SlideShare a Scribd company logo
Updated at Jan 14 2011 
DirectLiNGAM: 
A direct estimation method for 
LiNGAM 
Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Osaka Univ. 
Aapo Hyvarinen, Univ. Helsinki 
Yoshinobu Kawahara, Takashi Washio, Osaka Univ. 
Patrik O. Hoyer, Univ. Helsinki 
Kenneth Bollen, Univ. North Carolina
2 
Abstract 
• Structural equation models (SEMs) are widely 
used in many empirical sciences (Bollen, 1989) 
• A non-Gaussian framework has been shown to 
be useful for discovering SEMs (Shimizu, et al. 2006) 
• Propose a new non-Gaussian estimation method 
– No algorithmic parameters 
– Guaranteed convergence in a fixed number of steps 
if the data strictly follows the model
Background
4 
Linear Non-Gaussian Acyclic Model 
(LiNGAM model) (Shimizu et al. 2006) 
• A SEM model, identifiable using non-Gaussianity 
• Continuous observed random variables 
x 
i • Directed acyclic graph (DAG) 
• Linearity 
• Disturbances are independent and non-Gaussian 
x = Bx + e i 
i e 
i ij j e x b x + = Σ< 
k j k i 
( ) ( ) 
or 
i x 
– k(i) denotes an order of 
– B can be permuted to be lower triangular by simultaneous equal 
row and column permutations
5 
⎤ 
x 
1 
2 
x 
-1.3 
Example 
• A three-variable model 
x = 
e 
1 1 
x = 1.5 
x + 
e 
2 1 2 
x = − 1.3 
x + 
e 
3 2 3 
• Orders of variables: 
⎡ 
⎤ 
⎡ 
x 
1 
2 
0 0 0 
1.5 0 0 
x 
– 
– x2 can be influenced by x1, but never by x3 
• External influences: 
– x1 is equal to e1 and is exogenous 
– e2 and e3 are errors 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
+ 
⎢ ⎢ ⎢ 
⎣ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎢ ⎢ ⎢ 
⎣ 
− 
= 
⎥ ⎥ ⎥ 
⎦ 
⎢ ⎢ ⎢ 
⎣ 
e 
1 
e 
2 
3 
3 
3 
0 1.3 0 
e 
x 
x 
1442443 
k(1) =1, k(2) = 2, k(3) = 3 
x3 
x1 
x2 
1.5 
e1 
e2 e3 
B
6 
Our goal 
• We know 
– Data X is generated by 
• We do NOT know 
x = Bx + e 
ij b 
– Connection strengths: 
– Orders: k(i) 
– Disturbances: 
• What we observe is data X only 
• Goal 
i e 
– Estimate B and k using data X only!
Previous work
8 Independent Component Analysis 
(Comon 1994; Hyvarinen et al., 2001) 
x = As 
• A is an unknown square matrix 
• are independent and non-Gaussian 
i s 
• Identifiable including the rotation (Comon, 1994) 
• Many estimation methods 
– e.g., FastICA (Hyvarinen,99), Amari (99) and Bach & Jordan (02)
9 Key idea 
i x 
• Observed variables are linear combinations of 
non-Gaussian independent disturbances 
• ICA gives 
x = Bx + 
e 
( )−1 
x I B e 
⇒ = − 
Ae 
= 
-- ICA! 
W= PDA−1 = PD(I −B) 
– P: Permutation matrix, D: scaling matrix 
i e 
• Permutation indeterminacy in ICA can be solved 
– Can be shown that the correct permutation is the only one which 
has no zeros in the diagonal (Shimizu et al., UAI2005)
ICA-LiNGAM algorithm 10 
(Shimizu et al., 2006) 
1. Do ICA (here, FastICA) and get W = PD(I-B) 
2. Find a permutation that gives no zeros on the 
diagonal. Then we obtain D(I-B). 
ˆ min 1 
= Σ ( ) 
i ii PW 
P 
P 
1 
1 
1 
3. Divide each row by its corresponding diagonal 
element. Then we get I-B, i.e., B 
4. Find a simultaneous row and column permutation Q so 
that the permuted B is as close as possible to be 
strictly lower triangular. Then we get k(i). 
( ) Σ≤ 
ˆ = 
min 
i j 
ij 
Q QBQT 
Q 
1 P
11 Potential problems of 
ICA-LiNGAM algorithm 
1. ICA is an iterative search method 
– May stuck in a local optimum if the initial 
guess or step size is badly chosen 
2. The permutation algorithms are not 
scale-invariant 
– May provide different variable orderings for 
different scales of variables
A new method
13 
DirectLiNGAM algorithm 
(Shimizu et al., UAI2009; Shimizu et al., 2011) 
• Alternative estimation method without ICA 
– Estimates an ordering of variables that makes path-coefficient 
matrix B to be lower-triangular. 
perm perm perm e x x + ⎥⎦ ⎤ 
⎡ 
= 
123 
⎢⎣ 
O 
perm B 
A full DAG 
x1 x3 
x2 
Redundant edges 
• Many existing (covariance-based) methods can 
do further pruning or finding significant path 
coefficients (Zou, 2006; Shimizu et al., 2006; Hyvarinen et al. 2010)
Basic idea (1/2) : 14 
An exogenous variable can be at the 
top of a right ordering 
• An exogenous variable is a variable with no 
parents (Bollen, 1989), here . 
– The corresponding row of B has all zeros. 
• So, an exogenous variable can be at the top of 
such an ordering that makes B lower-triangular 
with zeros on the diagonal. 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
