SlideShare a Scribd company logo
Design and Performance Analysis
of 500 KWP On-Grid Solar PV
System
Amro Sadul Quddus
1300167009 DD SPVE
Installed Capacity of Rooftops
1. BNLT Block: 91 KWP
2. Medical Phase I: 100 KWP
3. Academic Block: 198 KWP
4. Civil Block: 111 KWP
Meteorological Data of Installation Site
Peak Sun Hours:
Daily irradiation is commonly
referred to as Peak Sun Hours.
Its unit is KWh/m2/day.
Month PSH
26̊ Tilt
Jan 4.93
Feb 6.02
Mar 6.65
Apr 6.50
May 6.14
June 5.25
Jul 4.37
Aug 4.29
Sep 4.68
Oct 5.79
Nov 5.58
Dec 5.02
Avg 5.43
Air Temperature:
26.95
N,
81.00
E
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Yearly
Avg
22
Year
Avg
15.8 19.5 25.3 30.0 31.2 30.6 28.7 27.9 26.6 24.3 20.7 16.7 24.8
Min 10.4 14.0 19.5 24.3 26.6 27.2 26.1 25.5 23.9 19.6 15.0 11.2 20.3
Max 21.8 25.1 30.7 34.9 35.3 33.7 31.1 30.4 29.7 29.4 27.3 23.4 29.4
PV Module Specifications
Polycrystalline
WP 320 W
VMPP 37.65 V
VOC 45.96 V
ISC 9.03 A
Efficiency 16.67%
TCoeff of VOC -0.310%/ ̊ C
TCoeff of VMP -0.409%/ ̊ C
TCoeff of ISC +0.052%/ ̊ C
Inverter Specifications
66 kVA Schneider Inverter:
Max DC input voltage 1000 V
MPPT voltage range 570-850 V
Max array short circuit current 140 A
No. of MPPT / max. no. of inputs per MPPT 1/14
AC output power 66 KW
Output voltage range 310-480 V
Max continous output current 96 A
25 kVA Schneider Inverter:
Max DC input voltage, open circuit 1000 V
MPPT voltage range 350 - 800 V
Number of MPPT / strings per MPPT 2 / 4
Max array short circuit current per MPPT 40.0 A
Rated output power (PF=1) 20.0 kW
AC voltage range 184 - 276 V / 319-478 V
Max output current 30.0 A
20 kVA Schneider Inverter:
Max DC input voltage, open circuit 1000 V
MPPT voltage range 430 - 800 V
Number of MPPT / strings per MPPT 2 / 4
Max array short circuit current per MPPT 40.0 A
Rated output power (PF=1) 25.0 kW
AC voltage range 184 - 276 V / 319-478 V
Max output current 37.0 A
BNLT Block
Installed Capacity 91 kWP
Total modules 340
Inverter 66 kVA x 1, 25 kVA x 1
Wattage of module 320 WP
Tilt 15 ̊
Orientation South
Circuit Diagram of Existing System
Tilt of Module
When 90 ̊ angle between Sun & module
Max energy will be collected
Tilt (β) = 180 - 90 - Altitude of Sun
Latitude of Integral University 26.57 ̊ N.
Altitude of Sun at solar noon on equinox @ I.U.L
 γc=90-latitude (equinox, Mar 21st / Sep 23rd)
→ 90 - 26.57 ̊ N = 63.43 ̊ S
Tilt (β) = 180 - 90 - Altitude of Sun
→ 180 - 90 - 63.43 ̊ S = 26.57 ≈ 27̊
Rooftop height of BNLT Blcok ≈ 22 m
Tilt of module in existing system 15 ̊
PV Array & Inverter Matching
66 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 19
Maximum number of modules 20 ← existing system
Current Matching
Max current input of inverter ÷{ISC Cell Eff = I SC-STC +[γI SC x (TCell
Eff - TSTC)]}
Maximum number of string 12 ← existing system
Power Matching
Maximum no. of module = Inverter's max PV array rated power ÷ rated
power of module
Maximum number of modules 240 ← existing system
25 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 14
Maximum number of modules 20 ← existing system
Current Matching
Max current input of inverter ÷{ISC Cell Eff = I SC-STC +[γI SC x (TCell
Eff - TSTC)]}
Maximum number of string 8
Actual no. of string 5
Power Matching
Maximum no. of module = Inverter's max PV array rated power /
rated power of module
Maximum number of modules 100 ← existing system
PV*Sol Simulation
PV Generator Output = 108.8 kWP
Spec. Annual Yield = 1532.44 kWh/kWP
Performance Ratio (PR) = 79.9%
Grid Feed-in = 166,729 kWh/Year
CO₂Emissions avoided = 100,038 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast per inverter
(Schneider 66 kW and 25 kW)
PV Energy Output Forecast for a Period
of 21 Years
Circuit Diagram of Optimized System
PV*Sol Simulation
PV Generator Output = 108.8 kWP
Spec. Annual Yield = 1538.26 kWh/kWP
Performance Ratio (PR) = 80.1%
Grid Feed-in = 167,363 kWh/Year
CO₂Emissions avoided = 100,418 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast per inverter
(Schneider 66 kW and 25 kW)
PV Energy Output Forecast for a Period
of 21 Years
Comparison of Results
Medical Phase I
Installed Capacity 100 kWP
Total modules 400
Inverter 25 kVA x 4
Wattage of module 320 WP
Tilt 15 ̊
Orientation South
Circuit Diagram of Existing System
Tilt of Module
When 90 ̊ angle between Sun & module
Max energy will be collected
Tilt (β) = 180 - 90 - Altitude of Sun
Latitude of Integral University 26.57 ̊ N.
Altitude of Sun at solar noon on equinox @ I.U.L
 γc=90-latitude (equinox, Mar 21st / Sep 23rd)
→ 90 - 26.57 ̊ N = 63.43 ̊ S
Tilt (β) = 180 - 90 - Altitude of Sun
→ 180 - 90 - 63.43 ̊ S = 26.57 ≈ 27̊
Rooftop height of Medical Phase I ≈ 14 m
Tilt of module in existing system 15 ̊
PV Array & Inverter Matching
25 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 14
Maximum number of modules 20 ← existing system
Current Matching
Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff
- TSTC)]}
Maximum number of string 8
Actual no. of string 5
Power Matching
Maximum no. of module = Inverter's max PV array rated power ÷
rated power of module
Maximum number of modules 100
4 x 25kVA inverter, total no. of modules 400
PV*Sol Simulation
PV Generator Output = 128 kWP
Spec. Annual Yield = 1516.16 kWh/kWP
Performance Ratio (PR) = 79.1%
