SlideShare a Scribd company logo
1 of 37
Internal Guide:
Prof. M. Natarajan
VIT University, Vellore,TN
External Guide:
Dr. Sagar Agravat
Scientist-C, GERMI, Gujarat
 Introduction
 Literature review
 Methodology
 Work Done
 Results & Discussion
 Verification
 Conclusion
 References
Scope:
Impact on energy generation due to degradation of
solar PV modules installed at Solar PV power plant
since the date of installation till the present date and
develop a reliability model for future solar PV plant
installations.
» Degradation Study of PV modules installed at solar PV
power plant
» Comparison between performance of ground mounted
& canal top mounted modules
» Development of Loss Models
» Reliability Evaluation of Solar PV Power Plant based on
Loss Models developed
» On global survey of degradation rate, it was
analyzed that mono-crystalline technology has
undergone minimum range of degradation while
the rate of degradation for polycrystalline
technology varied in a wide range
» Outdoor Testing along with Data Acquisition
System were the most reliable analysis
methodology
» Several models for evaluating degradation were
reported.
» Faulty PV identification and dynamic thermal
model to evaluate instantaneous thermal effect
on performance were remarkable.
 GTPS 1MW Solar PV
Power Plant
» Technology: Multi-Tech
» Located above closed
(filled) ash dyke of
GSECL's Gandhinagar
Thermal Power Station
» Latitude: 23°16' N
» Longitude: 72°40' E
» Operating since: Aug‘11
 1 MW Narmada Canal
Top Solar PV Power
Plant
» Technology: Poly-
crystalline
» Located above
Narmada river canal at
Sanand, Gujarat
» Latitude: 23°05' N
» Longitude: 72°18' E
» Operating since: Aug‘11
1 MW Narmada Canal Top Solar PV Power Plant
GTPS 1MW Solar PV Power Plant
Parameter GTPS
Module
Technology
Poly-crystalline CIGS
[Copper Indium
Gallium
Selenide]
A-Si
[Amorphous-Si]
Mono-crystalline CdTe
[Cadmium
Telluride]
Capacity of each
PV module (Watt)
240 235 95 107 250 85
Total no. of each
PV module
2088 432 1056 924 405 1170
Total DC Capacity
(Watt)
500400 101520 100320 98868 101250 99450
Type of Inverter Central String
Capacity Of
Inverter (kW)
500 7
Total no. of
Inverter
1 75
Total Capacity of
Inverter (kW)
1025
Parameter Narmada Canal Top Plant
Module Technology
Poly-crystalline
Capacity of each PV
module (Watt)
275 280 285
Total no. of each PV
module
1056 2480 80
Total DC Capacity
(Watt)
290400 694400 22800
Type of Inverter Central
Capacity Of Inverter
(kW)
220
Total no. of Inverter 4
Total Capacity of
Inverter (kW)
880
PV Modules
Polycrystalline-2088, 240Wp
DC Junction Box
Central Inverter
Transformer
HT Bus-bar
HT PanelHT Panel Transformer
PV Modules
I. Poly-crystalline-432, 235Wp
II. Mono-crystalline-405, 250Wp
III. Thin Film
a. A-Si-924, 107Wp
b. CdTe-1170, 85Wp
c. CIGS-1056, 95Wp
String Inverter
Power Distribution Box
Low Voltage Distribution Box
Transmission
Tower
11KV AC
1. Degradation of Modules
Outdoor Testing using sun simulator along with Data
Acquisition System
1 set of reading takes place at:
i. 15 minute duration
ii. Equal radiation
iii. Equal wind speed
iv. Equal cloud casting
v. Equal ambient temperature
 4 modules were tested for
each set of readings
 Canal Top (CT) reference &
Ground Mounted (GM)
reference modules were tested
at every set periodic
assessment of performance
 Readings for GM Test & CT Test
modules were taken from
different modules mounted
respectively
 Readings from CT Test & GM
Test modules intimidated the
overall performance trend of
plant
2. Comparison of ground mounted & canal top
mounted modules:
Calculation of In-plane Radiation
Incident Angle Modifier (IAM) Factor
Effect in Module Temperature
% Variation in Efficiency due to change in Temperature
Power Calculation for 1 module
% of Power loss due to DC & Cable Loss
% of Power Loss due Conversion Losses
y = 0.0661x2 - 0.2796x + 41.41
R² = 0.0761
y = 0.05x2 + 0.59x + 47.26
R² = 0.7328
30.0
35.0
40.0
45.0
50.0
55.0
0 1 2 3 4 5 6 7
Temperature(°C)
Set Number
Temperature Difference between Canal Top & Ground Mounted Reference Modules
CT ref
GM ref
Poly. (CT ref)
Poly. (GM ref)
Average difference is 10°C
y = 0.1393x2 - 0.9321x + 41.3
R² = 0.1875
y = 0.2643x2 - 1.4729x + 50.38
R² = 0.5757
30.0
35.0
40.0
45.0
50.0
55.0
0 1 2 3 4 5 6 7
Temperature(°C)
Set Number
Temperature Difference between Canal Top & Ground Mounted Temp
CT test
GM test
Poly. (CT test)
Poly. (GM test)
Average difference is 10°C
y = -0.1559x + 40.89
R² = 0.5133
y = -0.0298x + 44.233
R² = 0.1736
35.00
36.00
37.00
38.00
39.00
40.00
41.00
42.00
43.00
44.00
45.00
0 2 4 6 8 10 12 14
OCVoltage(V)
Set Number
Canal Top & Ground Mounted Open Circuit Voltage Difference
GM Voc
CT Voc
Linear (GM Voc)
Linear (CT Voc)
Average difference is 4V
y = 0.0786x2 - 0.6046x + 35.086
R² = 0.8393
y = 0.033x2 - 0.1521x + 33.973
R² = 0.3403
33.4
33.6
33.8
34
34.2
34.4
34.6
34.8
0 1 2 3 4 5 6 7
VoltageatMaximumPower(Vmpp)
Set Number
CT Vmpp
GM Vmpp
Poly. (CT Vmpp)
Poly. (GM Vmpp)
Maximum Voltage difference between Canal Top & Ground Mounted Reference Modules
y = 0.0147x2 - 0.2762x + 15.384
R² = 0.36
y = 0.0266x2 - 0.4447x + 16.212
R² = 0.8392
13
13.5
14
14.5
15
15.5
16
16.5
0 2 4 6 8 10 12 14
Efficiency(%)
Set Number
Canal Top & Ground Mounted Efficiency Difference
GM Efficiency
CT Efficiency
Poly. (GM Efficiency)
Poly. (CT Efficiency)
40.0
42.0
44.0
46.0
48.0
50.0
52.0
10.00
12.00
14.00
16.00
18.00
set 1 set 2 set 3 set 4 set 5 set 6
Temperature(°C)
Efficiency(%)
Set Number
Effect on Efficiency due to Temperature (Test) Efficiency
Temperature
20.0
25.0
30.0
35.0
40.0
45.0
10.00
15.00
20.00
set 1 set 2 set 3 set 4 set 5 set 6
Temperature(°C)
Efficiency(%)
Set Number
Canal Top: Effect of Temperature (Test) on Efficiency
Efficiency
Temperature
100.00
120.00
140.00
160.00
180.00
200.00