+ 
⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
0 0 0 
1.5 0 ⎣ 
− 
= 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
e 
3 
e 
1 
2 
x 
3 
x 
1 
2 
x 
3 
x 
1 
2 
0 1.3 0 
e 
x 
x 
0 
0 
0 
0 
0 0 
x3 x1 x2 
j x 
3 x
Basic idea (2/2): 15 
3 x 
Regress exogenous out 
r(3) (i =1,2) i 
• Compute the residuals regressing the other 
variables on exogenous : 
3 x (i =1,2) x i 
( ) (3) 
3 
1 r and r 
– The residuals form a LiNGAM model. 
– The ordering of the residuals is equivalent to that of 
corresponding original variables. 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
+ 
⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
2 
e 
3 
e 
1 
e 
2 
x 
3 
x 
1 
2 
0 0 
x 
0 
0 
0 
0 
1 r 1 x 
x ⎡ 
0 
⎢ ⎢ ⎢ 
1.5 0 ⎣ 
0 
0 − 
1.3 = 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
3 
x 
1 
2 
x 
⎡ 
+ ⎥⎦ 
⎡ 
r 0 0 
⎤ 
⎡ 
− 
⎤ 
⎡ 
(3) 
1 
(3) 
1 
r 
• Exogenous ( 3 ) implies ` can be at the second top’. 
⎤ 
⎥⎦ 
⎢⎣ 
⎤ 
⎢⎣ 
⎥⎦ 
⎢⎣ 
= ⎥⎦ 
⎢⎣ 
e 
1 
2 
(3) 
2 
(3) 
2 
1.3 e 
r 
r 
(3) 
2 (3) r 
1 x3 x1 x2 r 
0
16 
Outline of DirectLiNGAM 
• Iteratively find exogenous variables until all the 
variables are ordered: 
1. Find an exogenous variable . 
– Put at the top of the ordering. 
– Regress out. 
2. Find an exogenous residual, here . 
– Put at the second top of the ordering. 
– Regress out. 
3. Put at the third top of the ordering and terminate. 
The estimated ordering is 
3 x 
(3) 
1 r 
3 x 
1 x3 x1 x2 r (3,1) 
2 r 
(3) 
2 (3) r 
3 x 
1 x 
(3) 
1 r 
2 x 
. 3 1 2 x < x < x 
Step. 1 Step. 2 Step. 3
17 
Identification of an exogenous 
variable (two variable cases) 
i) is exogenous. ii) is NOT exogenous. 
( ) 
1 e 
x b x b 
= 
1 = 12 2 + 12 ≠ 
0 
x e 
x b var 
x 
12 2 
var( ) 
x x 
( ) 1 1 x = e 1 x 
Regressing on , 
r x x x 
cov( , ) 
2 1 
var( ) 
= − 
b x x 
1 12 cov( 2 , 1 
) 
var( ) 
1 
2 
1 
1 
1 
2 
(1) 
2 
2 1 
x 
x 
x 
x 
− 
⎭ ⎬ ⎫ 
⎩ ⎨ ⎧ 
= − 
x e 
= 
x b x e b 
1 1 
= + ≠ 
( 0) 2 21 1 2 21 
x x 
Regressing on , 
r x x x 
cov( , ) 
= − 
x b x 
= − 
2 21 1 
2 
1 
2 1 
1 
2 
(1) 
2 
2 1 
var( ) 
e 
x 
x 
= 
( ) 
2 2 
1 e 
and (1) are NOT independent. 
1 2 and (1) are independent. x r 
1 2 x r
Need to use Darmois-Skitovitch’ 18 
theorem (Darmois, 1953; Skitovitch, 1953) 
( ) 
1 
x b x e b 
= 
1 = 12 2 + ⋅ 1 12 ≠ 
0 
x e 
x x 
1 
2 
2 
x x 
Regressing on , 
r x x x 
cov( , ) 
2 1 
var( ) 
= − 
b x x 
1 12 cov( 2 , 1 
) 
1 
1 
1 
2 
(1) 
2 
1 2 
var 
var( ) 
var( ) 
e 
x 
x 
x 
x 
− 
⎭ ⎬ ⎫ 
⎩ ⎨ ⎧ 
= − 
( ) 
2 2 
Darmois-Skitovitch’ theorem: 
Define two variables and as 
ii) 1 is NOT exogenous. x 
and (1) are NOT independent. 
1 2 x r 
Σ Σ 
= = 
x 1 = a 1 j e j , 
x = 
a e 
p 
2 2 
j 
j j 
p 
j 
1 
1 
1 x 
j e 
where are independent 
random variables. 
If there exists a non-Gaussian 
for which , 
and are dependent. 
i e 
0 1 2 ≠ i i a a 
1 x 2 x 
1 
12 b 
2 x
19 
Identification of an exogenous 
variable (p variable cases) 
( ) 
cov( ) x 
j = − , x x 
i j 
j 
i x 
r x 
• Lemma 1: and its residual 
are independent for all is exogenous 
j 
var( ) 
j 
i 
x 
i ≠ j j ⇔ x 
• In practice, we can identify an exogenous variable 
by finding a variable that is most independent of 
its residuals
20 Independence measures 
• Evaluate independence between a variable and a 
residual by a nonlinear correlation: 
corr{x , g(r( j) )} (g = tanh) 
j i 
• Taking the sum over all the residuals, we get: 
{ ( j 
Σ≠ 
) } { ( ) } T = corr x ) ) 
j , g i r( + 
corr g x , r( i j 
j 
j i 
• Can use more sophisticated measures as well 
(Bach & Jordan, 2002; Gretton et al., 2005; Kraskov et al., 2004). 
– Kernel-based independence measure (Bach & Jordan, 2002) 
often gives more accurate estimates (Sogawa et al., IJCNN10)
Real-world data example (1/2) 21 
• Status attainment model 
– General Social Survey (U.S.A.) 
– Sample size = 1380 
• Non-farm, ages 35-45, white, male, in the labor force, years 1972-2006 
Domain knowledge 
(Duncan et al. 1972) 
DirectLiNGAM
Real-world data example (2/2) 
ICA-LiNGAM 
PC algorithm GES 
22
23 
Summary 
• DirectLiNGAM repeats: 
– Least squares simple linear regression 
– Evaluation of pairwise independence between each 
variable and its residuals 
• No algorithmic parameters like stepsize, initial 
guesses, convergence criteria 
• Guaranteed convergence to the right solution in 
a fixed number of steps (the number of 
variables) if the data strictly follows the model