Grid Feed-in = 194,068 kWh/Year
CO₂Emissions avoided = 116,441 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
PV Energy Output Forecast for a Period
of 21 Years
Circuit Diagram of Optimized System
PV*Sol Simulation Results
PV Generator Output = 128 kWP
Spec. Annual Yield = 1521.11 kWh/kWP
Performance Ratio (PR) = 79.2%
Grid Feed-in = 194,702 kWh/Year
CO₂Emissions avoided = 116,821 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast of inverter
(Schneider 25 kW × 4)
PV Energy Output Forecast for a Period
of 21 Years
Comparison of Results
Academic Block
Installed Capacity 198 kWP
Total modules 720
Inverter 66 kVA x 3
Wattage of module 320 WP
Tilt 15 ̊
Orientation South
Circuit Diagram of Existing System
Tilt of Module
When 90 ̊ angle between Sun & module
Max energy will be collected
Tilt (β) = 180 - 90 - Altitude of Sun
Latitude of Integral University 26.57 ̊ N.
Altitude of Sun at solar noon on equinox @ I.U.L
 γc=90-latitude (equinox, Mar 21st / Sep 23rd)
→ 90 - 26.57 ̊ N = 63.43 ̊ S
Tilt (β) = 180 - 90 - Altitude of Sun
→ 180 - 90 - 63.43 ̊ S = 26.57 ≈ 27 ̊
Rooftop height of Academic Blcok ≈ 12 m
Tilt of module in existing system 15 ̊
PV Array & Inverter Matching
66 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 19
Maximum number of modules 20 ← existing system
Current Matching
Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell
Eff - TSTC)]}
Maximum number of string 12 ← existing system
Power Matching
Maximum no. of module = Inverter's max PV array rated power ÷ rated
power of module
Maximum number of modules 240
3 x 66 kVA inverter, total no. of modules 720
PV*Sol Simulation
PV Generator Output = 230.4 kWP
Spec. Annual Yield = 1539.23 kWh/kWP
Performance Ratio (PR) = 80.3%
Grid Feed-in = 354,638 kWh/Year
CO₂Emissions avoided = 212,783 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast of inverter
(Schneider 66 kW × 3)
PV Energy Output Forecast for a Period
of 21 Years
Circuit Diagram of Optimized System
PV*Sol Simulation
PV Generator Output = 230.4 kWP
Spec. Annual Yield = 1546.49 kWh/kWP
Performance Ratio (PR) = 80.6%
Grid Feed-in = 356,311 kWh/Year
CO₂Emissions avoided = 213,787 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast of inverter
(Schneider 66 kW × 3)
PV Energy Output Forecast for a Period
of 21 Years
Comparison of Results
Civil Block
Installed Capacity 111 kWP
Total modules 417
Inverter 66 kVA x 1,25 kVA x 1,20 kVA x 1,
Wattage of module 320 WP
Tilt 15 ̊
Orientation South
Circuit Diagram of Existing System
Tilt of Module
When 90 ̊ angle between Sun & module
Max energy will be collected
Tilt (β) = 180 - 90 - Altitude of Sun
Latitude of Integral University 26.57 ̊ N.
Altitude of Sun at solar noon on equinox @ I.U.L
 γc=90-latitude (equinox, Mar 21st / Sep 23rd)
→ 90 - 26.57 ̊ N = 63.43 ̊ S
Tilt (β) = 180 - 90 - Altitude of Sun
→ 180 - 90 - 63.43 ̊ S = 26.57
Rooftop height of Civil Blcok ≈ 15 m.
Tilt of module in existing system 15 ̊
PV Array & Inverter Matching
66 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 19 ← existing system
Maximum number of modules 20
Current Matching
Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell
Eff - TSTC)]}
Maximum number of string 12
Actual no. of string 13
Power Matching
Maximum no. of module = Inverter's max PV array rated power ÷ rated
power of module
Maximum number of modules 240
Actual no. of modules 247
25 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 14
Maximum number of modules 20
Number of modules per string 18
Current Matching
Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff
- TSTC)]}
Maximum number of string 8
Actual no. of string 5
Power Matching
Maximum no. of module = Inverter's max PV array rated power ÷
rated power of module
Maximum number of modules 100
Actual no. of modules 90
20 KVA Inverter - PV Array Matching:
Temperature
Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp)
Minimum cell temp 2 ̊C (min site temp)
Voltage Matching
Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}]
Minimum number of modules 12
Maximum number of modules 20 ← existing system
Current Matching
Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff
- TSTC)]}
Maximum number of string 8
Actual no.of string 4
Power Matching
Maximum no. of module = Inverter's max PV array rated power ÷
rated power of module
Maximum number of modules 80
Actual no. of modules 80
PV*Sol Simulation
PV Generator Output = 133.4 kWP
Spec. Annual Yield = 1530.80 kWh/kWP
Performance Ratio (PR) = 79.8%
Grid Feed-in = 204,271 kWh/Year
CO₂Emissions avoided = 122,562 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast of inverter
(Schneider 25 kW × 1, 20 kW × 1, 66 kW
× 1)
PV Energy Output Forecast for a Period
of 21 Years
Circuit Diagram of Optimized System
PV*Sol Simulation
PV Generator Output = 133.4 kWP
Spec. Annual Yield = 1537.37 kWh/kWP
Performance Ratio (PR) = 80.1%
Grid Feed-in = 205,146 kWh/Year
CO₂Emissions avoided = 123,088 kg/Year
Energy Flow Graph
Production Forecast
Module Temp vs Grid Feed-in Curve for
a Period of 1 Month (March)
Production forecast of inverter
(Schneider 25 kW × 1, 20 kW × 1, 66 kW
× 1)
PV Energy Output Forecast for a Period
of 21 Years
Comparison of Results
Design and performance analysis of 500 KWp on-grid solar PV system