220.00
240.00
260.00
280.00
300.00
860
870
880
890
900
910
920
930
1 2 3 4 5 6 7 8 9 10 11 12 13
Power(W)
Radiation(Wm-2)
Set Number
Canal Top Power vs Radiation CT Radiation
CT Power
255.00
260.00
265.00
270.00
275.00
280.00
850
860
870
880
890
900
910
920
930
1 2 3 4 5 6 7 8 9 10 11 12 13
Power(W)
Radiation(Wm-2)
Set Number
Ground Mounted Power vs Radiation GM Radiation
GM Power
y = 279.24x-0.014
R² = 0.4325
y = 250.17x0.0596
R² = 0.6779
230.00
240.00
250.00
260.00
270.00
280.00
290.00
0 1 2 3 4 5 6 7
P
o
w
e
r
Set Number
Canal Top & Ground Mounted Power CT ref
GM ref
y = -1.0946x2 + 13.214x + 237.67
R² = 0.736
245.00
250.00
255.00
260.00
265.00
270.00
275.00
280.00
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Power(W)
Set Number
Dust Accumulation
Output Power
Poly. (Output Power)
» Mono-crystalline modules: 2.16-2.95% per year
» CdTe modules:0.48-2.92% per year
» A-Si modules: 9.85-11.16% per year
» Poly-crystalline modules:
 GTPS: 1.73-3.89 % per year
 Narmada Canal Top Plant: 0.17-1.95 % per year
 Canal top mounted modules had an all time lower
temperature than ground mounted modules thereby
had higher open circuit voltage and efficiency
 Soiling reduces power output by: 24-25.6 W
efficiency by :1.08-1.61%
 Calculation of In-plane Radiation: 523.527 Wm-2
 Error: 0.05461-0.13181%
 Incident Angle Modifier (IAM) Factor: 0.942 to 0.411
 % Drop in Module Temperature due to Wind: 9.821%
 Variation in Efficiency due to change in Temperature: 0.54%
 Power Calculation for 1 module:
Poly-crystalline: 96.97 W, Mono-crystalline: 108.48 W, A-Si: 42.4 W, CdTe:
38.46 W, CIGS: 41.81 W
 Total power output:
Poly-crystalline: 244364.4 W, mono-crystalline: 43934.4 W, A-Si: 39177.6 W,
CdTe: 40786.2 W, CIGS: 44151.36 W
 Ohmic loss: 0.5576%-1.8958%. The ohmic losses were observed to be
more at higher values of irradiance.
 Conversion loss: 0.17%-4.50%. At times of inverter failure, conversion
losses were as high as 19.36%.
 Inverter efficiency: At an average, the efficiency of inverter was in the
range of 96.97-98.43%
The loss parameters obtained closely match with
that of simulated results with an average
deviation of
 2% for IAM Factor
 3.78% for power loss due to temperature
 0.22% for ohmic loss
 0.07% for inverter efficiency
VERIFICATION:
0
20000
40000
60000
80000
100000
120000
140000
160000
180000
Energy(kWh)
Month
Simulated and Real Time Generation
2013 simulated
2013 real time
2014 simulated
2014 real time
 Average rate of degradation: nearly 1%
GTPS: 2.81% NCT: 1.06%
 Expected plant performance:
GTPS Ash-dyke Plant: up to 2037
Narmada Canal Top Plant: up to 2048
 Regular cleaning is required to avoid power and
efficiency loss by nearly 25W and 1.61 %
respectively for each module
 The model developed and results obtained for
losses nearly matches with theoretical simulation
1. Mukadam K, Chenlo F, Rebollo L, Matas A, Zarauza L, Valera P, Garcia P. Three years of operation
and experience of the 1 MW photovoltaic plant. Proceedings of the 14th European Photovoltaic
Solar Energy Conference, Barcelona, Spain, 1997; 705–708.
2. Alonso-Abella M, Chenlo F, Vela N, Chamberlain J, Arroyo R, Alonso Martínez FJ. Toledo PV plant
1MWp—10 years of operation.Proceedings of the 20th European Photovoltaic Solar Energy
Conference, Barcelona, Spain, 2005; 2454–2457.
3. Marion B, del Cueto J, McNutt P, Rose D. Performance summary for the first solar CdTe 1-kW
system, NREL/CP-520-30942, Lakewood, CO, USA, October 2001.
4. Multi-pronged analysis of degradation rates of photovoltaic modules and arrays deployed in
Florida; K. O. Davis1*, S. R. Kurtz2, D. C. Jordan2, J. H. Wohlgemuth2 and N. Sorloaica-Hickman1
5. Realini A. Mean time before failure of photovoltaic modules, Federal Office for Education and
Science, Final report BBW 99.0579, June 2003.
6. Realini A, Burá E, Cereghetti N, Chianese D, Rezzonico S, Sample T, Ossenbrink H. Study of a 20
year old PV plant (MTBF project).Proceedings of the 17th European Photovoltaic Solar Energy
Conference, Munich, Germany, 2001; 447–450.
7. Marion B, Adelstein J. Long-term performance of the SERF PV systems. Proceedings of the NCPV
and Solar Programme Review Meeting, Denver, 24–26 March 2003; 199–201. NREL/CD-520-
33586.
8. Carr AJ, Pryor TL. A comparison of the performance of different PV module types in temperate
climates.SolarEnergy2004; 76:285–94.
9. McNutt P, Adelstein J, Sekulic W. Performance evaluation of a 1.5-kW a-Si PV array using the PVUSA
power rating method at NREL's outdoor test facility, 2005 DOE Solar Energy Technologies Program
Review Meeting, Denver, CO, USA, NREL/CP-520-38971, November 2005.
10. Adelstein J, Sekulic W. Small PV systems performance evaluation at NREL's outdoor test facility
using the PVUSA power rating method, 2005 DOE Solar Energy Technologies Program Review Meeting,
Denver, CO, USA, NREL/CP-520-39135, November2005.
11. Akamoto S, Oshiro T. Dominant degradation of crystalline silicon photovoltaic modules
manufactures in 1990 20th EPSEC 2005.
12. Dunlop ED, Halton D. The performance of crystalline silicon photovoltaic solar modules after 22
years of continuous outdoor exposure. Progress in Photovoltaics Research and Applications 2006;
14:53–64.
13. Raghuraman B, Lakshman V, Kuitche J, ShislerW, Tamizh Mani G, Kapoor H. An overview of SMUD’s
outdoor photovoltaic test program at Arizona State University. IEEE; 2006.
14. Foster RE, Gómez Rocha LM, Gupta VP, Sánchez-Juárez A, Cruz JO, Rosas JC. Field testing of CdTe PV
modules in Mexico.Proceedings of the 35th American Solar Energy Society Annual Solar Conference,
Denver, CO, USA, 2006.
15. Hedström J, Palmblad L. Performance of old PV modules: measurement of 25 years old crystalline
silicon modules, Elforsk Rapport 06:71, October 2006.
