 3921 34.12 20.788
3 4352 34.92 2.0565
4 4585 33.83 1.9234
5 4918 32.45 1.6839
6 5306 31.52 0.88127
7 5512 31.04 0.86326
8 6035 29.79 0.15969
9 6040 29.9 0.10034
Example1: Estimation of Mohr-Coulomb Parameters by CPT
• Parameters of Interest :
Frictional angle and young modules are assumed as unknown parameters
• Optimization Algorithm : Modified Gauss Newton Method
Example1: Estimation of Mohr-Coulomb Parameters by CPT
3000
3500
4000
4500
5000
5500
6000
6500
1 3 5 7 9
YoungModule(KPa)
Iteration No
Parameters Value
Desired Value
20
22
24
26
28
30
32
34
36
1 3 5 7 9
FrictionalAngle
Iteration No
-50
0
50
100
150
200
250
1 3 5 7 9
weightedResidualError
Iteration No
Iteration friction angle Young Modulus
1 10.1798 7.60181
2 11.2 6.398
3 13.7643 7.99513
4 13.08 7.5636
5 14.3756 7.272
6 15.1558 5.94192
7 14.6878 6.25564
8 16.1729 6.73256
9 15.7852 6.35672
Composite Scaled Sensitivity :
the importance of different
parameters to the calculation
Convergence criteria:
• The maximum parameter change of a
given iteration is less than a user-defined
tolerance
• The objective function, S(b), changes
less than a user-defined tolerance for
three consecutive iterations
Example2 : The run out of a dry granular flow
Small scaled flow test conducted by (DENLINGER AND IVERSON 2001)
• The experiment used a small flume with a bed surface inclined
31.4° adjoined to a horizontal runout plane.
• After material release, the flow accelerates gradually
spreading and reaching the end of the inclined plane
Denlinger, R. P., & Iverson, R. M. (2001). Flow of variably fluidized granular masses across three‐dimensional terrain: 2. Numerical predictions and experimental
tests. Journal of Geophysical Research: Solid Earth, 106(B1), 553-566.)
Experiment outcomes:
Example2 : The run out of a dry granular flow
Ceccato and Simonini 2016:
• only run out distance was
considered as the benchmark
• Parametric analysis
• The best agreement with the
experimental results were obtained
when :
basal friction angle equal to 26.6°
Static friction angle equal to 40°
Ceccato, F., & Simonini, P. (2016). Study of landslide run-out and impact on protection structures with the Material Point Method. In INTERPRAEVENT 2016-
Conference Proceedings
• MPM Model with Anura 3D
12555 Element
4 particles per element
• Parameters of Interest :
Soil Frictional Angle
Basal frictional Coefficient
Frictional contact
Example2 : The run out of a dry granular flow
Quantitative calibration based on run out distance and also soil thickness :
Benchmark : Soil thickness after propagation
𝜑 = 43
𝑡𝑎𝑛𝜑 𝑏 = 0.47
Cross Section
Example2 : The run out of a dry granular flow
Main Case Study : Liquefaction and Retrogressive failure in Cohesion less Material
Scaled slope failure experiment conducted by Eckersley 1990
• Instability was induced by raising the water level
• Water entered the slope from constant head tank
• To avoid surface erosion , water is injected through a
wire cage filled with coarse gravel
• Instability starts when the water level at the rear
of the model reached at 0.4 m
• Glass Tank
• Basal surface
Plywood floor
• Water proof sand paper glued to the floor
in order to inhabit direct sliding along the coal /
floor Interface, Angle of shearing resistance was
reported in the range of 30 to 36
Eckersley, D. (1990). Instrumented laboratory flowslides. Geotechnique, 40(3), 489-502.
Main Case Study : Liquefaction and Retrogressive failure in Cohesion less Material:
Material Properties
Name = Northwich Park Coal
4 ICU triaxial tests with confining
stress equal to 50 KPa
Different initial void ratio :
e = 0.41 , Contractive behavior
e = 0.38 , contractive behavior
e = 0.34 , contractive behavior
e = 0.32 , Dilative behavior
Specific Gravity = 1.34
𝑑10 = 0.06 − 0.3 𝑚𝑚
Minimum Density = 0.6 gr/cm3
Maximum density = 1.1 gr/cm3
Hydraulic conductivity = 0.01 cm/s2 Typical particle size distribution
Effective path stress
Saturated CU triaxial tests State diagram
Effective critical frictional angle = 40 degree
Available laboratory test Data:
Toe sliding duo to water seepageStage 1
Stage 2 Shallow failure along the slope surface
Stage 3 Deep failure and mobilize fairly all of
the domain
Geometry after flow slide
Main Case Study : Liquefaction and Retrogressive failure in Cohesion less Material:
Over view of the experience : Failure modes
Eckersley, D. (1990). Instrumented laboratory flowslides. Geotechnique, 40(3), 489-502.
Main Case Study : Liquefaction and Retrogressive failure in Cohesion less Material:
Selection of of constitutive models
Evaluation of constitutive models capability to simulate the material behavior through simulating an undrained
consolidated Triaxial test by Anura 3D
 Mohr Coulomb Strain Softening
Knownorreported
Parameters
Density solid (gr/cm3)
Porosity
Intrinsic Permeability
Peak Frictional angle
Residual Frictional
angle
Peak Cohesion (Kpa)
Residual cohesion
Young Module
Dilation angle
Shape factor
Value
1340
0.26
10 e-09
40
40
0.00
0
Clearly reported in case study
Unknown Parameters ?????????
?????????
?????????
FittingParameters
Parametric Study
Main Case Study : Liquefaction and Retrogressive failure in Cohesion less Material:
Selection of of constitutive models
 Mohr Coulomb Strain Softening
Fitting Parameters
Parameters SET01 SET02 SET03 SET04 SET05 SET06
E KPa 1000 1000 1000 1000 1000 1000
Ψ -5 -5 -5 -15 -15 -15
𝛽 4 40 400 4 40 400
.0
20.0
40.0
60.0
80.0
100.0
120.0
0.00 0.02 0.04 0.06 0.08 0.10 0.12
DeviatoricStress(KPa) Axial Strain
SET 01 SET 02 SET 03
SET 04 SET 05 SET 06
.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
0 20 40 60 80 100
DeviatoricStress(KPa)
Mean effective Stress (KPa)
.0
10.0
20.0
30.0
40.0
50.0
60.0
0.00 0.02 0.04 0.06 0.08 0.10 0.12
Porewaterpressure(KPa)
Axial Strain
SET 01 SET 02 SET 03
SET 04 SET 05 SET 06
• The model can not take into the
account the effect of density
(a) (b)
Cuomo, Ghasemi, Martinelli, Calvello, (2017) Simulation of liquefaction and retrogressive slope failure in loose cohesionless material
• one set of parameters can not
predict mechanical features
of all three tests at the same
time
pore water pressure
Shear strength
Effective Stress Path
Stress Initialization (quasi-static convergence)Removing fixities, applying liquid traction at the rear of the slope
Main Case Study : Slope Model : Geometry, boundary and Initial Condition
• One Particle formulation
• Mixed Integration
• For the Frist time Layered Soil in one particle formulation
• Special Consideration for pressure smoothing in Mixed
Element
• Number of Element = 3,336
• Number of Particle per element = 4
Elastic material
Dry
Saturated Material
liquid horizontal fixity
Frictional Contact
Liquid pressure
Tracking Points and Zone:
Elastic Material Zone1 Zone2 Zone3
Frictional contact
Sat
dry
F1 F2 F3
F4
F5
Point X Y
F1 0.7769 0.09424
F2 1.458 0.125
F3 1.762 0.09192
F4 0.9624 0.6130
F5 0.6833 0.6541
Liquid Fixity
Linearliquidtraction
Slope Model : Simulation By Strain Softening
Movie Time!!!
• Slope Simulation MC_ Strain Softening
• Progressive Collapse
Slope Model : Simulation By Strain Softening
Parameters Values
Density solid
(gr/cm3)
1340
Porosity 0.26
Intrinsic
Permeability
10 e-09
Peak Frictional
angle
40
Residual
Frictional angle
40
Peak Cohesion
(Kpa)
0.00
Residual
cohesion
0
Young Module 1000
Dilation angle -15
Shape factor 40
• Progressive failure
• Similar to stage 1 and 2 reported in experiment
• 3rd stage is missing
• Excess pore water pressure was not built enough to make further collapse
Time =5=0.3
Time =0.6
Final _scheme Time =1.2
Deviatoric Strain
Zone 1
Zone 2
Zone 3
Time (sec)
PWP(Kpa)PWP(Kpa)PWP(Kpa)
(a) (b)
Zone 3
Zone 2
Zone 3
The model by von Wolffersdorff (1996) is now considered as a reference hypoplastic model for granular materials. It
requires 8 material parameters:
𝜑𝑐 is the critical state friction angle.
ℎ 𝑠 and n control the shape of limiting void ratio curves (normal
compression lines and critical state line).
Ec0 is critical void ratio at zero stress
Ei0 is maximum void ratio at zero stress
Ed0 is minimal void ratio at the state of maximum density
𝛼 controls the dependency of peak friction angle on relative
Density.
𝛽 controls the dependency of soil stiffness on relative density.
Reported By case Study
Obtainable from State Diagram
Fitting parameters
Intergranular Parameters :
The intergranular strain concept (Niemunis and Herle 1997) enables to model small-strain-stiffness effects in
hypoplasticity. It requires 5 more material parameters:
mR: parameter controlling the initial (very-small-strain) shear
modulus upon 180 strain path reversal and in the initial loading
mT : parameter controlling the initial shear modulus upon 90
strain path reversal
R: the size of elastic range (in the strain Space)
𝛽𝑟 and 𝑥 control the rate of degradation of the stiffness with strain.
Main Parameters :
Fitting parameters
Main Case Study : Liquefaction and Retrogressive failure in Cohesion less Material:
Selection of of constitutive models
• Hypoplasticity
𝜑𝑐 40
ℎ 𝑠 93KPa
n 0.07
Ec0 0.93
i) Deviatoric stress versus axial strain
ii) pore water pressure versus axial strain
𝑒𝑟𝑟𝑜𝑟 =
𝑦′
𝑖 − 𝑦 𝑖 2
[0.01 × 𝑤𝑒𝑖𝑔ℎ𝑡 ]2
𝑛
𝑖=1𝑔𝑟𝑎𝑝ℎ𝑠
𝑛, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
𝑦′
𝑖 , 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖
𝑦 𝑖 , 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖
Optimization algorithm
New method called SQPSO, it is a modification of
conventional Particle Swarm Optimization method
adopted for the functions in which the large number of
parameters are going to be estimated.
(Hosseinnezhad et al 2014)
Objective function:
Parameters of interest: 10 Parameters
𝜑𝑐 , Ei0 , Ed0 , 𝛼 , 𝛽 , mR, mT , R, 𝛽𝑟 and 𝑥
PWP
q
Axial deformationAxial deformation
Graph discretization
(Eckersley 1986)
Observation
Main Case Study : Inverse analysis in order to obtain Hypo plasticity Parameters
2000
2050
2100
2150
2200
2250
0 10 20 30 40 50 60 70 80
ModelErrorFuncrion
Number of Iteration
Test NP-02 (Initial void ratio = 0.410)
Test NP-13 (Initial void ratio = 0.34)
Test NP-5 (Initial void ratio = 0.38)
Parameters Estimated Values
𝜑𝑐 [○] 40
ℎ 𝑠 [Kpa] 93.27195
n 0.0768
Ec0 0.93
Ei0 1.3
Ed0 0.397758
𝛼 0.349126
𝛽 0.562619
𝑚 𝑅 1.33593
𝑚 𝑇 7.05643
R 0.000142
𝛽𝑟 0.0773067
𝑥 0.951017
Main Case Study : Hypo-plasticity: Results of inverse Analysis
Main Case Study : Hypo-plasticity: Check the obtained Parameters
Parameters Estimated Values
𝜑𝑐 [○] 40
ℎ 𝑠 [Kpa] 93.27195
n 0.0768
Ec0 0.93
Ei0 1.3
Ed0 0.397758
𝛼 0.349126
𝛽 0.562619
𝑚 𝑅 1.33593
𝑚 𝑇 1.05643
R 0.000142
𝛽𝑟 0.0773067
𝑥 0.951017
Adding Prior knowledge to the results
is recalibrated
𝛼 = 0.21
0
5
10
15
20
25
30
35
40
45
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
FrictionalAngel
Axial strain
Alpha = 0.05
Alpha = 0.34
Alpha = 0.2
Alpha = 0.54
Main Case Study : Hypo-plasticity: Check the obtained Parameters
Comparing the results without and with modification:
f1
f3
f4
f2 Point 3
Point 2
Point 4
Point 2
f1
f3
f4
f2
Point 1
f1 f3f4 f2
f1 f3
f4 f2
2nd Stage(time = 0.6 sec)
1st Stage (time = 0.3 sec)
3rd Stage(time = 1.3 sec)
Final Shape (Time =1.7)
(b)
2nd Stage (time = 0.6 sec)
Final Shape (Time =1.4)
1st Stage (time = 0.3)
3rd Stage (time =1.1 Sec)
(a)
Deviatoric Strain
Without modification With modification TEST results
Slope Model : Simulation By Hypo plasticity
Movie
• Slope simulation with Hypo plasticity
• Retrogressive failure:
Slope Model : Simulation By Hypo plasticity
Movie
• Slope simulation with Hypo plasticity
• Static Liquefaction :
-2
-1
0
1
2
3
4
5
6
7
8
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
PoreWaterPressure(KPa)
Time (sec)
-2
-1
0
1
2
3
4
5
6
7
8
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
PoreWaterPressure(KPa)
Time (sec)
-2
-1
0
1
2
3
4
5
6
7
8
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
PoreWaterPressure(KPa)
Time (sec)
Porewaterpressure(KPa)
Zone1
Mean effective stress
Zone2
Zone3
Stage 1
Stage 2
Stage 3
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
MeanEffectiveStress(KPa)
Time (sec)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
MeanEffectiveStress(KPa)
Time (sec)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
MeanEffectiveStress(KPa)
Time (sec)
Stage 1 Stage 2 Stage 3
Zone3
Zone2
Zone1
Meaneffectivestress(KPa) Overall Time (sec)
Stage 1 Stage 2 Stage 3
Overall Time (sec)
Zone3
Zone2
Zone1
f1
f3
f4
f2 Point 3
Point 2
Point 4
Point 2
f1
f3
f4
f2
Point 1
f1 f3f4 f2
e initial = 0.60
Deviatoric Strain Solid
1st Stage
2nd Stage
3rd Stage
2nd Stage(time = 0.8 sec)
1st Stage (time = 0.4 sec)
3rd Stage(time = 1.1 sec)
Slope Model : Simulation By Hypoplasticity
• Geometric Validation
• Soil Response in Fixed Coordinate
Remarks
Most advantage of Anura 3D: Capable to simulate all of the stage of phenomenon . appropriate for both of
inverse modeling scale; to calibrate small and large deformation parameters
Advanced numerical method are being developed, the validation of their capability is extremely needed
• Large deformation phenomenon usually involves complex mechanism
• Simulation of complex system usually involves complex constitutive model
• Many advanced constitutive models are already implemented in Geotechnical Codes but the difficulties in
choosing their parameters undermines their capability and applications
• Inverse Analysis feature could simplify the usage of advanced model
Strain Softening Mohr-coulomb
Modified Cam clay
Hypoplasticity
Mohr-coulomb
• Inverse Analysis could easily estimates Numerical Parameters which doesn't have physical meaning :
Shape factor
Contact coefficient
And ………
Modified hypoplasticity
Norsand
• Using the inappropriate constitutive model could lead to wrong prediction of the phenomenon
Thank you
Pooyan Ghasemi and Mario Martinelli
Deltares
Appendix
Comparing the results without and with modification:
f1
f3
f4
f2 Point 3
Point 2
Point 4
Point 2
f1
f3
f4
f2
Point 1
f1 f3f4 f2
f1 f3
f4 f2
2nd Stage(time = 0.6 sec)
1st Stage (time = 0.3 sec)
3rd Stage(time = 1.3 sec)
Final Shape (Time =1.7)
(b)
2nd Stage (time = 0.6 sec)
Final Shape (Time =1.4)
1st Stage (time = 0.3)
3rd Stage (time =1.1 Sec)
(a)
Deviatoric Strain
Without modification With modification