More Related Content

What's hot

Solar pv
Solar pvSolar pv
Solar pv
Shanu Jp
 
Solar charge-controller-presentation
Solar charge-controller-presentationSolar charge-controller-presentation
Solar charge-controller-presentation
Borshon sen
 
SOLAR THERMAL PLANT
SOLAR THERMAL PLANTSOLAR THERMAL PLANT
SOLAR THERMAL PLANT
AJAY RAO
 
Solar photovoltaic system design
Solar photovoltaic system designSolar photovoltaic system design
Solar photovoltaic system design
Jay Ranvir
 
1 KW Solar Photovoltaic System
1 KW Solar Photovoltaic System1 KW Solar Photovoltaic System
1 KW Solar Photovoltaic System
Manthan Thakkar
 
Solar PV System
Solar PV SystemSolar PV System
Solar PV System
Prasadroshan Mythin
 
Pump storage Hydroelectricity
Pump storage HydroelectricityPump storage Hydroelectricity
Pump storage Hydroelectricity
Debojyoti Mukherjee
 
Economic dispatch
Economic dispatch  Economic dispatch
Economic dispatch
Hussain Ali
 
Solar photo voltaics
Solar photo voltaics Solar photo voltaics
Solar photo voltaics
Sumalatha kalakotla
 
Power plants in bangladesh
Power plants in bangladeshPower plants in bangladesh
Power plants in bangladesh
Imran Hossain
 
Central receiver power system
Central receiver power systemCentral receiver power system
Central receiver power system
Sudhanshu Anand
 
Economics of power plant
Economics of power plantEconomics of power plant
Economics of power plant
Dr. Rohit Singh Lather, Ph.D.
 