16. Guastella S. Assessment of PV plant performance in Italy. Proceedings of the 22nd European
Photovoltaic Solar Energy Conference, Milan, Italy, 2007; 2884–2888.
17. Rüther R, Knob P, Beyer HG, Dacoregio MM, Montenegro AA. High performance ratios of a double-
junction a-Si BIPV grid-connected installation after five years of continuous operation in Brazil.
Proceedings of the 3rd World Conference on PV Energy Conversion, Osaka, Japan, 2003; 2169–2172.
18. Rüther R, Dacoregio M, Salamoni I, Knob P, Bussemas U. Performance of the first grid-connected,
BIPV installation in Brazil over eight years of continuous operation. Proceedings of the 21st European
Photovoltaic Solar Energy Conference, Dresden, Germany, 2006; 2761–2764.
19. Apicella F, Giglio V, Pellegrino M, Ferlito S, Tanikawa F, Okamoto Y, Thin film modules: long term
operational experience in Mediterranean climate. Proceedings of the 23rd European Photovoltaic
Solar Energy Conference, Valencia, Spain, 2008;3422–3425. DOI: 10.4229/23rdEUPVSEC2008-
5BV.2.21.
20. Case study of two different photovoltaic technologies; Kristopher Davis, H. Moaveni
21. Quintana MA, King DL, Hosking FM, Kratochvil JA, Johnson RW, Hansen BR, Dhere NG, Pandit MB.
Diagnostic analysis of silicon photovoltaic modules after 20-year field exposure. Proceedings of the
28th PV Specialists Conference, Anchorage, AK, USA, 2000; 1420–1423. DOI:
10.1109/PVSC.2000.916159
22. Reis AM, Coleman NT, Marshall MW, Lehman PA, Chamberlin, CE. Comparison of PV module
performance before and after 11-years of field exposure. Proceedings of the 29th PV Specialists
Conference, New Orleans, LA, USA, 2002; 1432–1435.
23. Saleh IM, Abouhdima I, Gantrari MB. Performance of thirty years standalone photovoltaic system.
Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009;
3995–3998. DOI: 10.4229/24thEUPVSEC2009-5DO.7.6.
24. Adelstein J, Sekulic B. Performance and reliability of a 1-kW amorphous silicon photovoltaic roofing
system. Proceedings of the 31st PV Specialists Conference, Lake Buena Vista, FL, USA, 2005; 1627–
1630. DOI: 10.1109/PVSC.2005.1488457.
25. Pietruszko SM, Fetlinski B, Bialecki M. Analysis of the performance of grid connected photovoltaic
system. Proceedings of the 34th IEEE PV Specialist Conference, Philadelphia, PA, USA, 2009; 48–51. DOI:
10.1109/PVSC.2009.5411757.
26. Vignola F, Krumsick J, Mavromatakis F, Walwyn R. Measuring degradation of photovoltaic module
performance in the field.Proceedings of the 38th American Solar Energy Society Annual Solar
Conference, Buffalo, NY, USA, 2009
27. Dhere NG, Pethe SA, Kaul A. Photovoltaic module reliability studies at the Florida Solar Energy
Center. Reliability Physics Symposium (IRPS) 2010; 306–311. DOI: 10.1109/IRPS.2010.5488813.
28. Dhere NG, Pethe SA, Kaul A. PV module reliability and durability studies at the FSEC PV Materials
Lab, NREL PV Module Reliability Workshop, Golden, CO, USA, February
2010,http://www1.eere.energy.gov/solar/pv_module_reliability_workshop_2010.html
29. Musikowski HD, Styczynski AZ. Analysis of the operational behavior and long-term performance of a
CIS PV system. Proceedings of the 25th European Photovoltaic Solar Energy Conference, Valencia, Spain,
2010; 3942–3946. DOI: 10.4229/25thEUPVSEC2010-4DO.11.4.
30. Sastry O S, Sriparn S, Shil S K, Pant P C, Kumar R, Kumar A, et al. Performance analysis of the field
exposed single crystalline silicon module. Solar Energy Material and Solar cells2010; 94:1463–8.
31. Sanchez-Friera P, Piliougine M, Pelaez J, Carretero J, Sidrach de Cardona M. Analysis of degradation
mechanisms of crystalline silicon PV modules after 12 years of operation in Southern Europe. Progress in
Photovoltaics: Research and Application 2011
32. Jordan DC, Kurtz SR. Thin-film reliability trends toward improved stability. Proceedings of the 37th
PV Specialists Conference, Seattle, WA, USA, 2011.
33. George Makrides, Bastian Zinsser, Markus Schubert, George E. Georghiou; Performance loss rate of
twelve photovoltaic technologies under field conditions using statistical techniques; Department of
Electrical and Computer Engineering, University of Cyprus, Institute for Photovoltaic-University of
Stuttgart, Germany.
34. Vikrant Sharma, O.S. Sastry , Arun Kumar, Birinchi Bora, S.S. Chandel; Degradation analysis of a-Si,
(HIT) hetero-junction intrinsic thin layer silicon and m-C-Si solar photovoltaic technologies under outdoor
conditions.
35. M. Torres-Ramírez, G. Nofuentes, J.P. Silva, S. Silvestre, J.V. Munoz; Study on analytical modeling
approaches to the performance of thin film PV modules in sunny inland climates.
36. Yihua Hua, Bin Gao b,⇑, Xueguan Song c, Gui Yun Tian b, Kongjing Li c, Xiangning He; Photovoltaic fault
detection using a parameter based model.
37. J.-P. Charles, F. Hannane, H. El-Mossaoui, A. Zegaoui, T.V. Nguyen, P. Petit, M. Aillerie; Faulty PV panel
identification using the Design of Experiments (DoE) method.
38. Tao Ma, Hongxing Yang, Lin Lu; Development of a model to simulate the performance characteristics
of crystalline silicon photovoltaic modules/strings/arrays.
39. Diego Torres Lobera, Seppo Valkealahti; Dynamic thermal model of solar PV systems under varying
climatic conditions.
40. L.M. Ayompe, A. Duffy, S.J. McCormack, M. Conlon; Validated real-time energy models for small-scale
grid-connected PV-systems.
41. Thomas Huld, Gabi Friesen, Artur Skoczek, Robert P. Kenny, Tony Sample, Michael Field a, Ewan D.
Dunlop; A power-rating model for crystalline silicon PV modules.
42. Manuel Va´zquez and Ignacio Rey-Stolle; Photovoltaic Module Reliability Model Based on Field
Degradation Studies.
43. K.H. Lam, J. Close, W. Durisch; Modeling and degradation study on a copper indium diselenide module.
Impact of Degradation on Energy Generation from Solar PV Power Plants