More Related Content

What's hot

因果関係を時系列変化で分析
因果関係を時系列変化で分析因果関係を時系列変化で分析
因果関係を時系列変化で分析
DaikiNagamine
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
Shiga University, RIKEN
 
ベイズ機械学習(an introduction to bayesian machine learning)
ベイズ機械学習(an introduction to bayesian machine learning)ベイズ機械学習(an introduction to bayesian machine learning)
ベイズ機械学習(an introduction to bayesian machine learning)
医療IT数学同好会 T/T
 
パターン認識と機械学習 §6.2 カーネル関数の構成
パターン認識と機械学習 §6.2 カーネル関数の構成パターン認識と機械学習 §6.2 カーネル関数の構成
パターン認識と機械学習 §6.2 カーネル関数の構成
Prunus 1350
 
変分ベイズ法の説明
変分ベイズ法の説明変分ベイズ法の説明
変分ベイズ法の説明
Haruka Ozaki
 
ブートストラップ法とその周辺とR
ブートストラップ法とその周辺とRブートストラップ法とその周辺とR
ブートストラップ法とその周辺とRDaisuke Yoneoka
 
今さら聞けないカーネル法とサポートベクターマシン
今さら聞けないカーネル法とサポートベクターマシン今さら聞けないカーネル法とサポートベクターマシン
今さら聞けないカーネル法とサポートベクターマシンShinya Shimizu
 
非ガウス性を利用した 因果構造探索
非ガウス性を利用した因果構造探索非ガウス性を利用した因果構造探索
非ガウス性を利用した 因果構造探索
Shiga University, RIKEN
 
Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)
Ha Phuong
 
構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性
Shiga University, RIKEN
 
階層ベイズとWAIC
階層ベイズとWAIC階層ベイズとWAIC
階層ベイズとWAIC
Hiroshi Shimizu
 
ベイズ推論とシミュレーション法の基礎
ベイズ推論とシミュレーション法の基礎ベイズ推論とシミュレーション法の基礎
ベイズ推論とシミュレーション法の基礎
Tomoshige Nakamura
 
PRML輪読#10
PRML輪読#10PRML輪読#10
PRML輪読#10
matsuolab
 
Chapter11.2
Chapter11.2Chapter11.2
Chapter11.2
Takuya Minagawa
 
統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333Issei Kurahashi
 
関数データ解析の概要とその方法
関数データ解析の概要とその方法関数データ解析の概要とその方法
関数データ解析の概要とその方法
Hidetoshi Matsui
 
研究室内PRML勉強会 11章2-4節
研究室内PRML勉強会 11章2-4節研究室内PRML勉強会 11章2-4節
研究室内PRML勉強会 11章2-4節Koji Matsuda
 
いいからベイズ推定してみる
いいからベイズ推定してみるいいからベイズ推定してみる
いいからベイズ推定してみる
Makoto Hirakawa
 
金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル
Kei Nakagawa
 
Tokyo r7 sem_20100724
Tokyo r7 sem_20100724Tokyo r7 sem_20100724
Tokyo r7 sem_20100724
osamu morimoto
 

What's hot (20)

因果関係を時系列変化で分析
因果関係を時系列変化で分析因果関係を時系列変化で分析
因果関係を時系列変化で分析
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
 
ベイズ機械学習(an introduction to bayesian machine learning)
ベイズ機械学習(an introduction to bayesian machine learning)ベイズ機械学習(an introduction to bayesian machine learning)
ベイズ機械学習(an introduction to bayesian machine learning)
 
パターン認識と機械学習 §6.2 カーネル関数の構成
パターン認識と機械学習 §6.2 カーネル関数の構成パターン認識と機械学習 §6.2 カーネル関数の構成
パターン認識と機械学習 §6.2 カーネル関数の構成
 
変分ベイズ法の説明
変分ベイズ法の説明変分ベイズ法の説明
変分ベイズ法の説明
 
ブートストラップ法とその周辺とR
ブートストラップ法とその周辺とRブートストラップ法とその周辺とR
ブートストラップ法とその周辺とR
 
今さら聞けないカーネル法とサポートベクターマシン
今さら聞けないカーネル法とサポートベクターマシン今さら聞けないカーネル法とサポートベクターマシン
今さら聞けないカーネル法とサポートベクターマシン
 
非ガウス性を利用した 因果構造探索
非ガウス性を利用した因果構造探索非ガウス性を利用した因果構造探索
非ガウス性を利用した 因果構造探索
 
Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)
 
構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性
 
階層ベイズとWAIC
階層ベイズとWAIC階層ベイズとWAIC
階層ベイズとWAIC
 
ベイズ推論とシミュレーション法の基礎
ベイズ推論とシミュレーション法の基礎ベイズ推論とシミュレーション法の基礎
ベイズ推論とシミュレーション法の基礎
 
PRML輪読#10
PRML輪読#10PRML輪読#10
PRML輪読#10
 
Chapter11.2
Chapter11.2Chapter11.2
Chapter11.2
 
統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333
 
関数データ解析の概要とその方法
関数データ解析の概要とその方法関数データ解析の概要とその方法
関数データ解析の概要とその方法
 
研究室内PRML勉強会 11章2-4節
研究室内PRML勉強会 11章2-4節研究室内PRML勉強会 11章2-4節
研究室内PRML勉強会 11章2-4節
 
いいからベイズ推定してみる
いいからベイズ推定してみるいいからベイズ推定してみる
いいからベイズ推定してみる
 
金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル
 
Tokyo r7 sem_20100724
Tokyo r7 sem_20100724Tokyo r7 sem_20100724
Tokyo r7 sem_20100724
 

Similar to A direct method for estimating linear non-Gaussian acyclic models

Ch02 fuzzyrelation
Ch02 fuzzyrelationCh02 fuzzyrelation
Ch02 fuzzyrelation
Hoàng Đức
 
chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdf
AliEb2
 
Regression Analysis.pdf
Regression Analysis.pdfRegression Analysis.pdf
Regression Analysis.pdf
ShrutidharaSarma1
 