Steps to simulate grid connected solar pv project through PVSyst Software
 Steps to simulate grid connected solar pv project through PVSyst Software Steps to simulate grid connected solar pv project through PVSyst Software
Steps to simulate grid connected solar pv project through PVSyst Software
Ashish Verma
 
Major electrical equipment in power plants
Major electrical equipment in power plantsMajor electrical equipment in power plants
Major electrical equipment in power plants
Fateh Singh
 
Design off grid solar PV system
Design off grid solar PV systemDesign off grid solar PV system
Design off grid solar PV system
Rajesh Pindoriya
 
Webinar 02 demonstration of pv system design pvsyst
Webinar 02 demonstration of pv system design pvsystWebinar 02 demonstration of pv system design pvsyst
Webinar 02 demonstration of pv system design pvsyst
solpowerpeople
 
Hybrid wind-solar Power generation system
Hybrid wind-solar Power generation systemHybrid wind-solar Power generation system
Hybrid wind-solar Power generation system
Shivam Joshi
 
Mathematical modeling and simulation of solar panel
Mathematical modeling and simulation of solar panelMathematical modeling and simulation of solar panel
Mathematical modeling and simulation of solar panel
Somu Gupta
 
Solar power ppt
Solar power ppt Solar power ppt
Solar power ppt
sagar9971
 

What's hot (20)

Solar pv
Solar pvSolar pv
Solar pv
 
Solar charge-controller-presentation
Solar charge-controller-presentationSolar charge-controller-presentation
Solar charge-controller-presentation
 
SOLAR THERMAL PLANT
SOLAR THERMAL PLANTSOLAR THERMAL PLANT
SOLAR THERMAL PLANT
 
Solar photovoltaic system design
Solar photovoltaic system designSolar photovoltaic system design
Solar photovoltaic system design
 
1 KW Solar Photovoltaic System
1 KW Solar Photovoltaic System1 KW Solar Photovoltaic System
1 KW Solar Photovoltaic System
 
Solar PV System
Solar PV SystemSolar PV System
Solar PV System
 
Pump storage Hydroelectricity
Pump storage HydroelectricityPump storage Hydroelectricity
Pump storage Hydroelectricity
 
Economic dispatch
Economic dispatch  Economic dispatch
Economic dispatch
 
Solar photo voltaics
Solar photo voltaics Solar photo voltaics
Solar photo voltaics
 
Power plants in bangladesh
Power plants in bangladeshPower plants in bangladesh
Power plants in bangladesh
 
Central receiver power system
Central receiver power systemCentral receiver power system
Central receiver power system
 
Economics of power plant
Economics of power plantEconomics of power plant
Economics of power plant
 
Solar power plant
Solar power plantSolar power plant
Solar power plant
 
Steps to simulate grid connected solar pv project through PVSyst Software
 Steps to simulate grid connected solar pv project through PVSyst Software Steps to simulate grid connected solar pv project through PVSyst Software
Steps to simulate grid connected solar pv project through PVSyst Software
 
Major electrical equipment in power plants
Major electrical equipment in power plantsMajor electrical equipment in power plants
Major electrical equipment in power plants
 
Design off grid solar PV system
Design off grid solar PV systemDesign off grid solar PV system
Design off grid solar PV system
 
Webinar 02 demonstration of pv system design pvsyst
Webinar 02 demonstration of pv system design pvsystWebinar 02 demonstration of pv system design pvsyst
Webinar 02 demonstration of pv system design pvsyst
 
Hybrid wind-solar Power generation system
Hybrid wind-solar Power generation systemHybrid wind-solar Power generation system
Hybrid wind-solar Power generation system
 
Mathematical modeling and simulation of solar panel
Mathematical modeling and simulation of solar panelMathematical modeling and simulation of solar panel
Mathematical modeling and simulation of solar panel
 
Solar power ppt
Solar power ppt Solar power ppt
Solar power ppt
 

Similar to Design and performance analysis of 500 KWp on-grid solar PV system

Significanc of Tracking in PV system
Significanc of Tracking in PV systemSignificanc of Tracking in PV system
Significanc of Tracking in PV system
Pragya Sharma
 