More Related Content

What's hot

Final Presentaion 08-4-16 v6 wadej
Final Presentaion 08-4-16 v6 wadejFinal Presentaion 08-4-16 v6 wadej
Final Presentaion 08-4-16 v6 wadejJacob Wade
 
Modeling PV Module Power Degradation to Evaluate Performance Warranty Risks
Modeling PV Module Power Degradation to Evaluate Performance Warranty RisksModeling PV Module Power Degradation to Evaluate Performance Warranty Risks
Modeling PV Module Power Degradation to Evaluate Performance Warranty RisksKenneth J. Sauer
 
Multi-channel Detector Readout Integrated Circuits with ADCs for X-ray and Ga...
Multi-channel Detector Readout Integrated Circuits with ADCs for X-ray and Ga...Multi-channel Detector Readout Integrated Circuits with ADCs for X-ray and Ga...
Multi-channel Detector Readout Integrated Circuits with ADCs for X-ray and Ga...Gunnar Maehlum
 
Testing of PV performance lecture 1
Testing of PV performance lecture 1Testing of PV performance lecture 1
Testing of PV performance lecture 1Ali Al-Waeli
 

What's hot (20)

07 huld presentation_61853_3_th
07 huld presentation_61853_3_th07 huld presentation_61853_3_th
07 huld presentation_61853_3_th
 
2014 PV Performance Modeling Workshop: Results from Flash Testing at Multiple...
2014 PV Performance Modeling Workshop: Results from Flash Testing at Multiple...2014 PV Performance Modeling Workshop: Results from Flash Testing at Multiple...
2014 PV Performance Modeling Workshop: Results from Flash Testing at Multiple...
 
21 supsi workshop_indoor_para_v3_1
21 supsi workshop_indoor_para_v3_121 supsi workshop_indoor_para_v3_1
21 supsi workshop_indoor_para_v3_1
 
20 supsi workshop schinke
20 supsi workshop schinke20 supsi workshop schinke
20 supsi workshop schinke
 
2014 PV Performance Modeling Workshop: PV Module Characterization Methods at ...
2014 PV Performance Modeling Workshop: PV Module Characterization Methods at ...2014 PV Performance Modeling Workshop: PV Module Characterization Methods at ...
2014 PV Performance Modeling Workshop: PV Module Characterization Methods at ...
 
14 presentation barykina
14 presentation barykina14 presentation barykina
14 presentation barykina
 
25 7th energy-rating-and-module-performance-modeling-workshop-eisenlohr_final
25 7th energy-rating-and-module-performance-modeling-workshop-eisenlohr_final25 7th energy-rating-and-module-performance-modeling-workshop-eisenlohr_final
25 7th energy-rating-and-module-performance-modeling-workshop-eisenlohr_final
 
2014 PV Performance Modeling Workshop: Irradiance- and Temperature-dependent ...
2014 PV Performance Modeling Workshop: Irradiance- and Temperature-dependent ...2014 PV Performance Modeling Workshop: Irradiance- and Temperature-dependent ...
2014 PV Performance Modeling Workshop: Irradiance- and Temperature-dependent ...
 
Final Presentaion 08-4-16 v6 wadej
Final Presentaion 08-4-16 v6 wadejFinal Presentaion 08-4-16 v6 wadej
Final Presentaion 08-4-16 v6 wadej
 
Modeling PV Module Power Degradation to Evaluate Performance Warranty Risks
Modeling PV Module Power Degradation to Evaluate Performance Warranty RisksModeling PV Module Power Degradation to Evaluate Performance Warranty Risks
Modeling PV Module Power Degradation to Evaluate Performance Warranty Risks
 
17 session 2 fey - example sensitivity analysis
17 session 2   fey - example sensitivity analysis17 session 2   fey - example sensitivity analysis
17 session 2 fey - example sensitivity analysis
 
12 wittmer p_vsyst_pvpmc_7
12 wittmer p_vsyst_pvpmc_712 wittmer p_vsyst_pvpmc_7
12 wittmer p_vsyst_pvpmc_7
 
Multi-channel Detector Readout Integrated Circuits with ADCs for X-ray and Ga...
Multi-channel Detector Readout Integrated Circuits with ADCs for X-ray and Ga...Multi-channel Detector Readout Integrated Circuits with ADCs for X-ray and Ga...
Multi-channel Detector Readout Integrated Circuits with ADCs for X-ray and Ga...
 