More Related Content

What's hot

Mt 1
Mt 1Mt 1
Geological Site Investigation Methods
Geological Site Investigation MethodsGeological Site Investigation Methods
Geological Site Investigation Methods
!SYOU co-designed sneakers
 
Ground improvement
Ground improvementGround improvement
Ground improvement
venkateshreddypala
 
Dynamic Soil Properties
Dynamic Soil PropertiesDynamic Soil Properties
Dynamic Soil Properties
Cristian Soriano-Camelo
 
Physico-Mechanical properties of rock materials
Physico-Mechanical properties of rock materialsPhysico-Mechanical properties of rock materials
Physico-Mechanical properties of rock materials
Ulimella Siva Sankar
 
An introduction to geological structures and maps (5 th ed.)
An introduction to geological structures and maps (5 th ed.)An introduction to geological structures and maps (5 th ed.)
An introduction to geological structures and maps (5 th ed.)
RUDY PEÑA ROJAS
 
Ground Penetrating Radar (GPR)
Ground Penetrating Radar (GPR) Ground Penetrating Radar (GPR)
Ground Penetrating Radar (GPR)
Abhijit Patil
 
Geotechnical Engineering-I [Lec #25: In-Situ Permeability]
Geotechnical Engineering-I [Lec #25: In-Situ Permeability]Geotechnical Engineering-I [Lec #25: In-Situ Permeability]
Geotechnical Engineering-I [Lec #25: In-Situ Permeability]
Muhammad Irfan
 
Ground improvement using rapid impact compaction
Ground improvement using rapid impact compactionGround improvement using rapid impact compaction
Ground improvement using rapid impact compaction
Begum Emte Ajom
 
Sub soil exploration
Sub soil exploration Sub soil exploration
Sub soil exploration
Nagma Modi
 
Rock Drilling, Sampling & Testing
Rock Drilling, Sampling & TestingRock Drilling, Sampling & Testing
Rock Drilling, Sampling & Testing
SARASWATI PATHARIYA
 
Ground imrovement introduction
Ground imrovement   introductionGround imrovement   introduction
Ground imrovement introduction
Sanjay Thakare
 
Soil nailing/Soil Reinforcement Technique
Soil nailing/Soil Reinforcement TechniqueSoil nailing/Soil Reinforcement Technique
Soil nailing/Soil Reinforcement Technique
Anandu Aravind
 
General Geotechnical Presentation
General Geotechnical PresentationGeneral Geotechnical Presentation
General Geotechnical Presentation
android9999
 
rigid and flexiable pavement design ppt
rigid and flexiable pavement design pptrigid and flexiable pavement design ppt
rigid and flexiable pavement design ppt
rakeshchoudhary129
 
Tunnelling
TunnellingTunnelling
Tunnelling
Usama Zia
 
Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]
Muhammad Irfan
 
Analisis granulometrico por tamizado mec. de suelos i
Analisis granulometrico por tamizado   mec. de suelos iAnalisis granulometrico por tamizado   mec. de suelos i
Analisis granulometrico por tamizado mec. de suelos i
Ruben Melgarejo
 
Shear Wave Velocity: Seismic Site Classification
Shear Wave Velocity: Seismic Site ClassificationShear Wave Velocity: Seismic Site Classification
Shear Wave Velocity: Seismic Site Classification
Ali Osman Öncel
 
Gravity Method | Geophysics | Geology
Gravity Method | Geophysics | GeologyGravity Method | Geophysics | Geology
Gravity Method | Geophysics | Geology
Geology Department | Faculty of Natural Science
 

What's hot (20)

Mt 1
Mt 1Mt 1
Mt 1
 
Geological Site Investigation Methods
Geological Site Investigation MethodsGeological Site Investigation Methods
Geological Site Investigation Methods
 
Ground improvement
Ground improvementGround improvement
Ground improvement
 
Dynamic Soil Properties
Dynamic Soil PropertiesDynamic Soil Properties
Dynamic Soil Properties
 
Physico-Mechanical properties of rock materials
Physico-Mechanical properties of rock materialsPhysico-Mechanical properties of rock materials
Physico-Mechanical properties of rock materials
 
An introduction to geological structures and maps (5 th ed.)
An introduction to geological structures and maps (5 th ed.)An introduction to geological structures and maps (5 th ed.)
An introduction to geological structures and maps (5 th ed.)
 
