Bounded Arithmetic in Free Logic

         Yoriyuki Yamagata
         CTFM, 2013/02/20
Buss’s theories         𝑆2𝑖



  –a#b=2     𝑎 ⋅|𝑏|
• Language of Peano Arithmetic + “#”

• BASIC axioms

                   𝑥
            𝐴          , Γ → Δ, 𝐴(𝑥)
                  2
• PIND


              𝐴 0 , Γ → Δ, 𝐴(𝑡)
where 𝐴 𝑥 ∈ Σ 𝑖𝑏 , i.e. has 𝑖-alternations of
bounded quantifiers ∀𝑥 ≤ 𝑡, ∃𝑥 ≤ 𝑡.
PH and Buss’s theories              𝑆2𝑖

               𝑆2 = 𝑆2 = 𝑆2 = …
                1    2    3



            𝑃 = □(𝑁𝑁) = □(Σ2 ) = …
                             𝑝
                    Implies



We can approach (non) collapse of PH from
(non) collapse of hierarchy of Buss’s theories

                           (PH = Polynomial Hierarchy)
Our approach
• Separate 𝑆2𝑖 by Gödel incompleteness theorem
• Use analogy of separation of 𝐼Σ 𝑖
Separation of 𝐼Σ 𝑖


 𝐼Σ3 ⊢ Con(IΣ2 )
 …
 𝐼Σ2 ⊢ Con IΣ2
⊆


  𝐼Σ1
⊆
Consistency proof inside                 𝑆2𝑖

• Bounded Arithmetics generally are not

  – 𝑆2 does not prove consistency of Q (Paris, Wilkie)
  capable to prove consistency.

  – 𝑆2 does not prove bounded consistency of
    𝑆2 (Pudlák)
     1

  – 𝑆2 does not prove consistency the 𝐵 𝑖 𝑏 fragement
      𝑖

   of 𝑆2 (Buss and Ignjatović)
        −1
Buss and Ignjatović(1995)

 …𝑆2 ⊢ 𝐵3 − Con(𝑆2 )
   3    b        −1



  𝑆2
   2
       ⊢   𝐵2
            b
                −   Con(𝑆2 )
                         −1
⊆




  𝑆2
   1
       ⊢   𝐵1
            b
                −   Con(𝑆2 )
                         −1
⊆
Where…
• 𝐵 𝑖 𝑏 − 𝐶𝐶𝐶 𝑇
  – consistency of 𝐵 𝑖 𝑏 −proofs
  – 𝐵 𝑖 𝑏 −proofs : the proofs by 𝐵 𝑖 𝑏 -formule
  – 𝐵 𝑖 𝑏 :Σ0𝑏 (Σ 𝑖𝑏 )… Formulas generated from Σ 𝑖𝑏 by
   Boolean connectives and sharply bounded

• 𝑆2
   −1
   quantifiers.


  – Induction free fragment of 𝑆2𝑖
If…
 𝑆2    ⊢   𝐵i   − Con    𝑆2    ,j > i
   𝑗        b             −1



Then, Buss’s hierarchy does not collapse.
Consistency proof of 𝑆2 inside 𝑆2𝑖
                           −1



Problem
• No truth definition, because
• No valuation of terms, because
  • The values of terms increase exponentially


In 𝑆2 world, terms do not have values a priori.
     𝑖
    • E.g. 2#2#2#2#2#...#2




• We introduce the predicate 𝐸 which signifies existence of
• Thus, we must prove the existence of values in proofs.

  values.
Our result(2012)

𝑆2
…5
     ⊢3−   Con(𝑆2
                −1
                     𝐸)