17 mse014 pv syst
17 mse014 pv syst17 mse014 pv syst
17 mse014 pv syst
paneliya sagar
 
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
 Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)} Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
Mohammed Ahmed Ramadan
 
4 ee462_l_solar_ppt
 4 ee462_l_solar_ppt 4 ee462_l_solar_ppt
4 ee462_l_solar_ppt
Darpan Chaudhary
 
solar PV design.pptx
solar PV design.pptxsolar PV design.pptx
solar PV design.pptx
University
 
1kw 265invt
1kw 265invt1kw 265invt
1kw 265invt
dungsp4
 
Solar_IT_03_101.pdf
Solar_IT_03_101.pdfSolar_IT_03_101.pdf
Solar_IT_03_101.pdf
AntyMouda
 
Iaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysisIaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysis
Iaetsd Iaetsd
 
17 mse013 performance of power plant
17 mse013 performance of power plant17 mse013 performance of power plant
17 mse013 performance of power plant
paneliya sagar
 
Presentation On Solar Installation Project
Presentation On Solar Installation ProjectPresentation On Solar Installation Project
Presentation On Solar Installation ProjectDHiraj Bohara
 
stirling radioisotope generator
stirling radioisotope generatorstirling radioisotope generator
stirling radioisotope generator
parvez1290
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_Jun
MDO_Lab
 
Spring 2011 final project master
Spring 2011 final project  masterSpring 2011 final project  master
Spring 2011 final project masterbobmcgonigle
 
GSA TUNED HIGH EXERGY IN PV ARRAY
GSA TUNED HIGH EXERGY IN PV ARRAYGSA TUNED HIGH EXERGY IN PV ARRAY
GSA TUNED HIGH EXERGY IN PV ARRAY
Journal For Research
 
Solar generation for APC
Solar generation for APC Solar generation for APC
Solar generation for APC
Molla Morshad
 
Impact of solar radiation and temperature levels on the variation of the seri...
Impact of solar radiation and temperature levels on the variation of the seri...Impact of solar radiation and temperature levels on the variation of the seri...
Impact of solar radiation and temperature levels on the variation of the seri...
eSAT Journals
 
solar PV.pptx
solar PV.pptxsolar PV.pptx
solar PV.pptx
Jithin Pillai
 
Small Scale Concentrated Solar Power
Small Scale Concentrated Solar PowerSmall Scale Concentrated Solar Power
Small Scale Concentrated Solar PowerMatthew Mobley
 

Similar to Design and performance analysis of 500 KWp on-grid solar PV system (20)

Significanc of Tracking in PV system
Significanc of Tracking in PV systemSignificanc of Tracking in PV system
Significanc of Tracking in PV system
 
17 mse014 pv syst
17 mse014 pv syst17 mse014 pv syst
17 mse014 pv syst
 
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
 Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)} Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
 
4 ee462_l_solar_ppt
 4 ee462_l_solar_ppt 4 ee462_l_solar_ppt
4 ee462_l_solar_ppt
 
solar PV design.pptx
solar PV design.pptxsolar PV design.pptx
solar PV design.pptx
 
1kw 265invt
1kw 265invt1kw 265invt
1kw 265invt
 
Solar_IT_03_101.pdf
Solar_IT_03_101.pdfSolar_IT_03_101.pdf
Solar_IT_03_101.pdf
 
Iaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysisIaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysis
 
17 mse013 performance of power plant
17 mse013 performance of power plant17 mse013 performance of power plant
17 mse013 performance of power plant
 
Presentation On Solar Installation Project
Presentation On Solar Installation ProjectPresentation On Solar Installation Project
Presentation On Solar Installation Project
 
stirling radioisotope generator
stirling radioisotope generatorstirling radioisotope generator
stirling radioisotope generator
 
shagufta-final review
shagufta-final reviewshagufta-final review
shagufta-final review
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_Jun
 
48 deshmukh
48 deshmukh48 deshmukh
48 deshmukh
 
Spring 2011 final project master
Spring 2011 final project  masterSpring 2011 final project  master
Spring 2011 final project master
 
GSA TUNED HIGH EXERGY IN PV ARRAY
GSA TUNED HIGH EXERGY IN PV ARRAYGSA TUNED HIGH EXERGY IN PV ARRAY
GSA TUNED HIGH EXERGY IN PV ARRAY
 
Solar generation for APC
Solar generation for APC Solar generation for APC
Solar generation for APC
 