Ground Penetrating Radar (GPR)
Ground Penetrating Radar (GPR) Ground Penetrating Radar (GPR)
Ground Penetrating Radar (GPR)
 
Geotechnical Engineering-I [Lec #25: In-Situ Permeability]
Geotechnical Engineering-I [Lec #25: In-Situ Permeability]Geotechnical Engineering-I [Lec #25: In-Situ Permeability]
Geotechnical Engineering-I [Lec #25: In-Situ Permeability]
 
Ground improvement using rapid impact compaction
Ground improvement using rapid impact compactionGround improvement using rapid impact compaction
Ground improvement using rapid impact compaction
 
Sub soil exploration
Sub soil exploration Sub soil exploration
Sub soil exploration
 
Rock Drilling, Sampling & Testing
Rock Drilling, Sampling & TestingRock Drilling, Sampling & Testing
Rock Drilling, Sampling & Testing
 
Ground imrovement introduction
Ground imrovement   introductionGround imrovement   introduction
Ground imrovement introduction
 
Soil nailing/Soil Reinforcement Technique
Soil nailing/Soil Reinforcement TechniqueSoil nailing/Soil Reinforcement Technique
Soil nailing/Soil Reinforcement Technique
 
General Geotechnical Presentation
General Geotechnical PresentationGeneral Geotechnical Presentation
General Geotechnical Presentation
 
rigid and flexiable pavement design ppt
rigid and flexiable pavement design pptrigid and flexiable pavement design ppt
rigid and flexiable pavement design ppt
 
Tunnelling
TunnellingTunnelling
Tunnelling
 
Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]
 
Analisis granulometrico por tamizado mec. de suelos i
Analisis granulometrico por tamizado   mec. de suelos iAnalisis granulometrico por tamizado   mec. de suelos i
Analisis granulometrico por tamizado mec. de suelos i
 
Shear Wave Velocity: Seismic Site Classification
Shear Wave Velocity: Seismic Site ClassificationShear Wave Velocity: Seismic Site Classification
Shear Wave Velocity: Seismic Site Classification
 
Gravity Method | Geophysics | Geology
Gravity Method | Geophysics | GeologyGravity Method | Geophysics | Geology
Gravity Method | Geophysics | Geology
 

Similar to DSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi Martinelli

Sampling-SDM2012_Jun
Sampling-SDM2012_JunSampling-SDM2012_Jun
Sampling-SDM2012_Jun
MDO_Lab
 
Scalable Software Testing and Verification of Non-Functional Properties throu...
Scalable Software Testing and Verification of Non-Functional Properties throu...Scalable Software Testing and Verification of Non-Functional Properties throu...
Scalable Software Testing and Verification of Non-Functional Properties throu...
Lionel Briand
 
presentation_btp
presentation_btppresentation_btp
presentation_btp
Anshul Goyal, EIT
 
2007 Oral Preliminary Defense
2007 Oral Preliminary Defense2007 Oral Preliminary Defense
2007 Oral Preliminary Defense
Jon Ernstberger
 
The Treatment of Uncertainty in Models
The Treatment of Uncertainty in ModelsThe Treatment of Uncertainty in Models
The Treatment of Uncertainty in Models
IES / IAQM
 
A Systems Approach to the Modeling and Control of Molecular, Microparticle, a...
A Systems Approach to the Modeling and Control of Molecular, Microparticle, a...A Systems Approach to the Modeling and Control of Molecular, Microparticle, a...
A Systems Approach to the Modeling and Control of Molecular, Microparticle, a...
ejhukkanen
 
From sensor readings to prediction: on the process of developing practical so...
From sensor readings to prediction: on the process of developing practical so...From sensor readings to prediction: on the process of developing practical so...
From sensor readings to prediction: on the process of developing practical so...
Manuel Martín
 
Testing Machine Learning-enabled Systems: A Personal Perspective
Testing Machine Learning-enabled Systems: A Personal PerspectiveTesting Machine Learning-enabled Systems: A Personal Perspective
Testing Machine Learning-enabled Systems: A Personal Perspective
Lionel Briand
 
Analysis of Educational Robotics activities using a machine learning approach
Analysis of Educational Robotics activities using a machine learning approachAnalysis of Educational Robotics activities using a machine learning approach
Analysis of Educational Robotics activities using a machine learning approach
Lorenzo Cesaretti
 
Modelling the effluent quality utilizing optical monitoring
Modelling the effluent quality utilizing optical monitoringModelling the effluent quality utilizing optical monitoring
Modelling the effluent quality utilizing optical monitoring
CLIC Innovation Ltd
 
Seminar nov2017
Seminar nov2017Seminar nov2017
Seminar nov2017
Ahmed Youssef Ali Amer
 
Diagnosis Support by Machine Learning Using Posturography Data
Diagnosis Support by Machine Learning Using Posturography DataDiagnosis Support by Machine Learning Using Posturography Data
Diagnosis Support by Machine Learning Using Posturography Data
TeruKamogashira
 
Online learning in estimation of distribution algorithms for dynamic environm...
Online learning in estimation of distribution algorithms for dynamic environm...Online learning in estimation of distribution algorithms for dynamic environm...
Online learning in estimation of distribution algorithms for dynamic environm...
André Gonçalves
 
AMS_Aviation_2014_Ali
AMS_Aviation_2014_AliAMS_Aviation_2014_Ali
AMS_Aviation_2014_Ali
MDO_Lab
 
Applications of Search-based Software Testing to Trustworthy Artificial Intel...
Applications of Search-based Software Testing to Trustworthy Artificial Intel...Applications of Search-based Software Testing to Trustworthy Artificial Intel...
Applications of Search-based Software Testing to Trustworthy Artificial Intel...
Lionel Briand
 
BA Summit 2014 Predictive maintenance: Met big data het lek dichten
BA Summit 2014  Predictive maintenance: Met big data het lek dichtenBA Summit 2014  Predictive maintenance: Met big data het lek dichten
BA Summit 2014 Predictive maintenance: Met big data het lek dichten
Daniel Westzaan
 
Respose surface methods
Respose surface methodsRespose surface methods
Respose surface methods
Venkatasami murugesan
 
Microstructural Analysis and Machine Learning
Microstructural Analysis and Machine LearningMicrostructural Analysis and Machine Learning
Microstructural Analysis and Machine Learning
PFHub PFHub
 
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Lionel Briand
 
AI in SE: A 25-year Journey
AI in SE: A 25-year JourneyAI in SE: A 25-year Journey
AI in SE: A 25-year Journey
Lionel Briand
 

Similar to DSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi Martinelli (20)

Sampling-SDM2012_Jun
Sampling-SDM2012_JunSampling-SDM2012_Jun
Sampling-SDM2012_Jun
 
Scalable Software Testing and Verification of Non-Functional Properties throu...
Scalable Software Testing and Verification of Non-Functional Properties throu...Scalable Software Testing and Verification of Non-Functional Properties throu...
Scalable Software Testing and Verification of Non-Functional Properties throu...
 
presentation_btp
presentation_btppresentation_btp
presentation_btp
 
2007 Oral Preliminary Defense
2007 Oral Preliminary Defense2007 Oral Preliminary Defense
2007 Oral Preliminary Defense
 
The Treatment of Uncertainty in Models
The Treatment of Uncertainty in ModelsThe Treatment of Uncertainty in Models
The Treatment of Uncertainty in Models
 
A Systems Approach to the Modeling and Control of Molecular, Microparticle, a...
A Systems Approach to the Modeling and Control of Molecular, Microparticle, a...A Systems Approach to the Modeling and Control of Molecular, Microparticle, a...
A Systems Approach to the Modeling and Control of Molecular, Microparticle, a...
 
From sensor readings to prediction: on the process of developing practical so...
From sensor readings to prediction: on the process of developing practical so...From sensor readings to prediction: on the process of developing practical so...
From sensor readings to prediction: on the process of developing practical so...
 
Testing Machine Learning-enabled Systems: A Personal Perspective
Testing Machine Learning-enabled Systems: A Personal PerspectiveTesting Machine Learning-enabled Systems: A Personal Perspective
Testing Machine Learning-enabled Systems: A Personal Perspective
 
Analysis of Educational Robotics activities using a machine learning approach
Analysis of Educational Robotics activities using a machine learning approachAnalysis of Educational Robotics activities using a machine learning approach
Analysis of Educational Robotics activities using a machine learning approach
 
Modelling the effluent quality utilizing optical monitoring
Modelling the effluent quality utilizing optical monitoringModelling the effluent quality utilizing optical monitoring
Modelling the effluent quality utilizing optical monitoring
 
Seminar nov2017
Seminar nov2017Seminar nov2017
Seminar nov2017
 
Diagnosis Support by Machine Learning Using Posturography Data
Diagnosis Support by Machine Learning Using Posturography DataDiagnosis Support by Machine Learning Using Posturography Data
Diagnosis Support by Machine Learning Using Posturography Data
 
Online learning in estimation of distribution algorithms for dynamic environm...
Online learning in estimation of distribution algorithms for dynamic environm...Online learning in estimation of distribution algorithms for dynamic environm...
Online learning in estimation of distribution algorithms for dynamic environm...
 