10 measuring the spectral and angular distribution of the diffuse solar radiance
10 measuring the spectral and angular distribution of the diffuse solar radiance10 measuring the spectral and angular distribution of the diffuse solar radiance
10 measuring the spectral and angular distribution of the diffuse solar radiance
 
05 2017 03_ralph_gottschalg_standardsbodyperspective
05 2017 03_ralph_gottschalg_standardsbodyperspective05 2017 03_ralph_gottschalg_standardsbodyperspective
05 2017 03_ralph_gottschalg_standardsbodyperspective
 
6272149
62721496272149
6272149
 
Testing of PV performance lecture 1
Testing of PV performance lecture 1Testing of PV performance lecture 1
Testing of PV performance lecture 1
 
27 7th pvpmc stellbogen_mlpe
27 7th pvpmc stellbogen_mlpe27 7th pvpmc stellbogen_mlpe
27 7th pvpmc stellbogen_mlpe
 
Senior Design Poster
Senior Design PosterSenior Design Poster
Senior Design Poster
 
04 winter(ptb), status and outlook of photo class
04 winter(ptb), status and outlook of photo class04 winter(ptb), status and outlook of photo class
04 winter(ptb), status and outlook of photo class
 

Similar to Impact of Degradation on Energy Generation from Solar PV Power Plants

72 Cell Modules and 60 cell modules (multi-crystalline)
72 Cell Modules and 60 cell modules (multi-crystalline)72 Cell Modules and 60 cell modules (multi-crystalline)
72 Cell Modules and 60 cell modules (multi-crystalline)Emmvee India
 
Off Grid PV System
Off Grid PV SystemOff Grid PV System
Off Grid PV SystemDilawez Alam
 
Iaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysisIaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysisIaetsd Iaetsd
 
Bergh 42.585 KW Planset - Final
Bergh 42.585 KW Planset - FinalBergh 42.585 KW Planset - Final
Bergh 42.585 KW Planset - FinalDavid Hults
 
Le.h insulation coordination - Digsilent
Le.h insulation coordination - DigsilentLe.h insulation coordination - Digsilent
Le.h insulation coordination - DigsilentGilberto Mejía
 
Modeling the Irradiance and Temperature Dependence of PV Modules in PVsyst
Modeling the Irradiance and Temperature Dependence of PV Modules in PVsystModeling the Irradiance and Temperature Dependence of PV Modules in PVsyst
Modeling the Irradiance and Temperature Dependence of PV Modules in PVsystKenneth J. Sauer
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_JunMDO_Lab
 
Multi string PV array
Multi string PV arrayMulti string PV array
Multi string PV arrayNIT MEGHALAYA
 
Solar_IT_03_101.pdf
Solar_IT_03_101.pdfSolar_IT_03_101.pdf
Solar_IT_03_101.pdfAntyMouda
 
Renewable Energy Technology : 5-day course at IIT Bombay - May 2012
Renewable Energy Technology : 5-day course at IIT Bombay - May 2012Renewable Energy Technology : 5-day course at IIT Bombay - May 2012
Renewable Energy Technology : 5-day course at IIT Bombay - May 2012Kishore Malani, M.Tech
 
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWPIRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWPIRJET Journal
 
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWPIRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWPIRJET Journal
 
60 Monocrystalline Cell Modules and 72 Mono Crystalline Cell Modules:
60 Monocrystalline Cell Modules and 72 Mono Crystalline Cell Modules: 60 Monocrystalline Cell Modules and 72 Mono Crystalline Cell Modules:
60 Monocrystalline Cell Modules and 72 Mono Crystalline Cell Modules: Emmvee India
 
Kumaresh_ISLANDING.pptx
Kumaresh_ISLANDING.pptxKumaresh_ISLANDING.pptx
Kumaresh_ISLANDING.pptxRishikabhakat
 

Similar to Impact of Degradation on Energy Generation from Solar PV Power Plants (20)

72 Cell Modules and 60 cell modules (multi-crystalline)
72 Cell Modules and 60 cell modules (multi-crystalline)72 Cell Modules and 60 cell modules (multi-crystalline)
72 Cell Modules and 60 cell modules (multi-crystalline)
 
Off Grid PV System
Off Grid PV SystemOff Grid PV System
Off Grid PV System
 
Trina Honey Datasheet
Trina Honey Datasheet Trina Honey Datasheet
Trina Honey Datasheet
 
Iaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysisIaetsd design, engineerning and analysis
Iaetsd design, engineerning and analysis
 
Solar Barge
Solar BargeSolar Barge
Solar Barge
 
Bergh 42.585 KW Planset - Final
Bergh 42.585 KW Planset - FinalBergh 42.585 KW Planset - Final
Bergh 42.585 KW Planset - Final
 
Solar ppt
Solar pptSolar ppt
Solar ppt
 
Le.h insulation coordination - Digsilent
Le.h insulation coordination - DigsilentLe.h insulation coordination - Digsilent
Le.h insulation coordination - Digsilent
 
Q Cell 310w Mono Q.Peak G4.1 Silver Frame
Q Cell 310w Mono Q.Peak G4.1 Silver FrameQ Cell 310w Mono Q.Peak G4.1 Silver Frame
Q Cell 310w Mono Q.Peak G4.1 Silver Frame
 
Modeling the Irradiance and Temperature Dependence of PV Modules in PVsyst
Modeling the Irradiance and Temperature Dependence of PV Modules in PVsystModeling the Irradiance and Temperature Dependence of PV Modules in PVsyst
Modeling the Irradiance and Temperature Dependence of PV Modules in PVsyst
 
Q Plus
Q PlusQ Plus
Q Plus
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_Jun
 
Multi string PV array
Multi string PV arrayMulti string PV array
Multi string PV array
 
Solar_IT_03_101.pdf
Solar_IT_03_101.pdfSolar_IT_03_101.pdf
Solar_IT_03_101.pdf
 
Renewable Energy Technology : 5-day course at IIT Bombay - May 2012
Renewable Energy Technology : 5-day course at IIT Bombay - May 2012Renewable Energy Technology : 5-day course at IIT Bombay - May 2012
Renewable Energy Technology : 5-day course at IIT Bombay - May 2012
 
Power systems (1)
Power systems (1)Power systems (1)
Power systems (1)
 
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWPIRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
 
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWPIRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
 
60 Monocrystalline Cell Modules and 72 Mono Crystalline Cell Modules:
60 Monocrystalline Cell Modules and 72 Mono Crystalline Cell Modules: 60 Monocrystalline Cell Modules and 72 Mono Crystalline Cell Modules:
60 Monocrystalline Cell Modules and 72 Mono Crystalline Cell Modules:
 
Kumaresh_ISLANDING.pptx
Kumaresh_ISLANDING.pptxKumaresh_ISLANDING.pptx
Kumaresh_ISLANDING.pptx
 