Impact of solar radiation and temperature levels on the variation of the seri...
Impact of solar radiation and temperature levels on the variation of the seri...Impact of solar radiation and temperature levels on the variation of the seri...
Impact of solar radiation and temperature levels on the variation of the seri...
 
solar PV.pptx
solar PV.pptxsolar PV.pptx
solar PV.pptx
 
Small Scale Concentrated Solar Power
Small Scale Concentrated Solar PowerSmall Scale Concentrated Solar Power
Small Scale Concentrated Solar Power
 

Recently uploaded

How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
chanes7
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
Group Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana BuscigliopptxGroup Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana Buscigliopptx
ArianaBusciglio
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
Mohammed Sikander
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
Wasim Ak
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
kimdan468
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
deeptiverma2406
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 

Recently uploaded (20)

How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
Group Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana BuscigliopptxGroup Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana Buscigliopptx
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 

Design and performance analysis of 500 KWp on-grid solar PV system

  • 1. Design and Performance Analysis of 500 KWP On-Grid Solar PV System Amro Sadul Quddus 1300167009 DD SPVE
  • 2. Installed Capacity of Rooftops 1. BNLT Block: 91 KWP 2. Medical Phase I: 100 KWP 3. Academic Block: 198 KWP 4. Civil Block: 111 KWP
  • 3. Meteorological Data of Installation Site Peak Sun Hours: Daily irradiation is commonly referred to as Peak Sun Hours. Its unit is KWh/m2/day. Month PSH 26̊ Tilt Jan 4.93 Feb 6.02 Mar 6.65 Apr 6.50 May 6.14 June 5.25 Jul 4.37 Aug 4.29 Sep 4.68 Oct 5.79 Nov 5.58 Dec 5.02 Avg 5.43
  • 4. Air Temperature: 26.95 N, 81.00 E Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Yearly Avg 22 Year Avg 15.8 19.5 25.3 30.0 31.2 30.6 28.7 27.9 26.6 24.3 20.7 16.7 24.8 Min 10.4 14.0 19.5 24.3 26.6 27.2 26.1 25.5 23.9 19.6 15.0 11.2 20.3 Max 21.8 25.1 30.7 34.9 35.3 33.7 31.1 30.4 29.7 29.4 27.3 23.4 29.4
  • 5. PV Module Specifications Polycrystalline WP 320 W VMPP 37.65 V VOC 45.96 V ISC 9.03 A Efficiency 16.67% TCoeff of VOC -0.310%/ ̊ C TCoeff of VMP -0.409%/ ̊ C TCoeff of ISC +0.052%/ ̊ C
  • 6. Inverter Specifications 66 kVA Schneider Inverter: Max DC input voltage 1000 V MPPT voltage range 570-850 V Max array short circuit current 140 A No. of MPPT / max. no. of inputs per MPPT 1/14 AC output power 66 KW Output voltage range 310-480 V Max continous output current 96 A
  • 7. 25 kVA Schneider Inverter: Max DC input voltage, open circuit 1000 V MPPT voltage range 350 - 800 V Number of MPPT / strings per MPPT 2 / 4 Max array short circuit current per MPPT 40.0 A Rated output power (PF=1) 20.0 kW AC voltage range 184 - 276 V / 319-478 V Max output current 30.0 A
  • 8. 20 kVA Schneider Inverter: Max DC input voltage, open circuit 1000 V MPPT voltage range 430 - 800 V Number of MPPT / strings per MPPT 2 / 4 Max array short circuit current per MPPT 40.0 A Rated output power (PF=1) 25.0 kW AC voltage range 184 - 276 V / 319-478 V Max output current 37.0 A
  • 9. BNLT Block Installed Capacity 91 kWP Total modules 340 Inverter 66 kVA x 1, 25 kVA x 1 Wattage of module 320 WP Tilt 15 ̊ Orientation South
  • 10. Circuit Diagram of Existing System
  • 11. Tilt of Module When 90 ̊ angle between Sun & module Max energy will be collected Tilt (β) = 180 - 90 - Altitude of Sun
  • 12. Latitude of Integral University 26.57 ̊ N. Altitude of Sun at solar noon on equinox @ I.U.L  γc=90-latitude (equinox, Mar 21st / Sep 23rd) → 90 - 26.57 ̊ N = 63.43 ̊ S Tilt (β) = 180 - 90 - Altitude of Sun → 180 - 90 - 63.43 ̊ S = 26.57 ≈ 27̊ Rooftop height of BNLT Blcok ≈ 22 m Tilt of module in existing system 15 ̊