AMS_Aviation_2014_Ali
AMS_Aviation_2014_AliAMS_Aviation_2014_Ali
AMS_Aviation_2014_Ali
 
Applications of Search-based Software Testing to Trustworthy Artificial Intel...
Applications of Search-based Software Testing to Trustworthy Artificial Intel...Applications of Search-based Software Testing to Trustworthy Artificial Intel...
Applications of Search-based Software Testing to Trustworthy Artificial Intel...
 
BA Summit 2014 Predictive maintenance: Met big data het lek dichten
BA Summit 2014  Predictive maintenance: Met big data het lek dichtenBA Summit 2014  Predictive maintenance: Met big data het lek dichten
BA Summit 2014 Predictive maintenance: Met big data het lek dichten
 
Respose surface methods
Respose surface methodsRespose surface methods
Respose surface methods
 
Microstructural Analysis and Machine Learning
Microstructural Analysis and Machine LearningMicrostructural Analysis and Machine Learning
Microstructural Analysis and Machine Learning
 
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
Testing Dynamic Behavior in Executable Software Models - Making Cyber-physica...
 
AI in SE: A 25-year Journey
AI in SE: A 25-year JourneyAI in SE: A 25-year Journey
AI in SE: A 25-year Journey
 

More from Deltares

DSD-NL 2023 Ontwikkeling van een bias Kalman filter - Laagfrequente correctie...
DSD-NL 2023 Ontwikkeling van een bias Kalman filter - Laagfrequente correctie...DSD-NL 2023 Ontwikkeling van een bias Kalman filter - Laagfrequente correctie...
DSD-NL 2023 Ontwikkeling van een bias Kalman filter - Laagfrequente correctie...
Deltares
 
DSD-NL 2023 Hoogwatertoetsingen met D-HYDRO Suite 1D2D - Bosch
DSD-NL 2023 Hoogwatertoetsingen met D-HYDRO Suite 1D2D - BoschDSD-NL 2023 Hoogwatertoetsingen met D-HYDRO Suite 1D2D - Bosch
DSD-NL 2023 Hoogwatertoetsingen met D-HYDRO Suite 1D2D - Bosch
Deltares
 
DSD-NL 2023 Hydraulisch Modelinstrumentarium Aa en Maas - de Keijzer
DSD-NL 2023 Hydraulisch Modelinstrumentarium Aa en Maas - de KeijzerDSD-NL 2023 Hydraulisch Modelinstrumentarium Aa en Maas - de Keijzer
DSD-NL 2023 Hydraulisch Modelinstrumentarium Aa en Maas - de Keijzer
Deltares
 
DSD-NL 2022 D-GEO Gebruikersdag - van der Meij
DSD-NL 2022 D-GEO Gebruikersdag - van der MeijDSD-NL 2022 D-GEO Gebruikersdag - van der Meij
DSD-NL 2022 D-GEO Gebruikersdag - van der Meij
Deltares
 
DSD-NL 2022 Keuzes - een workshop voor modelbouwers - Wesselius - Melsen
DSD-NL 2022 Keuzes - een workshop voor modelbouwers - Wesselius - MelsenDSD-NL 2022 Keuzes - een workshop voor modelbouwers - Wesselius - Melsen
DSD-NL 2022 Keuzes - een workshop voor modelbouwers - Wesselius - Melsen
Deltares
 
DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff2
DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff2DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff2
DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff2
Deltares
 
DSD-NL 2022 Waterkwaliteitsmodellering met D-HYDRO Suite 1D2D - Meijers
DSD-NL 2022 Waterkwaliteitsmodellering met D-HYDRO Suite 1D2D - MeijersDSD-NL 2022 Waterkwaliteitsmodellering met D-HYDRO Suite 1D2D - Meijers
DSD-NL 2022 Waterkwaliteitsmodellering met D-HYDRO Suite 1D2D - Meijers
Deltares
 
DSD-NL 2022 D-HYDRO Suite 1D2D, stand van zaken en vooruitblik - Verhoeven - ...
DSD-NL 2022 D-HYDRO Suite 1D2D, stand van zaken en vooruitblik - Verhoeven - ...DSD-NL 2022 D-HYDRO Suite 1D2D, stand van zaken en vooruitblik - Verhoeven - ...
DSD-NL 2022 D-HYDRO Suite 1D2D, stand van zaken en vooruitblik - Verhoeven - ...
Deltares
 
DSD-NL 2022 Highlights van de zesde-generatie RWS modelschematisaties - Spruyt
DSD-NL 2022 Highlights van de zesde-generatie RWS modelschematisaties - SpruytDSD-NL 2022 Highlights van de zesde-generatie RWS modelschematisaties - Spruyt
DSD-NL 2022 Highlights van de zesde-generatie RWS modelschematisaties - Spruyt
Deltares
 
DSD-NL 2022 Proactief watermanagement systeem van Bangkok - Hutten
DSD-NL 2022 Proactief watermanagement systeem van Bangkok - HuttenDSD-NL 2022 Proactief watermanagement systeem van Bangkok - Hutten
DSD-NL 2022 Proactief watermanagement systeem van Bangkok - Hutten
Deltares
 
DSD-NL 2022 Toetsing op wateroverlast voor de Barneveldse en Lunterse Beek - ...
DSD-NL 2022 Toetsing op wateroverlast voor de Barneveldse en Lunterse Beek - ...DSD-NL 2022 Toetsing op wateroverlast voor de Barneveldse en Lunterse Beek - ...
DSD-NL 2022 Toetsing op wateroverlast voor de Barneveldse en Lunterse Beek - ...
Deltares
 
DSD-NL 2022 Overstromingsberekeningen met D-HYDRO Suite 1D2D - de Lange
DSD-NL 2022 Overstromingsberekeningen met D-HYDRO Suite 1D2D - de LangeDSD-NL 2022 Overstromingsberekeningen met D-HYDRO Suite 1D2D - de Lange
DSD-NL 2022 Overstromingsberekeningen met D-HYDRO Suite 1D2D - de Lange
Deltares
 
DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff
DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de GraaffDSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff
DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff
Deltares
 
DSD-NL 2022 D-HYDRO Gebruikersdag - Programma - Melger
DSD-NL 2022 D-HYDRO Gebruikersdag - Programma - MelgerDSD-NL 2022 D-HYDRO Gebruikersdag - Programma - Melger
DSD-NL 2022 D-HYDRO Gebruikersdag - Programma - Melger
Deltares
 
DSD-NL 2021 Watersysteemanalyses-toetsingen - Horn, Weerts
DSD-NL 2021 Watersysteemanalyses-toetsingen - Horn, WeertsDSD-NL 2021 Watersysteemanalyses-toetsingen - Horn, Weerts
DSD-NL 2021 Watersysteemanalyses-toetsingen - Horn, Weerts
Deltares
 
DSD-NL 2021 D-HyDAMO import en verificatie met D-HYDRO Suite
DSD-NL 2021 D-HyDAMO import en verificatie met D-HYDRO SuiteDSD-NL 2021 D-HyDAMO import en verificatie met D-HYDRO Suite
DSD-NL 2021 D-HyDAMO import en verificatie met D-HYDRO Suite
Deltares
 
DSD-NL 2021 Toepassing (semi-)gedistribueerde hydrologie met D-HYDRO Suite - ...
DSD-NL 2021 Toepassing (semi-)gedistribueerde hydrologie met D-HYDRO Suite - ...DSD-NL 2021 Toepassing (semi-)gedistribueerde hydrologie met D-HYDRO Suite - ...
DSD-NL 2021 Toepassing (semi-)gedistribueerde hydrologie met D-HYDRO Suite - ...
Deltares
 
DSD-NL 2021 Omzetten boezemmodel WS Hunze en Aa’s van SOBEK 2 naar D-HYDRO Su...
DSD-NL 2021 Omzetten boezemmodel WS Hunze en Aa’s van SOBEK 2 naar D-HYDRO Su...DSD-NL 2021 Omzetten boezemmodel WS Hunze en Aa’s van SOBEK 2 naar D-HYDRO Su...
DSD-NL 2021 Omzetten boezemmodel WS Hunze en Aa’s van SOBEK 2 naar D-HYDRO Su...
Deltares
 
DSD-NL 2021 Casus Stellendam Goeree-Overflakkee - Stigter, Coster
DSD-NL 2021 Casus Stellendam Goeree-Overflakkee - Stigter, CosterDSD-NL 2021 Casus Stellendam Goeree-Overflakkee - Stigter, Coster
DSD-NL 2021 Casus Stellendam Goeree-Overflakkee - Stigter, Coster
Deltares
 
DSD-NL 2021 Casus Leiderdorp - de Waard, Vlaar
DSD-NL 2021 Casus Leiderdorp - de Waard, VlaarDSD-NL 2021 Casus Leiderdorp - de Waard, Vlaar
DSD-NL 2021 Casus Leiderdorp - de Waard, Vlaar
Deltares
 

More from Deltares (20)

DSD-NL 2023 Ontwikkeling van een bias Kalman filter - Laagfrequente correctie...
DSD-NL 2023 Ontwikkeling van een bias Kalman filter - Laagfrequente correctie...DSD-NL 2023 Ontwikkeling van een bias Kalman filter - Laagfrequente correctie...
DSD-NL 2023 Ontwikkeling van een bias Kalman filter - Laagfrequente correctie...
 