Impact of Degradation on Energy Generation from Solar PV Power Plants

  • 1. Internal Guide: Prof. M. Natarajan VIT University, Vellore,TN External Guide: Dr. Sagar Agravat Scientist-C, GERMI, Gujarat
  • 2.  Introduction  Literature review  Methodology  Work Done  Results & Discussion  Verification  Conclusion  References
  • 3. Scope: Impact on energy generation due to degradation of solar PV modules installed at Solar PV power plant since the date of installation till the present date and develop a reliability model for future solar PV plant installations.
  • 4. » Degradation Study of PV modules installed at solar PV power plant » Comparison between performance of ground mounted & canal top mounted modules » Development of Loss Models » Reliability Evaluation of Solar PV Power Plant based on Loss Models developed
  • 5. » On global survey of degradation rate, it was analyzed that mono-crystalline technology has undergone minimum range of degradation while the rate of degradation for polycrystalline technology varied in a wide range » Outdoor Testing along with Data Acquisition System were the most reliable analysis methodology » Several models for evaluating degradation were reported. » Faulty PV identification and dynamic thermal model to evaluate instantaneous thermal effect on performance were remarkable.
  • 6.  GTPS 1MW Solar PV Power Plant » Technology: Multi-Tech » Located above closed (filled) ash dyke of GSECL's Gandhinagar Thermal Power Station » Latitude: 23°16' N » Longitude: 72°40' E » Operating since: Aug‘11  1 MW Narmada Canal Top Solar PV Power Plant » Technology: Poly- crystalline » Located above Narmada river canal at Sanand, Gujarat » Latitude: 23°05' N » Longitude: 72°18' E » Operating since: Aug‘11
  • 7. 1 MW Narmada Canal Top Solar PV Power Plant GTPS 1MW Solar PV Power Plant
  • 8. Parameter GTPS Module Technology Poly-crystalline CIGS [Copper Indium Gallium Selenide] A-Si [Amorphous-Si] Mono-crystalline CdTe [Cadmium Telluride] Capacity of each PV module (Watt) 240 235 95 107 250 85 Total no. of each PV module 2088 432 1056 924 405 1170 Total DC Capacity (Watt) 500400 101520 100320 98868 101250 99450 Type of Inverter Central String Capacity Of Inverter (kW) 500 7 Total no. of Inverter 1 75 Total Capacity of Inverter (kW) 1025
  • 9. Parameter Narmada Canal Top Plant Module Technology Poly-crystalline Capacity of each PV module (Watt) 275 280 285 Total no. of each PV module 1056 2480 80 Total DC Capacity (Watt) 290400 694400 22800 Type of Inverter Central Capacity Of Inverter (kW) 220 Total no. of Inverter 4 Total Capacity of Inverter (kW) 880
  • 10. PV Modules Polycrystalline-2088, 240Wp DC Junction Box Central Inverter Transformer HT Bus-bar HT PanelHT Panel Transformer PV Modules I. Poly-crystalline-432, 235Wp II. Mono-crystalline-405, 250Wp III. Thin Film a. A-Si-924, 107Wp b. CdTe-1170, 85Wp c. CIGS-1056, 95Wp String Inverter Power Distribution Box Low Voltage Distribution Box Transmission Tower 11KV AC
  • 11.
  • 12.
  • 13. 1. Degradation of Modules Outdoor Testing using sun simulator along with Data Acquisition System
  • 14. 1 set of reading takes place at: i. 15 minute duration ii. Equal radiation iii. Equal wind speed iv. Equal cloud casting v. Equal ambient temperature  4 modules were tested for each set of readings  Canal Top (CT) reference & Ground Mounted (GM) reference modules were tested at every set periodic assessment of performance  Readings for GM Test & CT Test modules were taken from different modules mounted respectively  Readings from CT Test & GM Test modules intimidated the overall performance trend of plant 2. Comparison of ground mounted & canal top mounted modules:
  • 15. Calculation of In-plane Radiation Incident Angle Modifier (IAM) Factor Effect in Module Temperature % Variation in Efficiency due to change in Temperature Power Calculation for 1 module % of Power loss due to DC & Cable Loss % of Power Loss due Conversion Losses
  • 16.
  • 17. y = 0.0661x2 - 0.2796x + 41.41 R² = 0.0761 y = 0.05x2 + 0.59x + 47.26 R² = 0.7328 30.0 35.0 40.0 45.0 50.0 55.0 0 1 2 3 4 5 6 7 Temperature(°C) Set Number Temperature Difference between Canal Top & Ground Mounted Reference Modules CT ref GM ref Poly. (CT ref) Poly. (GM ref) Average difference is 10°C y = 0.1393x2 - 0.9321x + 41.3 R² = 0.1875 y = 0.2643x2 - 1.4729x + 50.38 R² = 0.5757 30.0 35.0 40.0 45.0 50.0 55.0 0 1 2 3 4 5 6 7 Temperature(°C) Set Number Temperature Difference between Canal Top & Ground Mounted Temp CT test GM test Poly. (CT test) Poly. (GM test) Average difference is 10°C
  • 18. y = -0.1559x + 40.89 R² = 0.5133 y = -0.0298x + 44.233 R² = 0.1736 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 0 2 4 6 8 10 12 14 OCVoltage(V) Set Number Canal Top & Ground Mounted Open Circuit Voltage Difference GM Voc CT Voc Linear (GM Voc) Linear (CT Voc) Average difference is 4V
  • 19. y = 0.0786x2 - 0.6046x + 35.086 R² = 0.8393 y = 0.033x2 - 0.1521x + 33.973 R² = 0.3403 33.4 33.6 33.8 34 34.2 34.4 34.6 34.8 0 1 2 3 4 5 6 7 VoltageatMaximumPower(Vmpp) Set Number CT Vmpp GM Vmpp Poly. (CT Vmpp) Poly. (GM Vmpp) Maximum Voltage difference between Canal Top & Ground Mounted Reference Modules
  • 20. y = 0.0147x2 - 0.2762x + 15.384 R² = 0.36 y = 0.0266x2 - 0.4447x + 16.212 R² = 0.8392 13 13.5 14 14.5 15 15.5 16 16.5 0 2 4 6 8 10 12 14 Efficiency(%) Set Number Canal Top & Ground Mounted Efficiency Difference GM Efficiency CT Efficiency Poly. (GM Efficiency) Poly. (CT Efficiency)
  • 21. 40.0 42.0 44.0 46.0 48.0 50.0 52.0 10.00 12.00 14.00 16.00 18.00 set 1 set 2 set 3 set 4 set 5 set 6 Temperature(°C) Efficiency(%) Set Number Effect on Efficiency due to Temperature (Test) Efficiency Temperature