𝑆2
 4
     ⊢2−   Con(𝑆2
                −1
                     𝐸)
⊆




𝑆2
 3
     ⊢1−   Con(𝑆2
                −1
                     𝐸)
⊆
Where…
• 𝑖 − 𝐶𝐶𝐶 𝑇
  – consistency of 𝑖-normal proofs
  – 𝑖-normal proofs : the proofs by 𝑖-normal formulas
  – 𝑖-normal formulas: Formulas in the form:
  ∃𝑥1 ≤ 𝑡1 ∀𝑥2 ≤ 𝑡2 … 𝑄𝑥 𝑖 ≤ 𝑡 𝑖 𝑄𝑥 𝑖+1 ≤ 𝑡 𝑖+1 . 𝐴(… )
  Where 𝐴 is quantifier free
Where…
• 𝑆2 𝐸
   −1

  – Induction free fragment of 𝑆2 𝐸
                                 𝑖

  – have predicate 𝐸 which signifies existence of
    values
     • Such logic is called Free logic
𝑆2𝑖
                        𝐸(Language)

• =, ≤, 𝐸
Predicates


Function symbols
• Finite number of polynomial functions

Formulas

• 𝐴 ∨ 𝐵, 𝐴 ∧ 𝐵
• Atomic formula, negated atomic formula

• Bounded quantifiers
𝑆2𝑖
                        𝐸(Axioms)
•    𝐸-axioms
•   Equality axioms
•   Data axioms
•   Defining axioms
•   Auxiliary axioms
Idea behind axioms…

            → 𝑎= 𝑎

Because there is no guarantee of 𝐸𝐸
Thus, we add 𝐸𝐸 in the antecedent

           𝐸𝐸 → 𝑎 = 𝑎
E-axioms
• 𝐸𝐸 𝑎1 , … , 𝑎 𝑛 → 𝐸𝑎 𝑗
• 𝑎1 = 𝑎2 → 𝐸𝑎 𝑗
• 𝑎1 ≠ 𝑎2 → 𝐸𝑎 𝑗
• 𝑎1 ≤ 𝑎2 → 𝐸𝑎 𝑗
• ¬𝑎1 ≤ 𝑎2 → 𝐸𝑎 𝑗
Equality axioms
• 𝐸𝐸 → 𝑎 = 𝑎
• 𝐸𝐸 ⃗ , ⃗ = 𝑏 → 𝑓 ⃗ = 𝑓 𝑏
     𝑎 𝑎           𝑎
Data axioms
• → 𝐸𝐸
• 𝐸𝐸 → 𝐸𝑠0 𝑎
• 𝐸𝐸 → 𝐸𝑠1 𝑎
Defining axioms
 𝑓 𝑢 𝑎1 , 𝑎2 , … , 𝑎 𝑛 = 𝑡(𝑎1 , … , 𝑎 𝑛 )

                           𝑢 𝑎 = 0, 𝑎, 𝑠0 𝑎, 𝑠1 𝑎



  𝐸𝑎1 , … , 𝐸𝑎 𝑛 , 𝐸𝐸 𝑎1 , … , 𝑎 𝑛 →
𝑓 𝑢 𝑎1 , 𝑎2 , … , 𝑎 𝑛 = 𝑡(𝑎1 , … , 𝑎 𝑛 )
Auxiliary axioms

      𝑎 = 𝑏 ⊃ 𝑎#𝑐 = 𝑏#𝑐


𝐸𝐸#𝑐, 𝐸𝐸#𝑐, 𝑎 = |𝑏| → 𝑎#𝑐 = 𝑏#𝑐
PIND-rule



where 𝐴 is an Σ 𝑖𝑏 -formulas
Bootstrapping     𝑆2𝑖
                                           𝐸
I.     𝑆2 𝐸 ⊢ Tot(𝑓) for any 𝑓, 𝑖 ≥ 0
         𝑖