DSD-NL 2023 Hoogwatertoetsingen met D-HYDRO Suite 1D2D - Bosch
DSD-NL 2023 Hoogwatertoetsingen met D-HYDRO Suite 1D2D - BoschDSD-NL 2023 Hoogwatertoetsingen met D-HYDRO Suite 1D2D - Bosch
DSD-NL 2023 Hoogwatertoetsingen met D-HYDRO Suite 1D2D - Bosch
 
DSD-NL 2023 Hydraulisch Modelinstrumentarium Aa en Maas - de Keijzer
DSD-NL 2023 Hydraulisch Modelinstrumentarium Aa en Maas - de KeijzerDSD-NL 2023 Hydraulisch Modelinstrumentarium Aa en Maas - de Keijzer
DSD-NL 2023 Hydraulisch Modelinstrumentarium Aa en Maas - de Keijzer
 
DSD-NL 2022 D-GEO Gebruikersdag - van der Meij
DSD-NL 2022 D-GEO Gebruikersdag - van der MeijDSD-NL 2022 D-GEO Gebruikersdag - van der Meij
DSD-NL 2022 D-GEO Gebruikersdag - van der Meij
 
DSD-NL 2022 Keuzes - een workshop voor modelbouwers - Wesselius - Melsen
DSD-NL 2022 Keuzes - een workshop voor modelbouwers - Wesselius - MelsenDSD-NL 2022 Keuzes - een workshop voor modelbouwers - Wesselius - Melsen
DSD-NL 2022 Keuzes - een workshop voor modelbouwers - Wesselius - Melsen
 
DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff2
DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff2DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff2
DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff2
 
DSD-NL 2022 Waterkwaliteitsmodellering met D-HYDRO Suite 1D2D - Meijers
DSD-NL 2022 Waterkwaliteitsmodellering met D-HYDRO Suite 1D2D - MeijersDSD-NL 2022 Waterkwaliteitsmodellering met D-HYDRO Suite 1D2D - Meijers
DSD-NL 2022 Waterkwaliteitsmodellering met D-HYDRO Suite 1D2D - Meijers
 
DSD-NL 2022 D-HYDRO Suite 1D2D, stand van zaken en vooruitblik - Verhoeven - ...
DSD-NL 2022 D-HYDRO Suite 1D2D, stand van zaken en vooruitblik - Verhoeven - ...DSD-NL 2022 D-HYDRO Suite 1D2D, stand van zaken en vooruitblik - Verhoeven - ...
DSD-NL 2022 D-HYDRO Suite 1D2D, stand van zaken en vooruitblik - Verhoeven - ...
 
DSD-NL 2022 Highlights van de zesde-generatie RWS modelschematisaties - Spruyt
DSD-NL 2022 Highlights van de zesde-generatie RWS modelschematisaties - SpruytDSD-NL 2022 Highlights van de zesde-generatie RWS modelschematisaties - Spruyt
DSD-NL 2022 Highlights van de zesde-generatie RWS modelschematisaties - Spruyt
 
DSD-NL 2022 Proactief watermanagement systeem van Bangkok - Hutten
DSD-NL 2022 Proactief watermanagement systeem van Bangkok - HuttenDSD-NL 2022 Proactief watermanagement systeem van Bangkok - Hutten
DSD-NL 2022 Proactief watermanagement systeem van Bangkok - Hutten
 
DSD-NL 2022 Toetsing op wateroverlast voor de Barneveldse en Lunterse Beek - ...
DSD-NL 2022 Toetsing op wateroverlast voor de Barneveldse en Lunterse Beek - ...DSD-NL 2022 Toetsing op wateroverlast voor de Barneveldse en Lunterse Beek - ...
DSD-NL 2022 Toetsing op wateroverlast voor de Barneveldse en Lunterse Beek - ...
 
DSD-NL 2022 Overstromingsberekeningen met D-HYDRO Suite 1D2D - de Lange
DSD-NL 2022 Overstromingsberekeningen met D-HYDRO Suite 1D2D - de LangeDSD-NL 2022 Overstromingsberekeningen met D-HYDRO Suite 1D2D - de Lange
DSD-NL 2022 Overstromingsberekeningen met D-HYDRO Suite 1D2D - de Lange
 
DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff
DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de GraaffDSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff
DSD-NL 2022 D-HYDRO modelgeneratie in Limburg - de Graaff
 
DSD-NL 2022 D-HYDRO Gebruikersdag - Programma - Melger
DSD-NL 2022 D-HYDRO Gebruikersdag - Programma - MelgerDSD-NL 2022 D-HYDRO Gebruikersdag - Programma - Melger
DSD-NL 2022 D-HYDRO Gebruikersdag - Programma - Melger
 
DSD-NL 2021 Watersysteemanalyses-toetsingen - Horn, Weerts
DSD-NL 2021 Watersysteemanalyses-toetsingen - Horn, WeertsDSD-NL 2021 Watersysteemanalyses-toetsingen - Horn, Weerts
DSD-NL 2021 Watersysteemanalyses-toetsingen - Horn, Weerts
 
DSD-NL 2021 D-HyDAMO import en verificatie met D-HYDRO Suite
DSD-NL 2021 D-HyDAMO import en verificatie met D-HYDRO SuiteDSD-NL 2021 D-HyDAMO import en verificatie met D-HYDRO Suite
DSD-NL 2021 D-HyDAMO import en verificatie met D-HYDRO Suite
 
DSD-NL 2021 Toepassing (semi-)gedistribueerde hydrologie met D-HYDRO Suite - ...
DSD-NL 2021 Toepassing (semi-)gedistribueerde hydrologie met D-HYDRO Suite - ...DSD-NL 2021 Toepassing (semi-)gedistribueerde hydrologie met D-HYDRO Suite - ...
DSD-NL 2021 Toepassing (semi-)gedistribueerde hydrologie met D-HYDRO Suite - ...
 
DSD-NL 2021 Omzetten boezemmodel WS Hunze en Aa’s van SOBEK 2 naar D-HYDRO Su...
DSD-NL 2021 Omzetten boezemmodel WS Hunze en Aa’s van SOBEK 2 naar D-HYDRO Su...DSD-NL 2021 Omzetten boezemmodel WS Hunze en Aa’s van SOBEK 2 naar D-HYDRO Su...
DSD-NL 2021 Omzetten boezemmodel WS Hunze en Aa’s van SOBEK 2 naar D-HYDRO Su...
 
DSD-NL 2021 Casus Stellendam Goeree-Overflakkee - Stigter, Coster
DSD-NL 2021 Casus Stellendam Goeree-Overflakkee - Stigter, CosterDSD-NL 2021 Casus Stellendam Goeree-Overflakkee - Stigter, Coster
DSD-NL 2021 Casus Stellendam Goeree-Overflakkee - Stigter, Coster
 
DSD-NL 2021 Casus Leiderdorp - de Waard, Vlaar
DSD-NL 2021 Casus Leiderdorp - de Waard, VlaarDSD-NL 2021 Casus Leiderdorp - de Waard, Vlaar
DSD-NL 2021 Casus Leiderdorp - de Waard, Vlaar
 

Recently uploaded

AI Fusion Buddy Review: Brand New, Groundbreaking Gemini-Powered AI App
AI Fusion Buddy Review: Brand New, Groundbreaking Gemini-Powered AI AppAI Fusion Buddy Review: Brand New, Groundbreaking Gemini-Powered AI App
AI Fusion Buddy Review: Brand New, Groundbreaking Gemini-Powered AI App
Google
 
LORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptx
LORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptxLORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptx
LORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptx
lorraineandreiamcidl
 
KuberTENes Birthday Bash Guadalajara - Introducción a Argo CD
KuberTENes Birthday Bash Guadalajara - Introducción a Argo CDKuberTENes Birthday Bash Guadalajara - Introducción a Argo CD
KuberTENes Birthday Bash Guadalajara - Introducción a Argo CD
rodomar2
 
Vitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke Java Microservices Resume.pdfVitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke
 
Neo4j - Product Vision and Knowledge Graphs - GraphSummit Paris
Neo4j - Product Vision and Knowledge Graphs - GraphSummit ParisNeo4j - Product Vision and Knowledge Graphs - GraphSummit Paris
Neo4j - Product Vision and Knowledge Graphs - GraphSummit Paris
Neo4j
 
Oracle 23c New Features For DBAs and Developers.pptx
Oracle 23c New Features For DBAs and Developers.pptxOracle 23c New Features For DBAs and Developers.pptx
Oracle 23c New Features For DBAs and Developers.pptx
Remote DBA Services
 
Webinar On-Demand: Using Flutter for Embedded
Webinar On-Demand: Using Flutter for EmbeddedWebinar On-Demand: Using Flutter for Embedded
Webinar On-Demand: Using Flutter for Embedded
ICS
 
A Study of Variable-Role-based Feature Enrichment in Neural Models of Code
A Study of Variable-Role-based Feature Enrichment in Neural Models of CodeA Study of Variable-Role-based Feature Enrichment in Neural Models of Code
A Study of Variable-Role-based Feature Enrichment in Neural Models of Code
Aftab Hussain
 
Using Query Store in Azure PostgreSQL to Understand Query Performance
Using Query Store in Azure PostgreSQL to Understand Query PerformanceUsing Query Store in Azure PostgreSQL to Understand Query Performance
Using Query Store in Azure PostgreSQL to Understand Query Performance
Grant Fritchey
 
Need for Speed: Removing speed bumps from your Symfony projects ⚡️
Need for Speed: Removing speed bumps from your Symfony projects ⚡️Need for Speed: Removing speed bumps from your Symfony projects ⚡️
Need for Speed: Removing speed bumps from your Symfony projects ⚡️
Łukasz Chruściel
 