  • 13. PV Array & Inverter Matching 66 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 19 Maximum number of modules 20 ← existing system
  • 14. Current Matching Max current input of inverter ÷{ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 12 ← existing system Power Matching Maximum no. of module = Inverter's max PV array rated power ÷ rated power of module Maximum number of modules 240 ← existing system
  • 15. 25 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 14 Maximum number of modules 20 ← existing system
  • 16. Current Matching Max current input of inverter ÷{ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 8 Actual no. of string 5 Power Matching Maximum no. of module = Inverter's max PV array rated power / rated power of module Maximum number of modules 100 ← existing system
  • 17. PV*Sol Simulation PV Generator Output = 108.8 kWP Spec. Annual Yield = 1532.44 kWh/kWP Performance Ratio (PR) = 79.9% Grid Feed-in = 166,729 kWh/Year CO₂Emissions avoided = 100,038 kg/Year
  • 20. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 21. Production forecast per inverter (Schneider 66 kW and 25 kW)
  • 22. PV Energy Output Forecast for a Period of 21 Years
  • 23. Circuit Diagram of Optimized System
  • 24. PV*Sol Simulation PV Generator Output = 108.8 kWP Spec. Annual Yield = 1538.26 kWh/kWP Performance Ratio (PR) = 80.1% Grid Feed-in = 167,363 kWh/Year CO₂Emissions avoided = 100,418 kg/Year
  • 27. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 28. Production forecast per inverter (Schneider 66 kW and 25 kW)
  • 29. PV Energy Output Forecast for a Period of 21 Years
  • 31. Medical Phase I Installed Capacity 100 kWP Total modules 400 Inverter 25 kVA x 4 Wattage of module 320 WP Tilt 15 ̊ Orientation South
  • 32. Circuit Diagram of Existing System
  • 33. Tilt of Module When 90 ̊ angle between Sun & module Max energy will be collected Tilt (β) = 180 - 90 - Altitude of Sun
  • 34. Latitude of Integral University 26.57 ̊ N. Altitude of Sun at solar noon on equinox @ I.U.L  γc=90-latitude (equinox, Mar 21st / Sep 23rd) → 90 - 26.57 ̊ N = 63.43 ̊ S Tilt (β) = 180 - 90 - Altitude of Sun → 180 - 90 - 63.43 ̊ S = 26.57 ≈ 27̊ Rooftop height of Medical Phase I ≈ 14 m Tilt of module in existing system 15 ̊
  • 35. PV Array & Inverter Matching 25 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 14 Maximum number of modules 20 ← existing system
  • 36. Current Matching Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 8 Actual no. of string 5 Power Matching Maximum no. of module = Inverter's max PV array rated power ÷ rated power of module Maximum number of modules 100 4 x 25kVA inverter, total no. of modules 400
  • 37. PV*Sol Simulation PV Generator Output = 128 kWP Spec. Annual Yield = 1516.16 kWh/kWP Performance Ratio (PR) = 79.1% Grid Feed-in = 194,068 kWh/Year CO₂Emissions avoided = 116,441 kg/Year
  • 40. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 41. PV Energy Output Forecast for a Period of 21 Years
  • 42. Circuit Diagram of Optimized System
  • 43. PV*Sol Simulation Results PV Generator Output = 128 kWP Spec. Annual Yield = 1521.11 kWh/kWP Performance Ratio (PR) = 79.2% Grid Feed-in = 194,702 kWh/Year CO₂Emissions avoided = 116,821 kg/Year
  • 46. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 47. Production forecast of inverter (Schneider 25 kW × 4)
  • 48. PV Energy Output Forecast for a Period of 21 Years
  • 50. Academic Block Installed Capacity 198 kWP Total modules 720 Inverter 66 kVA x 3 Wattage of module 320 WP Tilt 15 ̊ Orientation South
  • 51. Circuit Diagram of Existing System
  • 52. Tilt of Module When 90 ̊ angle between Sun & module Max energy will be collected Tilt (β) = 180 - 90 - Altitude of Sun
  • 53. Latitude of Integral University 26.57 ̊ N. Altitude of Sun at solar noon on equinox @ I.U.L  γc=90-latitude (equinox, Mar 21st / Sep 23rd) → 90 - 26.57 ̊ N = 63.43 ̊ S Tilt (β) = 180 - 90 - Altitude of Sun → 180 - 90 - 63.43 ̊ S = 26.57 ≈ 27 ̊ Rooftop height of Academic Blcok ≈ 12 m Tilt of module in existing system 15 ̊