  • 22. 20.0 25.0 30.0 35.0 40.0 45.0 10.00 15.00 20.00 set 1 set 2 set 3 set 4 set 5 set 6 Temperature(°C) Efficiency(%) Set Number Canal Top: Effect of Temperature (Test) on Efficiency Efficiency Temperature
  • 23. 100.00 120.00 140.00 160.00 180.00 200.00 220.00 240.00 260.00 280.00 300.00 860 870 880 890 900 910 920 930 1 2 3 4 5 6 7 8 9 10 11 12 13 Power(W) Radiation(Wm-2) Set Number Canal Top Power vs Radiation CT Radiation CT Power 255.00 260.00 265.00 270.00 275.00 280.00 850 860 870 880 890 900 910 920 930 1 2 3 4 5 6 7 8 9 10 11 12 13 Power(W) Radiation(Wm-2) Set Number Ground Mounted Power vs Radiation GM Radiation GM Power
  • 24. y = 279.24x-0.014 R² = 0.4325 y = 250.17x0.0596 R² = 0.6779 230.00 240.00 250.00 260.00 270.00 280.00 290.00 0 1 2 3 4 5 6 7 P o w e r Set Number Canal Top & Ground Mounted Power CT ref GM ref
  • 25. y = -1.0946x2 + 13.214x + 237.67 R² = 0.736 245.00 250.00 255.00 260.00 265.00 270.00 275.00 280.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Power(W) Set Number Dust Accumulation Output Power Poly. (Output Power)
  • 26. » Mono-crystalline modules: 2.16-2.95% per year » CdTe modules:0.48-2.92% per year » A-Si modules: 9.85-11.16% per year » Poly-crystalline modules:  GTPS: 1.73-3.89 % per year  Narmada Canal Top Plant: 0.17-1.95 % per year  Canal top mounted modules had an all time lower temperature than ground mounted modules thereby had higher open circuit voltage and efficiency  Soiling reduces power output by: 24-25.6 W efficiency by :1.08-1.61%
  • 27.  Calculation of In-plane Radiation: 523.527 Wm-2  Error: 0.05461-0.13181%  Incident Angle Modifier (IAM) Factor: 0.942 to 0.411  % Drop in Module Temperature due to Wind: 9.821%  Variation in Efficiency due to change in Temperature: 0.54%  Power Calculation for 1 module: Poly-crystalline: 96.97 W, Mono-crystalline: 108.48 W, A-Si: 42.4 W, CdTe: 38.46 W, CIGS: 41.81 W  Total power output: Poly-crystalline: 244364.4 W, mono-crystalline: 43934.4 W, A-Si: 39177.6 W, CdTe: 40786.2 W, CIGS: 44151.36 W  Ohmic loss: 0.5576%-1.8958%. The ohmic losses were observed to be more at higher values of irradiance.  Conversion loss: 0.17%-4.50%. At times of inverter failure, conversion losses were as high as 19.36%.  Inverter efficiency: At an average, the efficiency of inverter was in the range of 96.97-98.43%
  • 28. The loss parameters obtained closely match with that of simulated results with an average deviation of  2% for IAM Factor  3.78% for power loss due to temperature  0.22% for ohmic loss  0.07% for inverter efficiency VERIFICATION:
  • 29.
  • 30. 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 Energy(kWh) Month Simulated and Real Time Generation 2013 simulated 2013 real time 2014 simulated 2014 real time
  • 31.  Average rate of degradation: nearly 1% GTPS: 2.81% NCT: 1.06%  Expected plant performance: GTPS Ash-dyke Plant: up to 2037 Narmada Canal Top Plant: up to 2048  Regular cleaning is required to avoid power and efficiency loss by nearly 25W and 1.61 % respectively for each module  The model developed and results obtained for losses nearly matches with theoretical simulation
  • 32. 1. Mukadam K, Chenlo F, Rebollo L, Matas A, Zarauza L, Valera P, Garcia P. Three years of operation and experience of the 1 MW photovoltaic plant. Proceedings of the 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 1997; 705–708. 2. Alonso-Abella M, Chenlo F, Vela N, Chamberlain J, Arroyo R, Alonso Martínez FJ. Toledo PV plant 1MWp—10 years of operation.Proceedings of the 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 2005; 2454–2457. 3. Marion B, del Cueto J, McNutt P, Rose D. Performance summary for the first solar CdTe 1-kW system, NREL/CP-520-30942, Lakewood, CO, USA, October 2001. 4. Multi-pronged analysis of degradation rates of photovoltaic modules and arrays deployed in Florida; K. O. Davis1*, S. R. Kurtz2, D. C. Jordan2, J. H. Wohlgemuth2 and N. Sorloaica-Hickman1 5. Realini A. Mean time before failure of photovoltaic modules, Federal Office for Education and Science, Final report BBW 99.0579, June 2003. 6. Realini A, Burá E, Cereghetti N, Chianese D, Rezzonico S, Sample T, Ossenbrink H. Study of a 20 year old PV plant (MTBF project).Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 2001; 447–450. 7. Marion B, Adelstein J. Long-term performance of the SERF PV systems. Proceedings of the NCPV and Solar Programme Review Meeting, Denver, 24–26 March 2003; 199–201. NREL/CD-520- 33586. 8. Carr AJ, Pryor TL. A comparison of the performance of different PV module types in temperate climates.SolarEnergy2004; 76:285–94.
  • 33. 9. McNutt P, Adelstein J, Sekulic W. Performance evaluation of a 1.5-kW a-Si PV array using the PVUSA power rating method at NREL's outdoor test facility, 2005 DOE Solar Energy Technologies Program Review Meeting, Denver, CO, USA, NREL/CP-520-38971, November 2005. 10. Adelstein J, Sekulic W. Small PV systems performance evaluation at NREL's outdoor test facility using the PVUSA power rating method, 2005 DOE Solar Energy Technologies Program Review Meeting, Denver, CO, USA, NREL/CP-520-39135, November2005. 11. Akamoto S, Oshiro T. Dominant degradation of crystalline silicon photovoltaic modules manufactures in 1990 20th EPSEC 2005. 12. Dunlop ED, Halton D. The performance of crystalline silicon photovoltaic solar modules after 22 years of continuous outdoor exposure. Progress in Photovoltaics Research and Applications 2006; 14:53–64. 13. Raghuraman B, Lakshman V, Kuitche J, ShislerW, Tamizh Mani G, Kapoor H. An overview of SMUD’s outdoor photovoltaic test program at Arizona State University. IEEE; 2006. 14. Foster RE, Gómez Rocha LM, Gupta VP, Sánchez-Juárez A, Cruz JO, Rosas JC. Field testing of CdTe PV modules in Mexico.Proceedings of the 35th American Solar Energy Society Annual Solar Conference, Denver, CO, USA, 2006. 15. Hedström J, Palmblad L. Performance of old PV modules: measurement of 25 years old crystalline silicon modules, Elforsk Rapport 06:71, October 2006. 16. Guastella S. Assessment of PV plant performance in Italy. Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007; 2884–2888. 17. Rüther R, Knob P, Beyer HG, Dacoregio MM, Montenegro AA. High performance ratios of a double- junction a-Si BIPV grid-connected installation after five years of continuous operation in Brazil. Proceedings of the 3rd World Conference on PV Energy Conversion, Osaka, Japan, 2003; 2169–2172.