What is Augmented Reality Image Tracking
What is Augmented Reality Image TrackingWhat is Augmented Reality Image Tracking
What is Augmented Reality Image Tracking
pavan998932
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
Safe Software
 
Energy consumption of Database Management - Florina Jonuzi
Energy consumption of Database Management - Florina JonuziEnergy consumption of Database Management - Florina Jonuzi
Energy consumption of Database Management - Florina Jonuzi
Green Software Development
 
Automated software refactoring with OpenRewrite and Generative AI.pptx.pdf
Automated software refactoring with OpenRewrite and Generative AI.pptx.pdfAutomated software refactoring with OpenRewrite and Generative AI.pptx.pdf
Automated software refactoring with OpenRewrite and Generative AI.pptx.pdf
timtebeek1
 
Hand Rolled Applicative User Validation Code Kata
Hand Rolled Applicative User ValidationCode KataHand Rolled Applicative User ValidationCode Kata
Hand Rolled Applicative User Validation Code Kata
Philip Schwarz
 
socradar-q1-2024-aviation-industry-report.pdf
socradar-q1-2024-aviation-industry-report.pdfsocradar-q1-2024-aviation-industry-report.pdf
socradar-q1-2024-aviation-industry-report.pdf
SOCRadar
 
2024 eCommerceDays Toulouse - Sylius 2.0.pdf
2024 eCommerceDays Toulouse - Sylius 2.0.pdf2024 eCommerceDays Toulouse - Sylius 2.0.pdf
2024 eCommerceDays Toulouse - Sylius 2.0.pdf
Łukasz Chruściel
 
Microservice Teams - How the cloud changes the way we work
Microservice Teams - How the cloud changes the way we workMicroservice Teams - How the cloud changes the way we work
Microservice Teams - How the cloud changes the way we work
Sven Peters
 
E-commerce Development Services- Hornet Dynamics
E-commerce Development Services- Hornet DynamicsE-commerce Development Services- Hornet Dynamics
E-commerce Development Services- Hornet Dynamics
Hornet Dynamics
 
Artificia Intellicence and XPath Extension Functions
Artificia Intellicence and XPath Extension FunctionsArtificia Intellicence and XPath Extension Functions
Artificia Intellicence and XPath Extension Functions
Octavian Nadolu
 

Recently uploaded (20)

AI Fusion Buddy Review: Brand New, Groundbreaking Gemini-Powered AI App
AI Fusion Buddy Review: Brand New, Groundbreaking Gemini-Powered AI AppAI Fusion Buddy Review: Brand New, Groundbreaking Gemini-Powered AI App
AI Fusion Buddy Review: Brand New, Groundbreaking Gemini-Powered AI App
 
LORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptx
LORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptxLORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptx
LORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptx
 
KuberTENes Birthday Bash Guadalajara - Introducción a Argo CD
KuberTENes Birthday Bash Guadalajara - Introducción a Argo CDKuberTENes Birthday Bash Guadalajara - Introducción a Argo CD
KuberTENes Birthday Bash Guadalajara - Introducción a Argo CD
 
Vitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke Java Microservices Resume.pdfVitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke Java Microservices Resume.pdf
 
Neo4j - Product Vision and Knowledge Graphs - GraphSummit Paris
Neo4j - Product Vision and Knowledge Graphs - GraphSummit ParisNeo4j - Product Vision and Knowledge Graphs - GraphSummit Paris
Neo4j - Product Vision and Knowledge Graphs - GraphSummit Paris
 
Oracle 23c New Features For DBAs and Developers.pptx
Oracle 23c New Features For DBAs and Developers.pptxOracle 23c New Features For DBAs and Developers.pptx
Oracle 23c New Features For DBAs and Developers.pptx
 
Webinar On-Demand: Using Flutter for Embedded
Webinar On-Demand: Using Flutter for EmbeddedWebinar On-Demand: Using Flutter for Embedded
Webinar On-Demand: Using Flutter for Embedded
 
A Study of Variable-Role-based Feature Enrichment in Neural Models of Code
A Study of Variable-Role-based Feature Enrichment in Neural Models of CodeA Study of Variable-Role-based Feature Enrichment in Neural Models of Code
A Study of Variable-Role-based Feature Enrichment in Neural Models of Code
 
Using Query Store in Azure PostgreSQL to Understand Query Performance
Using Query Store in Azure PostgreSQL to Understand Query PerformanceUsing Query Store in Azure PostgreSQL to Understand Query Performance
Using Query Store in Azure PostgreSQL to Understand Query Performance
 
Need for Speed: Removing speed bumps from your Symfony projects ⚡️
Need for Speed: Removing speed bumps from your Symfony projects ⚡️Need for Speed: Removing speed bumps from your Symfony projects ⚡️
Need for Speed: Removing speed bumps from your Symfony projects ⚡️
 
What is Augmented Reality Image Tracking
What is Augmented Reality Image TrackingWhat is Augmented Reality Image Tracking
What is Augmented Reality Image Tracking
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
 
Energy consumption of Database Management - Florina Jonuzi
Energy consumption of Database Management - Florina JonuziEnergy consumption of Database Management - Florina Jonuzi
Energy consumption of Database Management - Florina Jonuzi
 
Automated software refactoring with OpenRewrite and Generative AI.pptx.pdf
Automated software refactoring with OpenRewrite and Generative AI.pptx.pdfAutomated software refactoring with OpenRewrite and Generative AI.pptx.pdf
Automated software refactoring with OpenRewrite and Generative AI.pptx.pdf
 
Hand Rolled Applicative User Validation Code Kata
Hand Rolled Applicative User ValidationCode KataHand Rolled Applicative User ValidationCode Kata
Hand Rolled Applicative User Validation Code Kata
 
socradar-q1-2024-aviation-industry-report.pdf
socradar-q1-2024-aviation-industry-report.pdfsocradar-q1-2024-aviation-industry-report.pdf
socradar-q1-2024-aviation-industry-report.pdf
 
2024 eCommerceDays Toulouse - Sylius 2.0.pdf
2024 eCommerceDays Toulouse - Sylius 2.0.pdf2024 eCommerceDays Toulouse - Sylius 2.0.pdf
2024 eCommerceDays Toulouse - Sylius 2.0.pdf
 
Microservice Teams - How the cloud changes the way we work
Microservice Teams - How the cloud changes the way we workMicroservice Teams - How the cloud changes the way we work
Microservice Teams - How the cloud changes the way we work
 
E-commerce Development Services- Hornet Dynamics
E-commerce Development Services- Hornet DynamicsE-commerce Development Services- Hornet Dynamics
E-commerce Development Services- Hornet Dynamics
 
Artificia Intellicence and XPath Extension Functions
Artificia Intellicence and XPath Extension FunctionsArtificia Intellicence and XPath Extension Functions
Artificia Intellicence and XPath Extension Functions
 