8.5 GaussianBNs.pdf
8.5 GaussianBNs.pdf8.5 GaussianBNs.pdf
8.5 GaussianBNs.pdf
ssusercc3ff71
 
MATHS - Linear equation in two variable (Class - X) Maharashtra Board
MATHS - Linear equation in two variable (Class - X) Maharashtra BoardMATHS - Linear equation in two variable (Class - X) Maharashtra Board
MATHS - Linear equation in two variable (Class - X) Maharashtra Board
Pooja M
 
Derivatives
DerivativesDerivatives
Derivatives
Nisarg Amin
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)
CrackDSE
 
Optimization Techniques.pdf
Optimization Techniques.pdfOptimization Techniques.pdf
Optimization Techniques.pdf
anandsimple
 
Maths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K MukhopadhyayMaths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K Mukhopadhyay
Dr. Asish K Mukhopadhyay
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
OchiriaEliasonyait
 
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier HudryAlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm 2012
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
Hanifa Zulfitri
 
UNIT I_5.pdf
UNIT I_5.pdfUNIT I_5.pdf
UNIT I_5.pdf
Muthukumar P
 
Symmetrical2
Symmetrical2Symmetrical2
Symmetrical2
Senthil Kumar
 
NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
PRABHAHARAN429
 
Regression analysis by Muthama JM
Regression analysis by Muthama JMRegression analysis by Muthama JM
Regression analysis by Muthama JM
Japheth Muthama
 
Regression Analysis by Muthama JM
Regression Analysis by Muthama JM Regression Analysis by Muthama JM
Regression Analysis by Muthama JM
Japheth Muthama
 
Lesson3.2 a basicdifferentiationrules
Lesson3.2 a basicdifferentiationrulesLesson3.2 a basicdifferentiationrules
Lesson3.2 a basicdifferentiationrules
Nico Reyes
 
Course notes2summer2012
Course notes2summer2012Course notes2summer2012
Course notes2summer2012
Von Adam Martinez
 
Bounded arithmetic in free logic
Bounded arithmetic in free logicBounded arithmetic in free logic
Bounded arithmetic in free logic
Yamagata Yoriyuki
 

Similar to A direct method for estimating linear non-Gaussian acyclic models (20)

Ch02 fuzzyrelation
Ch02 fuzzyrelationCh02 fuzzyrelation
Ch02 fuzzyrelation
 
chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdf
 
Regression Analysis.pdf
Regression Analysis.pdfRegression Analysis.pdf
Regression Analysis.pdf
 
8.5 GaussianBNs.pdf
8.5 GaussianBNs.pdf8.5 GaussianBNs.pdf
8.5 GaussianBNs.pdf
 
MATHS - Linear equation in two variable (Class - X) Maharashtra Board
MATHS - Linear equation in two variable (Class - X) Maharashtra BoardMATHS - Linear equation in two variable (Class - X) Maharashtra Board
MATHS - Linear equation in two variable (Class - X) Maharashtra Board
 
Derivatives
DerivativesDerivatives
Derivatives
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)
 
Optimization Techniques.pdf
Optimization Techniques.pdfOptimization Techniques.pdf
Optimization Techniques.pdf
 
Maths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K MukhopadhyayMaths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K Mukhopadhyay
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
 
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier HudryAlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier Hudry
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
UNIT I_5.pdf
UNIT I_5.pdfUNIT I_5.pdf
UNIT I_5.pdf
 
Symmetrical2
Symmetrical2Symmetrical2
Symmetrical2
 
NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
 
Regression analysis by Muthama JM
Regression analysis by Muthama JMRegression analysis by Muthama JM
Regression analysis by Muthama JM
 
Regression Analysis by Muthama JM
Regression Analysis by Muthama JM Regression Analysis by Muthama JM
Regression Analysis by Muthama JM
 
Lesson3.2 a basicdifferentiationrules
Lesson3.2 a basicdifferentiationrulesLesson3.2 a basicdifferentiationrules
Lesson3.2 a basicdifferentiationrules
 
Course notes2summer2012
Course notes2summer2012Course notes2summer2012
Course notes2summer2012
 
Bounded arithmetic in free logic
Bounded arithmetic in free logicBounded arithmetic in free logic
Bounded arithmetic in free logic
 

More from Shiga University, RIKEN

Causal discovery and prediction mechanisms
Causal discovery and prediction mechanismsCausal discovery and prediction mechanisms
Causal discovery and prediction mechanisms
Shiga University, RIKEN
 