II.    𝑆2 𝐸 ⊢ BASIC∗ , equality axioms
         𝑖                                     ∗

III.   𝑆2 𝐸 ⊢ predicate logic
         𝑖                       ∗

IV.    𝑆2𝑖
             𝐸⊢   Σ𝑖𝑏
                        −PIND∗
Theorem (Consistency)



 𝑆2𝑖+2
         ⊢i−   Con(𝑆2
                    −1
                         𝐸)
Valuation trees
ρ-valuation tree bounded by 19
                       ρ(a)=2, ρ(b)=3
     a=2

   a#a=16              b=3



     𝑣    𝑎#𝑎 + 𝑏 , 𝜌 ↓19 19
            a#a+b=19

         𝑣 𝑡 , 𝜌 ↓ 𝑢 𝑐 is Σ1𝑏
Bounded truth definition (1)
• 𝑇 𝑢, 𝑡1 = 𝑡2 , 𝜌 ⇔def
     ∃𝑐 ≤ 𝑢, 𝑣 𝑡1 , 𝜌 ↓ 𝑢 𝑐 ∧ 𝑣 𝑡1 , 𝜌 ↓ 𝑢 𝑐
• 𝑇 𝑢, 𝜙1 ∧ 𝜙2 , 𝜌 ⇔def
     𝑇 𝑢, 𝜙1 , 𝜌 ∧ 𝑇 𝑢, 𝜙2 , 𝜌
• 𝑇 𝑢, 𝜙1 ∨ 𝜙2 , 𝜌 ⇔def
     𝑇 𝑢, 𝜙1 , 𝜌 ∨ 𝑇 𝑢, 𝜙2 , 𝜌
Bounded truth definition (2)
• 𝑇 𝑢, ∃𝑥 ≤ 𝑡, 𝜙(𝑥) , 𝜌 ⇔def
          ∃𝑐 ≤ 𝑢, 𝑣 𝑡 , 𝜌 ↓ 𝑢 𝑐 ∧
             ∃𝑑 ≤ 𝑐, 𝑇 𝑢, 𝜙 𝑥 , 𝜌 𝑥 ↦ 𝑑
• 𝑇 𝑢, ∀𝑥 ≤ 𝑡, 𝜙(𝑥) , 𝜌 ⇔def
          ∃𝑐 ≤ 𝑢, 𝑣 𝑡 , 𝜌 ↓ 𝑢 𝑐 ∧
             ∀𝑑 ≤ 𝑐, 𝑇(𝑢, 𝜙 𝑥 , 𝜌[𝑥 ↦ 𝑑])

           Remark: If 𝜙 is Σ 𝑖𝑏 , 𝑇 𝑢, 𝜙   is Σ 𝑖+1
                                                 𝑏
induction hypothesis
 𝑢: enough large integer
𝑟: node of a proof of 0=1
Γ 𝑟 → Δ 𝑟 : the sequent of node 𝑟
 𝜌: assignment 𝜌 𝑎 ≤ 𝑢

∀𝑢′ ≤ 𝑢 ⊖ 𝑟, { ∀𝐴 ∈ Γ 𝑟 𝑇 𝑢′ , 𝐴 , 𝜌 ⊃
                  [∃𝐵 ∈ Δr , 𝑇(𝑢′ ⊕ 𝑟, 𝐵 , 𝜌)]}
Conjecture
    𝑆2
     −1
          𝐸 is weak enough
    – 𝑆2 can prove 𝑖-consistency of 𝑆2 𝐸
•
        𝑖+2                          −1

• While 𝑆2 𝐸 is strong enough
         −1

    – 𝑆2 𝐸 can interpret 𝑆2
        𝑖                  𝑖



    𝑆2 𝐸 is a good candidate to separate 𝑆2 and 𝑆2 .
• Conjecture
     −1                                    𝑖      𝑖+2
Future works

                𝑆2 ⊢ 𝑖−Con(𝑆2 𝐸)?
                  𝑖         −1
• Long-term goal


  – Simplify 𝑆2 𝐸
• Short-term goal
               𝑖
Publications
• Bounded Arithmetic in Free Logic
  Logical Methods in Computer Science
  Volume 8, Issue 3, Aug. 10, 2012