DSD-NL 2018 Inverse Analysis for Workshop Anura3D MPM - Ghasemi Martinelli

  • 1. Application of Inverse analysis to the Material Point Method Pooyan Ghasemi and Mario Martinelli Geo Klantendag 2018 Workshop Anura3D Modelleren met MPM
  • 2. dykes, dams, landslides installation, impact, SSI flowslides, erosion, liquefaction, SWI Applications
  • 3. Applications • How can we benefit? What can we gain? • study beyond “initial” failure > progressive failures and dynamic processes • prediction of consequences > catastrophic failures • study the efficiency of remedial actions > location, type and strength of reinforcement • or defence structure • improve risk assessment
  • 4. dykes, dams, landslides installation, impact, SSI flowslides, erosion, liquefaction, SWI Applications small deformation onset of failure
  • 5. dykes, dams, landslides installation, impact, SSI flowslides, erosion, liquefaction, SWI Applications small deformation onset of failure Results depend on the value of the CONSTITUTIVE MODELS PARAMETERS ->> parameter calibration is crucial! <<-
  • 6. Applications Most of the time multiple sets of data are available: • Lab tests (TX tests, …. ) • Field tests (SPT, CPT…) • Field monitoring observations CPT Real field data
  • 7. Applications Most of the time multiple sets of data are available: • Lab tests (TX tests, …. ) • Field tests (SPT, CPT…) • Field monitoring observations CPT Real field data ?
  • 8. Outline • What is inverse analysis • Inverse analysis in Geotechnical problem • Example 1 • Example 2 • Main case study • Remarks and conclusion
  • 9. What is the Inverse Analysis Much research in science and engineering is devoted to constructing numerical models of physical systems. Given a complete description of the physical system, these models can be used to predict how the system affects its surroundings. This is called the direct or forward problem. When some aspects of physical system are unknown, however, it is sometimes possible to infer these characteristics from a known system response; this is the inverse problem. Inverse problem Forward problem Regular Simulation, Physical or Numerical Parameter estimation Design optimization Infer the optimal design Infer the system characteristics from experimental Data More popular in Geotechnical engineering Definition:
  • 10. What is the Inverse Analysis We are already using inverse analysis in our mind Base on the our observation we are looking for the cause This is a difficult task if many types of dragon produce similar footprints, and becomes impossible if the footprints are even slightly smeared in mud.
  • 11. The roles of prior Information • Numerical geotechnical models are mathematically ill- posed due to an information deficit. Sometimes, measurements barely provide sufficient information • Some models’ parameters do not have physical meaning Curve Fitting + Prior Information + (e.g. max or min value of parameter, relation between parameters) Combinations of the observations = (e.g. choose the most appropriate observation for the corresponding parameter) Inverse Analysis • In inverse Analysis method , we are trying to get closer to the solution step by step, considering only the correct parameters and the corresponding tests observations • Adding the new observations together with other remaining parameters and complete the inverse analysis -> step by step procedure • Care must be taken to ensure that the information available are used appropriately! (i.e. reasonable parameter value?, correct test to calibrate that parameter?)
  • 12. Elementary soil behavior Triggering stage Propagation Stage • mobilized volume? • mode of collapse? • Yielding surface ? • Final run-out • final geometry What we need to do in order to calibrate a simulation of large deformation phenomenon Inverse analysis in Geotechnical problems Different Stage of Simulation and Calibration Eckersley, D. (1990). Instrumented laboratory flowslides. Geotechnique, 40(3), 489-502.
  • 13. Inverse analysis in Geotechnical problem Observations : Result of Laboratory testing Calculation model testtest Model test Model Optimization algorithm Update parameters Input Parameters test BEST Fit Is min error? No Yes End and report the optimal parameters Error • Particle swarm method • Genetic algorithm • Neural Network Fuzzy Methods:
  • 14. Inverse analysis in Geotechnical problem Soil Test toolbox element test Large deformation tests suite
  • 15. Landslide basal surface Observation Inverse analysis in Geotechnical problem Numerical model SPH, MPM, FEM Optimization algorithm Update parameters Input Parameters Is min error? No Yes End and report the optimal parameters Observations : Physical experiments or Site inspecting Landslide basal surface Observation Simulation Landslide basal surface Observation Simulation Landslide basal surface Observation Best Fit Error Calvello M, Cuomo S, Ghasemi P (2017). The role of observations in the inverse analysis of landslide propagation. Computers and Geotechnics, 92:11-21) • Kalaman Filter • Nonlinear Regression • Modified Guass Newoton Gradient base method:
  • 16. Elements of Inverse Analysis • There are many options for components of the procedure, for each specific problem , the best option might be varied Optimization algorithm Objective Function Examples for optimization methods : Optimization algorithm Problem Ref. • Ucode algorithm Excavation Calvello (2002) • Genetic algorithms Excavation Levasseur (2007) • PSO Constitutive model of Clay Knabe (2013) • Differential evolution (DE) Excavation Zhao (2014) • Artificial bee colony algorithm Excavation Zhao (2016) • Nelder-Mead Excavation Tian (2016) • Genetic algorithms constitutive model of rock salt Khaledi (2016) • Ensemble Kalman Filter Slope Stability Varden (2016) • hybrid methods Excavations De Santus (2015) Objective Function Observation Which Type of observation How many observation? Error Calculation Weighted Least squared Error (WSE) Robust and interpolation-free technique (Horn 2015) Calculation the area between two figures Gradient base method: • Give the Sensitivity of each Parameters • Fewer number of Iteration • Weak in the case of large number of parameters and High correlated parameters Fuzzy Method : • Robust in the Case of high correlated Parameters • Compatible for large number of parameters • Large number of Iteration is needed
  • 17. Implementation in Anura 3D Numerical Calculation Input Parameters Output Desired Results (observation) Input.txt OutPut.txt Regression (Optimization Engine) Updated Parameters Model optimized? Anura3D INV. Interface (1st Phase of the Project) Initial Values No Yes End Start 2nd Phase of the Project Matlab and Python, Ucode Anura3D
  • 18. Example 1: Inverse Analysis of CPT example to check the software performances • Creating the synthetic observation: MPM model while using the a set of assumed parameter value Mohr Coulomb Constitutive model: Parameters Value Porosity 0.2 Density Solid 2650 Young Modules (Kpa) 6000 Poisson Ratio 0.2 Cohesion(KPa) 1 Frictional angle 30 Dilatancy Angle 0 • Forward Model : MPM-2D Axisymmetric • Cone Diameter = 3.57 Cm GIP SIMON Project , MPM 2D Code Provided By Mario Martineli , Vahid Galavi and Faraz Sadeghi Tehrani
  • 19. Iteration No Young Module KPa Frictional angle Weighted Error 1 4289 27.11 211.15 2 3921 34.12 20.788 3 4352 34.92 2.0565 4 4585 33.83 1.9234 5 4918 32.45 1.6839 6 5306 31.52 0.88127 7 5512 31.04 0.86326 8 6035 29.79 0.15969 9 6040 29.9 0.10034 Example1: Estimation of Mohr-Coulomb Parameters by CPT • Parameters of Interest : Frictional angle and young modules are assumed as unknown parameters • Optimization Algorithm : Modified Gauss Newton Method
  • 20. Example1: Estimation of Mohr-Coulomb Parameters by CPT 3000 3500 4000 4500 5000 5500 6000 6500 1 3 5 7 9 YoungModule(KPa) Iteration No Parameters Value Desired Value 20 22 24 26 28 30 32 34 36 1 3 5 7 9 FrictionalAngle Iteration No -50 0 50 100 150 200 250 1 3 5 7 9 weightedResidualError Iteration No Iteration friction angle Young Modulus 1 10.1798 7.60181 2 11.2 6.398 3 13.7643 7.99513 4 13.08 7.5636 5 14.3756 7.272 6 15.1558 5.94192 7 14.6878 6.25564 8 16.1729 6.73256 9 15.7852 6.35672 Composite Scaled Sensitivity : the importance of different parameters to the calculation Convergence criteria: • The maximum parameter change of a given iteration is less than a user-defined tolerance • The objective function, S(b), changes less than a user-defined tolerance for three consecutive iterations
  • 21. Example2 : The run out of a dry granular flow Small scaled flow test conducted by (DENLINGER AND IVERSON 2001) • The experiment used a small flume with a bed surface inclined 31.4° adjoined to a horizontal runout plane. • After material release, the flow accelerates gradually spreading and reaching the end of the inclined plane Denlinger, R. P., & Iverson, R. M. (2001). Flow of variably fluidized granular masses across three‐dimensional terrain: 2. Numerical predictions and experimental tests. Journal of Geophysical Research: Solid Earth, 106(B1), 553-566.) Experiment outcomes:
  • 22. Example2 : The run out of a dry granular flow Ceccato and Simonini 2016: • only run out distance was considered as the benchmark • Parametric analysis • The best agreement with the experimental results were obtained when : basal friction angle equal to 26.6° Static friction angle equal to 40° Ceccato, F., & Simonini, P. (2016). Study of landslide run-out and impact on protection structures with the Material Point Method. In INTERPRAEVENT 2016- Conference Proceedings • MPM Model with Anura 3D 12555 Element 4 particles per element • Parameters of Interest : Soil Frictional Angle Basal frictional Coefficient Frictional contact
  • 23. Example2 : The run out of a dry granular flow Quantitative calibration based on run out distance and also soil thickness : Benchmark : Soil thickness after propagation 𝜑 = 43 𝑡𝑎𝑛𝜑 𝑏 = 0.47 Cross Section
  • 24. Example2 : The run out of a dry granular flow
  • 25. Main Case Study : Liquefaction and Retrogressive failure in Cohesion less Material Scaled slope failure experiment conducted by Eckersley 1990 • Instability was induced by raising the water level • Water entered the slope from constant head tank • To avoid surface erosion , water is injected through a wire cage filled with coarse gravel • Instability starts when the water level at the rear of the model reached at 0.4 m • Glass Tank • Basal surface Plywood floor • Water proof sand paper glued to the floor in order to inhabit direct sliding along the coal / floor Interface, Angle of shearing resistance was reported in the range of 30 to 36 Eckersley, D. (1990). Instrumented laboratory flowslides. Geotechnique, 40(3), 489-502.