統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-
Shiga University, RIKEN
 
A non-Gaussian model for causal discovery in the presence of hidden common ca...
A non-Gaussian model for causal discovery in the presence of hidden common ca...A non-Gaussian model for causal discovery in the presence of hidden common ca...
A non-Gaussian model for causal discovery in the presence of hidden common ca...
Shiga University, RIKEN
 
Non-Gaussian structural equation models for causal discovery
Non-Gaussian structural equation models for causal discoveryNon-Gaussian structural equation models for causal discovery
Non-Gaussian structural equation models for causal discovery
Shiga University, RIKEN
 
因果探索: 観察データから 因果仮説を探索する
因果探索: 観察データから因果仮説を探索する因果探索: 観察データから因果仮説を探索する
因果探索: 観察データから 因果仮説を探索する
Shiga University, RIKEN
 
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
Shiga University, RIKEN
 
Linear Non-Gaussian Structural Equation Models
Linear Non-Gaussian Structural Equation ModelsLinear Non-Gaussian Structural Equation Models
Linear Non-Gaussian Structural Equation Models
Shiga University, RIKEN
 

More from Shiga University, RIKEN (7)

Causal discovery and prediction mechanisms
Causal discovery and prediction mechanismsCausal discovery and prediction mechanisms
Causal discovery and prediction mechanisms
 
統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-
 
A non-Gaussian model for causal discovery in the presence of hidden common ca...
A non-Gaussian model for causal discovery in the presence of hidden common ca...A non-Gaussian model for causal discovery in the presence of hidden common ca...
A non-Gaussian model for causal discovery in the presence of hidden common ca...
 
Non-Gaussian structural equation models for causal discovery
Non-Gaussian structural equation models for causal discoveryNon-Gaussian structural equation models for causal discovery
Non-Gaussian structural equation models for causal discovery
 
因果探索: 観察データから 因果仮説を探索する
因果探索: 観察データから因果仮説を探索する因果探索: 観察データから因果仮説を探索する
因果探索: 観察データから 因果仮説を探索する
 
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
 
Linear Non-Gaussian Structural Equation Models
Linear Non-Gaussian Structural Equation ModelsLinear Non-Gaussian Structural Equation Models
Linear Non-Gaussian Structural Equation Models
 

Recently uploaded

The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
Sérgio Sacani
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
Sérgio Sacani
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
yqqaatn0
 
20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx
Sharon Liu
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
Abdul Wali Khan University Mardan,kP,Pakistan
 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
European Sustainable Phosphorus Platform
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
muralinath2
 
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptxANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
RASHMI M G
 
Eukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptxEukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptx
RitabrataSarkar3
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
Texas Alliance of Groundwater Districts
 
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
David Osipyan
 
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
AbdullaAlAsif1
 
Medical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptxMedical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptx
terusbelajar5
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdfTopic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
TinyAnderson
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
KrushnaDarade1
 
Cytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptxCytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptx
Hitesh Sikarwar
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
PRIYANKA PATEL
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
Gokturk Mehmet Dilci
 

Recently uploaded (20)

The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
 
20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx20240520 Planning a Circuit Simulator in JavaScript.pptx
20240520 Planning a Circuit Simulator in JavaScript.pptx
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
 
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptxANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
 
Eukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptxEukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptx
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
 
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
 
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
 
Medical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptxMedical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptx
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdfTopic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
 
Cytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptxCytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptx
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
 