  • 34. 18. Rüther R, Dacoregio M, Salamoni I, Knob P, Bussemas U. Performance of the first grid-connected, BIPV installation in Brazil over eight years of continuous operation. Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 2006; 2761–2764. 19. Apicella F, Giglio V, Pellegrino M, Ferlito S, Tanikawa F, Okamoto Y, Thin film modules: long term operational experience in Mediterranean climate. Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 2008;3422–3425. DOI: 10.4229/23rdEUPVSEC2008- 5BV.2.21. 20. Case study of two different photovoltaic technologies; Kristopher Davis, H. Moaveni 21. Quintana MA, King DL, Hosking FM, Kratochvil JA, Johnson RW, Hansen BR, Dhere NG, Pandit MB. Diagnostic analysis of silicon photovoltaic modules after 20-year field exposure. Proceedings of the 28th PV Specialists Conference, Anchorage, AK, USA, 2000; 1420–1423. DOI: 10.1109/PVSC.2000.916159 22. Reis AM, Coleman NT, Marshall MW, Lehman PA, Chamberlin, CE. Comparison of PV module performance before and after 11-years of field exposure. Proceedings of the 29th PV Specialists Conference, New Orleans, LA, USA, 2002; 1432–1435. 23. Saleh IM, Abouhdima I, Gantrari MB. Performance of thirty years standalone photovoltaic system. Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009; 3995–3998. DOI: 10.4229/24thEUPVSEC2009-5DO.7.6. 24. Adelstein J, Sekulic B. Performance and reliability of a 1-kW amorphous silicon photovoltaic roofing system. Proceedings of the 31st PV Specialists Conference, Lake Buena Vista, FL, USA, 2005; 1627– 1630. DOI: 10.1109/PVSC.2005.1488457.
  • 35. 25. Pietruszko SM, Fetlinski B, Bialecki M. Analysis of the performance of grid connected photovoltaic system. Proceedings of the 34th IEEE PV Specialist Conference, Philadelphia, PA, USA, 2009; 48–51. DOI: 10.1109/PVSC.2009.5411757. 26. Vignola F, Krumsick J, Mavromatakis F, Walwyn R. Measuring degradation of photovoltaic module performance in the field.Proceedings of the 38th American Solar Energy Society Annual Solar Conference, Buffalo, NY, USA, 2009 27. Dhere NG, Pethe SA, Kaul A. Photovoltaic module reliability studies at the Florida Solar Energy Center. Reliability Physics Symposium (IRPS) 2010; 306–311. DOI: 10.1109/IRPS.2010.5488813. 28. Dhere NG, Pethe SA, Kaul A. PV module reliability and durability studies at the FSEC PV Materials Lab, NREL PV Module Reliability Workshop, Golden, CO, USA, February 2010,http://www1.eere.energy.gov/solar/pv_module_reliability_workshop_2010.html 29. Musikowski HD, Styczynski AZ. Analysis of the operational behavior and long-term performance of a CIS PV system. Proceedings of the 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 2010; 3942–3946. DOI: 10.4229/25thEUPVSEC2010-4DO.11.4. 30. Sastry O S, Sriparn S, Shil S K, Pant P C, Kumar R, Kumar A, et al. Performance analysis of the field exposed single crystalline silicon module. Solar Energy Material and Solar cells2010; 94:1463–8. 31. Sanchez-Friera P, Piliougine M, Pelaez J, Carretero J, Sidrach de Cardona M. Analysis of degradation mechanisms of crystalline silicon PV modules after 12 years of operation in Southern Europe. Progress in Photovoltaics: Research and Application 2011 32. Jordan DC, Kurtz SR. Thin-film reliability trends toward improved stability. Proceedings of the 37th PV Specialists Conference, Seattle, WA, USA, 2011. 33. George Makrides, Bastian Zinsser, Markus Schubert, George E. Georghiou; Performance loss rate of twelve photovoltaic technologies under field conditions using statistical techniques; Department of Electrical and Computer Engineering, University of Cyprus, Institute for Photovoltaic-University of Stuttgart, Germany.
  • 36. 34. Vikrant Sharma, O.S. Sastry , Arun Kumar, Birinchi Bora, S.S. Chandel; Degradation analysis of a-Si, (HIT) hetero-junction intrinsic thin layer silicon and m-C-Si solar photovoltaic technologies under outdoor conditions. 35. M. Torres-Ramírez, G. Nofuentes, J.P. Silva, S. Silvestre, J.V. Munoz; Study on analytical modeling approaches to the performance of thin film PV modules in sunny inland climates. 36. Yihua Hua, Bin Gao b,⇑, Xueguan Song c, Gui Yun Tian b, Kongjing Li c, Xiangning He; Photovoltaic fault detection using a parameter based model. 37. J.-P. Charles, F. Hannane, H. El-Mossaoui, A. Zegaoui, T.V. Nguyen, P. Petit, M. Aillerie; Faulty PV panel identification using the Design of Experiments (DoE) method. 38. Tao Ma, Hongxing Yang, Lin Lu; Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays. 39. Diego Torres Lobera, Seppo Valkealahti; Dynamic thermal model of solar PV systems under varying climatic conditions. 40. L.M. Ayompe, A. Duffy, S.J. McCormack, M. Conlon; Validated real-time energy models for small-scale grid-connected PV-systems. 41. Thomas Huld, Gabi Friesen, Artur Skoczek, Robert P. Kenny, Tony Sample, Michael Field a, Ewan D. Dunlop; A power-rating model for crystalline silicon PV modules. 42. Manuel Va´zquez and Ignacio Rey-Stolle; Photovoltaic Module Reliability Model Based on Field Degradation Studies. 43. K.H. Lam, J. Close, W. Durisch; Modeling and degradation study on a copper indium diselenide module.