Bounded arithmetic in free logic

  • 1.
    Bounded Arithmetic inFree Logic Yoriyuki Yamagata CTFM, 2013/02/20
  • 2.
    Buss’s theories 𝑆2𝑖 –a#b=2 𝑎 ⋅|𝑏| • Language of Peano Arithmetic + “#” • BASIC axioms 𝑥 𝐴 , Γ → Δ, 𝐴(𝑥) 2 • PIND 𝐴 0 , Γ → Δ, 𝐴(𝑡) where 𝐴 𝑥 ∈ Σ 𝑖𝑏 , i.e. has 𝑖-alternations of bounded quantifiers ∀𝑥 ≤ 𝑡, ∃𝑥 ≤ 𝑡.
  • 3.
    PH and Buss’stheories 𝑆2𝑖 𝑆2 = 𝑆2 = 𝑆2 = … 1 2 3 𝑃 = □(𝑁𝑁) = □(Σ2 ) = … 𝑝 Implies We can approach (non) collapse of PH from (non) collapse of hierarchy of Buss’s theories (PH = Polynomial Hierarchy)
  • 4.
    Our approach • Separate𝑆2𝑖 by Gödel incompleteness theorem • Use analogy of separation of 𝐼Σ 𝑖
  • 5.
    Separation of 𝐼Σ𝑖 𝐼Σ3 ⊢ Con(IΣ2 ) … 𝐼Σ2 ⊢ Con IΣ2 ⊆ 𝐼Σ1 ⊆
  • 6.
    Consistency proof inside 𝑆2𝑖 • Bounded Arithmetics generally are not – 𝑆2 does not prove consistency of Q (Paris, Wilkie) capable to prove consistency. – 𝑆2 does not prove bounded consistency of 𝑆2 (Pudlák) 1 – 𝑆2 does not prove consistency the 𝐵 𝑖 𝑏 fragement 𝑖 of 𝑆2 (Buss and Ignjatović) −1
  • 7.
    Buss and Ignjatović(1995) …𝑆2 ⊢ 𝐵3 − Con(𝑆2 ) 3 b −1 𝑆2 2 ⊢ 𝐵2 b − Con(𝑆2 ) −1 ⊆ 𝑆2 1 ⊢ 𝐵1 b − Con(𝑆2 ) −1 ⊆
  • 8.
    Where… • 𝐵 𝑖𝑏 − 𝐶𝐶𝐶 𝑇 – consistency of 𝐵 𝑖 𝑏 −proofs – 𝐵 𝑖 𝑏 −proofs : the proofs by 𝐵 𝑖 𝑏 -formule – 𝐵 𝑖 𝑏 :Σ0𝑏 (Σ 𝑖𝑏 )… Formulas generated from Σ 𝑖𝑏 by Boolean connectives and sharply bounded • 𝑆2 −1 quantifiers. – Induction free fragment of 𝑆2𝑖
  • 9.
    If… 𝑆2 ⊢ 𝐵i − Con 𝑆2 ,j > i 𝑗 b −1 Then, Buss’s hierarchy does not collapse.
  • 10.