A direct method for estimating linear non-Gaussian acyclic models

  • 1. Updated at Jan 14 2011 DirectLiNGAM: A direct estimation method for LiNGAM Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Osaka Univ. Aapo Hyvarinen, Univ. Helsinki Yoshinobu Kawahara, Takashi Washio, Osaka Univ. Patrik O. Hoyer, Univ. Helsinki Kenneth Bollen, Univ. North Carolina
  • 2. 2 Abstract • Structural equation models (SEMs) are widely used in many empirical sciences (Bollen, 1989) • A non-Gaussian framework has been shown to be useful for discovering SEMs (Shimizu, et al. 2006) • Propose a new non-Gaussian estimation method – No algorithmic parameters – Guaranteed convergence in a fixed number of steps if the data strictly follows the model
  • 4. 4 Linear Non-Gaussian Acyclic Model (LiNGAM model) (Shimizu et al. 2006) • A SEM model, identifiable using non-Gaussianity • Continuous observed random variables x i • Directed acyclic graph (DAG) • Linearity • Disturbances are independent and non-Gaussian x = Bx + e i i e i ij j e x b x + = Σ< k j k i ( ) ( ) or i x – k(i) denotes an order of – B can be permuted to be lower triangular by simultaneous equal row and column permutations
  • 5. 5 ⎤ x 1 2 x -1.3 Example • A three-variable model x = e 1 1 x = 1.5 x + e 2 1 2 x = − 1.3 x + e 3 2 3 • Orders of variables: ⎡ ⎤ ⎡ x 1 2 0 0 0 1.5 0 0 x – – x2 can be influenced by x1, but never by x3 • External influences: – x1 is equal to e1 and is exogenous – e2 and e3 are errors ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ + ⎢ ⎢ ⎢ ⎣ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ ⎢ ⎢ ⎢ ⎣ − = ⎥ ⎥ ⎥ ⎦ ⎢ ⎢ ⎢ ⎣ e 1 e 2 3 3 3 0 1.3 0 e x x 1442443 k(1) =1, k(2) = 2, k(3) = 3 x3 x1 x2 1.5 e1 e2 e3 B
  • 6. 6 Our goal • We know – Data X is generated by • We do NOT know x = Bx + e ij b – Connection strengths: – Orders: k(i) – Disturbances: • What we observe is data X only • Goal i e – Estimate B and k using data X only!
  • 8. 8 Independent Component Analysis (Comon 1994; Hyvarinen et al., 2001) x = As • A is an unknown square matrix • are independent and non-Gaussian i s • Identifiable including the rotation (Comon, 1994) • Many estimation methods – e.g., FastICA (Hyvarinen,99), Amari (99) and Bach & Jordan (02)
  • 9. 9 Key idea i x • Observed variables are linear combinations of non-Gaussian independent disturbances • ICA gives x = Bx + e ( )−1 x I B e ⇒ = − Ae = -- ICA! W= PDA−1 = PD(I −B) – P: Permutation matrix, D: scaling matrix i e • Permutation indeterminacy in ICA can be solved – Can be shown that the correct permutation is the only one which has no zeros in the diagonal (Shimizu et al., UAI2005)
  • 10. ICA-LiNGAM algorithm 10 (Shimizu et al., 2006) 1. Do ICA (here, FastICA) and get W = PD(I-B) 2. Find a permutation that gives no zeros on the diagonal. Then we obtain D(I-B). ˆ min 1 = Σ ( ) i ii PW P P 1 1 1 3. Divide each row by its corresponding diagonal element. Then we get I-B, i.e., B 4. Find a simultaneous row and column permutation Q so that the permuted B is as close as possible to be strictly lower triangular. Then we get k(i). ( ) Σ≤ ˆ = min i j ij Q QBQT Q 1 P
  • 11. 11 Potential problems of ICA-LiNGAM algorithm 1. ICA is an iterative search method – May stuck in a local optimum if the initial guess or step size is badly chosen 2. The permutation algorithms are not scale-invariant – May provide different variable orderings for different scales of variables
  • 13. 13 DirectLiNGAM algorithm (Shimizu et al., UAI2009; Shimizu et al., 2011) • Alternative estimation method without ICA – Estimates an ordering of variables that makes path-coefficient matrix B to be lower-triangular. perm perm perm e x x + ⎥⎦ ⎤ ⎡ = 123 ⎢⎣ O perm B A full DAG x1 x3 x2 Redundant edges • Many existing (covariance-based) methods can do further pruning or finding significant path coefficients (Zou, 2006; Shimizu et al., 2006; Hyvarinen et al. 2010)
  • 14. Basic idea (1/2) : 14 An exogenous variable can be at the top of a right ordering • An exogenous variable is a variable with no parents (Bollen, 1989), here . – The corresponding row of B has all zeros. • So, an exogenous variable can be at the top of such an ordering that makes B lower-triangular with zeros on the diagonal. ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ + ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ 0 0 0 1.5 0 ⎣ − = ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ e 3 e 1 2 x 3 x 1 2 x 3 x 1 2 0 1.3 0 e x x 0 0 0 0 0 0 x3 x1 x2 j x 3 x