  • 26. Main Case Study : Liquefaction and Retrogressive failure in Cohesion less Material: Material Properties Name = Northwich Park Coal 4 ICU triaxial tests with confining stress equal to 50 KPa Different initial void ratio : e = 0.41 , Contractive behavior e = 0.38 , contractive behavior e = 0.34 , contractive behavior e = 0.32 , Dilative behavior Specific Gravity = 1.34 𝑑10 = 0.06 − 0.3 𝑚𝑚 Minimum Density = 0.6 gr/cm3 Maximum density = 1.1 gr/cm3 Hydraulic conductivity = 0.01 cm/s2 Typical particle size distribution Effective path stress Saturated CU triaxial tests State diagram Effective critical frictional angle = 40 degree Available laboratory test Data:
  • 27. Toe sliding duo to water seepageStage 1 Stage 2 Shallow failure along the slope surface Stage 3 Deep failure and mobilize fairly all of the domain Geometry after flow slide Main Case Study : Liquefaction and Retrogressive failure in Cohesion less Material: Over view of the experience : Failure modes Eckersley, D. (1990). Instrumented laboratory flowslides. Geotechnique, 40(3), 489-502.
  • 28. Main Case Study : Liquefaction and Retrogressive failure in Cohesion less Material: Selection of of constitutive models Evaluation of constitutive models capability to simulate the material behavior through simulating an undrained consolidated Triaxial test by Anura 3D  Mohr Coulomb Strain Softening Knownorreported Parameters Density solid (gr/cm3) Porosity Intrinsic Permeability Peak Frictional angle Residual Frictional angle Peak Cohesion (Kpa) Residual cohesion Young Module Dilation angle Shape factor Value 1340 0.26 10 e-09 40 40 0.00 0 Clearly reported in case study Unknown Parameters ????????? ????????? ????????? FittingParameters Parametric Study
  • 29. Main Case Study : Liquefaction and Retrogressive failure in Cohesion less Material: Selection of of constitutive models  Mohr Coulomb Strain Softening Fitting Parameters Parameters SET01 SET02 SET03 SET04 SET05 SET06 E KPa 1000 1000 1000 1000 1000 1000 Ψ -5 -5 -5 -15 -15 -15 𝛽 4 40 400 4 40 400 .0 20.0 40.0 60.0 80.0 100.0 120.0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 DeviatoricStress(KPa) Axial Strain SET 01 SET 02 SET 03 SET 04 SET 05 SET 06 .0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 0 20 40 60 80 100 DeviatoricStress(KPa) Mean effective Stress (KPa) .0 10.0 20.0 30.0 40.0 50.0 60.0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Porewaterpressure(KPa) Axial Strain SET 01 SET 02 SET 03 SET 04 SET 05 SET 06 • The model can not take into the account the effect of density (a) (b) Cuomo, Ghasemi, Martinelli, Calvello, (2017) Simulation of liquefaction and retrogressive slope failure in loose cohesionless material • one set of parameters can not predict mechanical features of all three tests at the same time pore water pressure Shear strength Effective Stress Path
  • 30. Stress Initialization (quasi-static convergence)Removing fixities, applying liquid traction at the rear of the slope Main Case Study : Slope Model : Geometry, boundary and Initial Condition • One Particle formulation • Mixed Integration • For the Frist time Layered Soil in one particle formulation • Special Consideration for pressure smoothing in Mixed Element • Number of Element = 3,336 • Number of Particle per element = 4 Elastic material Dry Saturated Material liquid horizontal fixity Frictional Contact Liquid pressure Tracking Points and Zone: Elastic Material Zone1 Zone2 Zone3 Frictional contact Sat dry F1 F2 F3 F4 F5 Point X Y F1 0.7769 0.09424 F2 1.458 0.125 F3 1.762 0.09192 F4 0.9624 0.6130 F5 0.6833 0.6541 Liquid Fixity Linearliquidtraction
  • 31. Slope Model : Simulation By Strain Softening Movie Time!!! • Slope Simulation MC_ Strain Softening • Progressive Collapse
  • 32. Slope Model : Simulation By Strain Softening Parameters Values Density solid (gr/cm3) 1340 Porosity 0.26 Intrinsic Permeability 10 e-09 Peak Frictional angle 40 Residual Frictional angle 40 Peak Cohesion (Kpa) 0.00 Residual cohesion 0 Young Module 1000 Dilation angle -15 Shape factor 40 • Progressive failure • Similar to stage 1 and 2 reported in experiment • 3rd stage is missing • Excess pore water pressure was not built enough to make further collapse Time =5=0.3 Time =0.6 Final _scheme Time =1.2 Deviatoric Strain Zone 1 Zone 2 Zone 3 Time (sec) PWP(Kpa)PWP(Kpa)PWP(Kpa) (a) (b) Zone 3 Zone 2 Zone 3
  • 33. The model by von Wolffersdorff (1996) is now considered as a reference hypoplastic model for granular materials. It requires 8 material parameters: 𝜑𝑐 is the critical state friction angle. ℎ 𝑠 and n control the shape of limiting void ratio curves (normal compression lines and critical state line). Ec0 is critical void ratio at zero stress Ei0 is maximum void ratio at zero stress Ed0 is minimal void ratio at the state of maximum density 𝛼 controls the dependency of peak friction angle on relative Density. 𝛽 controls the dependency of soil stiffness on relative density. Reported By case Study Obtainable from State Diagram Fitting parameters Intergranular Parameters : The intergranular strain concept (Niemunis and Herle 1997) enables to model small-strain-stiffness effects in hypoplasticity. It requires 5 more material parameters: mR: parameter controlling the initial (very-small-strain) shear modulus upon 180 strain path reversal and in the initial loading mT : parameter controlling the initial shear modulus upon 90 strain path reversal R: the size of elastic range (in the strain Space) 𝛽𝑟 and 𝑥 control the rate of degradation of the stiffness with strain. Main Parameters : Fitting parameters Main Case Study : Liquefaction and Retrogressive failure in Cohesion less Material: Selection of of constitutive models • Hypoplasticity 𝜑𝑐 40 ℎ 𝑠 93KPa n 0.07 Ec0 0.93
  • 34. i) Deviatoric stress versus axial strain ii) pore water pressure versus axial strain 𝑒𝑟𝑟𝑜𝑟 = 𝑦′ 𝑖 − 𝑦 𝑖 2 [0.01 × 𝑤𝑒𝑖𝑔ℎ𝑡 ]2 𝑛 𝑖=1𝑔𝑟𝑎𝑝ℎ𝑠 𝑛, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑦′ 𝑖 , 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖 𝑦 𝑖 , 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖 Optimization algorithm New method called SQPSO, it is a modification of conventional Particle Swarm Optimization method adopted for the functions in which the large number of parameters are going to be estimated. (Hosseinnezhad et al 2014) Objective function: Parameters of interest: 10 Parameters 𝜑𝑐 , Ei0 , Ed0 , 𝛼 , 𝛽 , mR, mT , R, 𝛽𝑟 and 𝑥 PWP q Axial deformationAxial deformation Graph discretization (Eckersley 1986) Observation Main Case Study : Inverse analysis in order to obtain Hypo plasticity Parameters 2000 2050 2100 2150 2200 2250 0 10 20 30 40 50 60 70 80 ModelErrorFuncrion Number of Iteration
  • 35. Test NP-02 (Initial void ratio = 0.410) Test NP-13 (Initial void ratio = 0.34) Test NP-5 (Initial void ratio = 0.38) Parameters Estimated Values 𝜑𝑐 [○] 40 ℎ 𝑠 [Kpa] 93.27195 n 0.0768 Ec0 0.93 Ei0 1.3 Ed0 0.397758 𝛼 0.349126 𝛽 0.562619 𝑚 𝑅 1.33593 𝑚 𝑇 7.05643 R 0.000142 𝛽𝑟 0.0773067 𝑥 0.951017 Main Case Study : Hypo-plasticity: Results of inverse Analysis
  • 36. Main Case Study : Hypo-plasticity: Check the obtained Parameters Parameters Estimated Values 𝜑𝑐 [○] 40 ℎ 𝑠 [Kpa] 93.27195 n 0.0768 Ec0 0.93 Ei0 1.3 Ed0 0.397758 𝛼 0.349126 𝛽 0.562619 𝑚 𝑅 1.33593 𝑚 𝑇 1.05643 R 0.000142 𝛽𝑟 0.0773067 𝑥 0.951017 Adding Prior knowledge to the results is recalibrated 𝛼 = 0.21 0 5 10 15 20 25 30 35 40 45 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 FrictionalAngel Axial strain Alpha = 0.05 Alpha = 0.34 Alpha = 0.2 Alpha = 0.54
  • 37. Main Case Study : Hypo-plasticity: Check the obtained Parameters Comparing the results without and with modification: f1 f3 f4 f2 Point 3 Point 2 Point 4 Point 2 f1 f3 f4 f2 Point 1 f1 f3f4 f2 f1 f3 f4 f2 2nd Stage(time = 0.6 sec) 1st Stage (time = 0.3 sec) 3rd Stage(time = 1.3 sec) Final Shape (Time =1.7) (b) 2nd Stage (time = 0.6 sec) Final Shape (Time =1.4) 1st Stage (time = 0.3) 3rd Stage (time =1.1 Sec) (a) Deviatoric Strain Without modification With modification TEST results
  • 38. Slope Model : Simulation By Hypo plasticity Movie • Slope simulation with Hypo plasticity • Retrogressive failure:
  • 39. Slope Model : Simulation By Hypo plasticity Movie • Slope simulation with Hypo plasticity • Static Liquefaction :
  • 40. -2 -1 0 1 2 3 4 5 6 7 8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 PoreWaterPressure(KPa) Time (sec) -2 -1 0 1 2 3 4 5 6 7 8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 PoreWaterPressure(KPa) Time (sec) -2 -1 0 1 2 3 4 5 6 7 8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 PoreWaterPressure(KPa) Time (sec) Porewaterpressure(KPa) Zone1 Mean effective stress Zone2 Zone3 Stage 1 Stage 2 Stage 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 MeanEffectiveStress(KPa) Time (sec) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 MeanEffectiveStress(KPa) Time (sec) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 MeanEffectiveStress(KPa) Time (sec) Stage 1 Stage 2 Stage 3 Zone3 Zone2 Zone1 Meaneffectivestress(KPa) Overall Time (sec) Stage 1 Stage 2 Stage 3 Overall Time (sec) Zone3 Zone2 Zone1 f1 f3 f4 f2 Point 3 Point 2 Point 4 Point 2 f1 f3 f4 f2 Point 1 f1 f3f4 f2 e initial = 0.60 Deviatoric Strain Solid 1st Stage 2nd Stage 3rd Stage 2nd Stage(time = 0.8 sec) 1st Stage (time = 0.4 sec) 3rd Stage(time = 1.1 sec) Slope Model : Simulation By Hypoplasticity • Geometric Validation • Soil Response in Fixed Coordinate
  • 41. Remarks Most advantage of Anura 3D: Capable to simulate all of the stage of phenomenon . appropriate for both of inverse modeling scale; to calibrate small and large deformation parameters Advanced numerical method are being developed, the validation of their capability is extremely needed • Large deformation phenomenon usually involves complex mechanism • Simulation of complex system usually involves complex constitutive model • Many advanced constitutive models are already implemented in Geotechnical Codes but the difficulties in choosing their parameters undermines their capability and applications • Inverse Analysis feature could simplify the usage of advanced model Strain Softening Mohr-coulomb Modified Cam clay Hypoplasticity Mohr-coulomb • Inverse Analysis could easily estimates Numerical Parameters which doesn't have physical meaning : Shape factor Contact coefficient And ……… Modified hypoplasticity Norsand • Using the inappropriate constitutive model could lead to wrong prediction of the phenomenon
  • 42. Thank you Pooyan Ghasemi and Mario Martinelli Deltares
  • 43. Appendix Comparing the results without and with modification: f1 f3 f4 f2 Point 3 Point 2 Point 4 Point 2 f1 f3 f4 f2 Point 1 f1 f3f4 f2 f1 f3 f4 f2 2nd Stage(time = 0.6 sec) 1st Stage (time = 0.3 sec) 3rd Stage(time = 1.3 sec) Final Shape (Time =1.7) (b) 2nd Stage (time = 0.6 sec) Final Shape (Time =1.4) 1st Stage (time = 0.3) 3rd Stage (time =1.1 Sec) (a) Deviatoric Strain Without modification With modification