    Consistency proof of𝑆2 inside 𝑆2𝑖 −1 Problem • No truth definition, because • No valuation of terms, because • The values of terms increase exponentially In 𝑆2 world, terms do not have values a priori. 𝑖 • E.g. 2#2#2#2#2#...#2 • We introduce the predicate 𝐸 which signifies existence of • Thus, we must prove the existence of values in proofs. values.
  • 11.
    Our result(2012) 𝑆2 …5 ⊢3− Con(𝑆2 −1 𝐸) 𝑆2 4 ⊢2− Con(𝑆2 −1 𝐸) ⊆ 𝑆2 3 ⊢1− Con(𝑆2 −1 𝐸) ⊆
  • 12.
    Where… • 𝑖 −𝐶𝐶𝐶 𝑇 – consistency of 𝑖-normal proofs – 𝑖-normal proofs : the proofs by 𝑖-normal formulas – 𝑖-normal formulas: Formulas in the form: ∃𝑥1 ≤ 𝑡1 ∀𝑥2 ≤ 𝑡2 … 𝑄𝑥 𝑖 ≤ 𝑡 𝑖 𝑄𝑥 𝑖+1 ≤ 𝑡 𝑖+1 . 𝐴(… ) Where 𝐴 is quantifier free
  • 13.
    Where… • 𝑆2 𝐸 −1 – Induction free fragment of 𝑆2 𝐸 𝑖 – have predicate 𝐸 which signifies existence of values • Such logic is called Free logic
  • 14.
    𝑆2𝑖 𝐸(Language) • =, ≤, 𝐸 Predicates Function symbols • Finite number of polynomial functions Formulas • 𝐴 ∨ 𝐵, 𝐴 ∧ 𝐵 • Atomic formula, negated atomic formula • Bounded quantifiers
  • 15.
    𝑆2𝑖 𝐸(Axioms) • 𝐸-axioms • Equality axioms • Data axioms • Defining axioms • Auxiliary axioms
  • 16.
    Idea behind axioms… → 𝑎= 𝑎 Because there is no guarantee of 𝐸𝐸 Thus, we add 𝐸𝐸 in the antecedent 𝐸𝐸 → 𝑎 = 𝑎
  • 17.
    E-axioms • 𝐸𝐸 𝑎1, … , 𝑎 𝑛 → 𝐸𝑎 𝑗 • 𝑎1 = 𝑎2 → 𝐸𝑎 𝑗 • 𝑎1 ≠ 𝑎2 → 𝐸𝑎 𝑗 • 𝑎1 ≤ 𝑎2 → 𝐸𝑎 𝑗 • ¬𝑎1 ≤ 𝑎2 → 𝐸𝑎 𝑗
  • 18.
    Equality axioms • 𝐸𝐸→ 𝑎 = 𝑎 • 𝐸𝐸 ⃗ , ⃗ = 𝑏 → 𝑓 ⃗ = 𝑓 𝑏 𝑎 𝑎 𝑎
  • 19.
    Data axioms • →𝐸𝐸 • 𝐸𝐸 → 𝐸𝑠0 𝑎 • 𝐸𝐸 → 𝐸𝑠1 𝑎
  • 20.
    Defining axioms 𝑓𝑢 𝑎1 , 𝑎2 , … , 𝑎 𝑛 = 𝑡(𝑎1 , … , 𝑎 𝑛 ) 𝑢 𝑎 = 0, 𝑎, 𝑠0 𝑎, 𝑠1 𝑎 𝐸𝑎1 , … , 𝐸𝑎 𝑛 , 𝐸𝐸 𝑎1 , … , 𝑎 𝑛 → 𝑓 𝑢 𝑎1 , 𝑎2 , … , 𝑎 𝑛 = 𝑡(𝑎1 , … , 𝑎 𝑛 )