  • 54. PV Array & Inverter Matching 66 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 19 Maximum number of modules 20 ← existing system
  • 55. Current Matching Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 12 ← existing system Power Matching Maximum no. of module = Inverter's max PV array rated power ÷ rated power of module Maximum number of modules 240 3 x 66 kVA inverter, total no. of modules 720
  • 56. PV*Sol Simulation PV Generator Output = 230.4 kWP Spec. Annual Yield = 1539.23 kWh/kWP Performance Ratio (PR) = 80.3% Grid Feed-in = 354,638 kWh/Year CO₂Emissions avoided = 212,783 kg/Year
  • 59. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 60. Production forecast of inverter (Schneider 66 kW × 3)
  • 61. PV Energy Output Forecast for a Period of 21 Years
  • 62. Circuit Diagram of Optimized System
  • 63. PV*Sol Simulation PV Generator Output = 230.4 kWP Spec. Annual Yield = 1546.49 kWh/kWP Performance Ratio (PR) = 80.6% Grid Feed-in = 356,311 kWh/Year CO₂Emissions avoided = 213,787 kg/Year
  • 66. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 67. Production forecast of inverter (Schneider 66 kW × 3)
  • 68. PV Energy Output Forecast for a Period of 21 Years
  • 70. Civil Block Installed Capacity 111 kWP Total modules 417 Inverter 66 kVA x 1,25 kVA x 1,20 kVA x 1, Wattage of module 320 WP Tilt 15 ̊ Orientation South
  • 71. Circuit Diagram of Existing System
  • 72. Tilt of Module When 90 ̊ angle between Sun & module Max energy will be collected Tilt (β) = 180 - 90 - Altitude of Sun
  • 73. Latitude of Integral University 26.57 ̊ N. Altitude of Sun at solar noon on equinox @ I.U.L  γc=90-latitude (equinox, Mar 21st / Sep 23rd) → 90 - 26.57 ̊ N = 63.43 ̊ S Tilt (β) = 180 - 90 - Altitude of Sun → 180 - 90 - 63.43 ̊ S = 26.57 Rooftop height of Civil Blcok ≈ 15 m. Tilt of module in existing system 15 ̊
  • 74. PV Array & Inverter Matching 66 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 19 ← existing system Maximum number of modules 20
  • 75. Current Matching Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 12 Actual no. of string 13 Power Matching Maximum no. of module = Inverter's max PV array rated power ÷ rated power of module Maximum number of modules 240 Actual no. of modules 247
  • 76. 25 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 14 Maximum number of modules 20 Number of modules per string 18
  • 77. Current Matching Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 8 Actual no. of string 5 Power Matching Maximum no. of module = Inverter's max PV array rated power ÷ rated power of module Maximum number of modules 100 Actual no. of modules 90
  • 78. 20 KVA Inverter - PV Array Matching: Temperature Maximum cell temp 70 ̊C (ambient temp + 25 = max cell temp) Minimum cell temp 2 ̊C (min site temp) Voltage Matching Inverter's input voltage ÷ [V@ X ̊C = {V@ STC -[γV x (TX ̊C - TSTC)]}] Minimum number of modules 12 Maximum number of modules 20 ← existing system
  • 79. Current Matching Max current input of inverter ÷ {ISC Cell Eff = I SC-STC +[γI SC x (TCell Eff - TSTC)]} Maximum number of string 8 Actual no.of string 4 Power Matching Maximum no. of module = Inverter's max PV array rated power ÷ rated power of module Maximum number of modules 80 Actual no. of modules 80
  • 80. PV*Sol Simulation PV Generator Output = 133.4 kWP Spec. Annual Yield = 1530.80 kWh/kWP Performance Ratio (PR) = 79.8% Grid Feed-in = 204,271 kWh/Year CO₂Emissions avoided = 122,562 kg/Year
  • 83. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 84. Production forecast of inverter (Schneider 25 kW × 1, 20 kW × 1, 66 kW × 1)
  • 85. PV Energy Output Forecast for a Period of 21 Years
  • 86. Circuit Diagram of Optimized System
  • 87. PV*Sol Simulation PV Generator Output = 133.4 kWP Spec. Annual Yield = 1537.37 kWh/kWP Performance Ratio (PR) = 80.1% Grid Feed-in = 205,146 kWh/Year CO₂Emissions avoided = 123,088 kg/Year
  • 90. Module Temp vs Grid Feed-in Curve for a Period of 1 Month (March)
  • 91. Production forecast of inverter (Schneider 25 kW × 1, 20 kW × 1, 66 kW × 1)
  • 92. PV Energy Output Forecast for a Period of 21 Years