  • 15. Basic idea (2/2): 15 3 x Regress exogenous out r(3) (i =1,2) i • Compute the residuals regressing the other variables on exogenous : 3 x (i =1,2) x i ( ) (3) 3 1 r and r – The residuals form a LiNGAM model. – The ordering of the residuals is equivalent to that of corresponding original variables. ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ + ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ 2 e 3 e 1 e 2 x 3 x 1 2 0 0 x 0 0 0 0 1 r 1 x x ⎡ 0 ⎢ ⎢ ⎢ 1.5 0 ⎣ 0 0 − 1.3 = ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ 3 x 1 2 x ⎡ + ⎥⎦ ⎡ r 0 0 ⎤ ⎡ − ⎤ ⎡ (3) 1 (3) 1 r • Exogenous ( 3 ) implies ` can be at the second top’. ⎤ ⎥⎦ ⎢⎣ ⎤ ⎢⎣ ⎥⎦ ⎢⎣ = ⎥⎦ ⎢⎣ e 1 2 (3) 2 (3) 2 1.3 e r r (3) 2 (3) r 1 x3 x1 x2 r 0
  • 16. 16 Outline of DirectLiNGAM • Iteratively find exogenous variables until all the variables are ordered: 1. Find an exogenous variable . – Put at the top of the ordering. – Regress out. 2. Find an exogenous residual, here . – Put at the second top of the ordering. – Regress out. 3. Put at the third top of the ordering and terminate. The estimated ordering is 3 x (3) 1 r 3 x 1 x3 x1 x2 r (3,1) 2 r (3) 2 (3) r 3 x 1 x (3) 1 r 2 x . 3 1 2 x < x < x Step. 1 Step. 2 Step. 3
  • 17. 17 Identification of an exogenous variable (two variable cases) i) is exogenous. ii) is NOT exogenous. ( ) 1 e x b x b = 1 = 12 2 + 12 ≠ 0 x e x b var x 12 2 var( ) x x ( ) 1 1 x = e 1 x Regressing on , r x x x cov( , ) 2 1 var( ) = − b x x 1 12 cov( 2 , 1 ) var( ) 1 2 1 1 1 2 (1) 2 2 1 x x x x − ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ = − x e = x b x e b 1 1 = + ≠ ( 0) 2 21 1 2 21 x x Regressing on , r x x x cov( , ) = − x b x = − 2 21 1 2 1 2 1 1 2 (1) 2 2 1 var( ) e x x = ( ) 2 2 1 e and (1) are NOT independent. 1 2 and (1) are independent. x r 1 2 x r
  • 18. Need to use Darmois-Skitovitch’ 18 theorem (Darmois, 1953; Skitovitch, 1953) ( ) 1 x b x e b = 1 = 12 2 + ⋅ 1 12 ≠ 0 x e x x 1 2 2 x x Regressing on , r x x x cov( , ) 2 1 var( ) = − b x x 1 12 cov( 2 , 1 ) 1 1 1 2 (1) 2 1 2 var var( ) var( ) e x x x x − ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ = − ( ) 2 2 Darmois-Skitovitch’ theorem: Define two variables and as ii) 1 is NOT exogenous. x and (1) are NOT independent. 1 2 x r Σ Σ = = x 1 = a 1 j e j , x = a e p 2 2 j j j p j 1 1 1 x j e where are independent random variables. If there exists a non-Gaussian for which , and are dependent. i e 0 1 2 ≠ i i a a 1 x 2 x 1 12 b 2 x
  • 19. 19 Identification of an exogenous variable (p variable cases) ( ) cov( ) x j = − , x x i j j i x r x • Lemma 1: and its residual are independent for all is exogenous j var( ) j i x i ≠ j j ⇔ x • In practice, we can identify an exogenous variable by finding a variable that is most independent of its residuals
  • 20. 20 Independence measures • Evaluate independence between a variable and a residual by a nonlinear correlation: corr{x , g(r( j) )} (g = tanh) j i • Taking the sum over all the residuals, we get: { ( j Σ≠ ) } { ( ) } T = corr x ) ) j , g i r( + corr g x , r( i j j j i • Can use more sophisticated measures as well (Bach & Jordan, 2002; Gretton et al., 2005; Kraskov et al., 2004). – Kernel-based independence measure (Bach & Jordan, 2002) often gives more accurate estimates (Sogawa et al., IJCNN10)
  • 21. Real-world data example (1/2) 21 • Status attainment model – General Social Survey (U.S.A.) – Sample size = 1380 • Non-farm, ages 35-45, white, male, in the labor force, years 1972-2006 Domain knowledge (Duncan et al. 1972) DirectLiNGAM
  • 22. Real-world data example (2/2) ICA-LiNGAM PC algorithm GES 22
  • 23. 23 Summary • DirectLiNGAM repeats: – Least squares simple linear regression – Evaluation of pairwise independence between each variable and its residuals • No algorithmic parameters like stepsize, initial guesses, convergence criteria • Guaranteed convergence to the right solution in a fixed number of steps (the number of variables) if the data strictly follows the model