  • 21.
    Auxiliary axioms 𝑎 = 𝑏 ⊃ 𝑎#𝑐 = 𝑏#𝑐 𝐸𝐸#𝑐, 𝐸𝐸#𝑐, 𝑎 = |𝑏| → 𝑎#𝑐 = 𝑏#𝑐
  • 22.
    PIND-rule where 𝐴 isan Σ 𝑖𝑏 -formulas
  • 23.
    Bootstrapping 𝑆2𝑖 𝐸 I. 𝑆2 𝐸 ⊢ Tot(𝑓) for any 𝑓, 𝑖 ≥ 0 𝑖 II. 𝑆2 𝐸 ⊢ BASIC∗ , equality axioms 𝑖 ∗ III. 𝑆2 𝐸 ⊢ predicate logic 𝑖 ∗ IV. 𝑆2𝑖 𝐸⊢ Σ𝑖𝑏 −PIND∗
  • 24.
    Theorem (Consistency) 𝑆2𝑖+2 ⊢i− Con(𝑆2 −1 𝐸)
  • 25.
    Valuation trees ρ-valuation treebounded by 19 ρ(a)=2, ρ(b)=3 a=2 a#a=16 b=3 𝑣 𝑎#𝑎 + 𝑏 , 𝜌 ↓19 19 a#a+b=19 𝑣 𝑡 , 𝜌 ↓ 𝑢 𝑐 is Σ1𝑏
  • 26.
    Bounded truth definition(1) • 𝑇 𝑢, 𝑡1 = 𝑡2 , 𝜌 ⇔def ∃𝑐 ≤ 𝑢, 𝑣 𝑡1 , 𝜌 ↓ 𝑢 𝑐 ∧ 𝑣 𝑡1 , 𝜌 ↓ 𝑢 𝑐 • 𝑇 𝑢, 𝜙1 ∧ 𝜙2 , 𝜌 ⇔def 𝑇 𝑢, 𝜙1 , 𝜌 ∧ 𝑇 𝑢, 𝜙2 , 𝜌 • 𝑇 𝑢, 𝜙1 ∨ 𝜙2 , 𝜌 ⇔def 𝑇 𝑢, 𝜙1 , 𝜌 ∨ 𝑇 𝑢, 𝜙2 , 𝜌
  • 27.
    Bounded truth definition(2) • 𝑇 𝑢, ∃𝑥 ≤ 𝑡, 𝜙(𝑥) , 𝜌 ⇔def ∃𝑐 ≤ 𝑢, 𝑣 𝑡 , 𝜌 ↓ 𝑢 𝑐 ∧ ∃𝑑 ≤ 𝑐, 𝑇 𝑢, 𝜙 𝑥 , 𝜌 𝑥 ↦ 𝑑 • 𝑇 𝑢, ∀𝑥 ≤ 𝑡, 𝜙(𝑥) , 𝜌 ⇔def ∃𝑐 ≤ 𝑢, 𝑣 𝑡 , 𝜌 ↓ 𝑢 𝑐 ∧ ∀𝑑 ≤ 𝑐, 𝑇(𝑢, 𝜙 𝑥 , 𝜌[𝑥 ↦ 𝑑]) Remark: If 𝜙 is Σ 𝑖𝑏 , 𝑇 𝑢, 𝜙 is Σ 𝑖+1 𝑏
  • 28.
    induction hypothesis 𝑢:enough large integer 𝑟: node of a proof of 0=1 Γ 𝑟 → Δ 𝑟 : the sequent of node 𝑟 𝜌: assignment 𝜌 𝑎 ≤ 𝑢 ∀𝑢′ ≤ 𝑢 ⊖ 𝑟, { ∀𝐴 ∈ Γ 𝑟 𝑇 𝑢′ , 𝐴 , 𝜌 ⊃ [∃𝐵 ∈ Δr , 𝑇(𝑢′ ⊕ 𝑟, 𝐵 , 𝜌)]}
  • 29.
    Conjecture 𝑆2 −1 𝐸 is weak enough – 𝑆2 can prove 𝑖-consistency of 𝑆2 𝐸 • 𝑖+2 −1 • While 𝑆2 𝐸 is strong enough −1 – 𝑆2 𝐸 can interpret 𝑆2 𝑖 𝑖 𝑆2 𝐸 is a good candidate to separate 𝑆2 and 𝑆2 . • Conjecture −1 𝑖 𝑖+2
  • 30.
    Future works 𝑆2 ⊢ 𝑖−Con(𝑆2 𝐸)? 𝑖 −1 • Long-term goal – Simplify 𝑆2 𝐸 • Short-term goal 𝑖
  • 31.
    Publications • Bounded Arithmeticin Free Logic Logical Methods in Computer Science Volume 8, Issue 3, Aug. 10, 2012