SlideShare a Scribd company logo
Comparison of Surrogate Models Used for Adaptive 
Optimal Control of Active Thermoelectric Windows 
Junqiang Zhang*, Achille Messac#, Jie Zhang*, and Souma Chowdhury * 
* Rensselaer Polytechnic Institute, Department of Mechanical, Aerospace, and Nuclear Engineering 
# Syracuse University, Department of Mechanical and Aerospace Engineering 
13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference 
Sep 13 – 15, 2010 
Fort Worth, Texas
2 
Outline 
• Motivation 
• Design and Modeling of Active Thermoelectric 
(ATE) Window 
• Optimization of Energy Efficiency 
• Surrogate Models of Optimal Operations 
• Comparison of Surrogate Model Performance 
• Concluding Remarks
Simulation and 
optimization Surrogate models 
3 
Motivation 
Optimal control under varying conditions 
• Select appropriate surrogate models 
• Increase global and local accuracy 
Sample 
Condition space 
Sampling 
Condition 1 
Optimal 
Solution 1 
Condition n 
Optimal 
Solution n 
Optimal solutions
4 
Thermoelectric (TE) Units 
• A TE unit will form hot and cold sides when subjected to 
electric current. 
Melcor Center Hole Series 
Thermoelectric Cooler 
VTE 
Hot Side 
Cold Side 
Heat Flow 
TE Unit TE Unit
5 
ATE Window Design 
Window Front View Cross Section of Side View 
5 
Side Channel 
Clear glass 
Side Channel 
Fans 
Heating air flow in Winter 
1 m 
.5 m 
TE Units 
& Fin 
Dividing Wall 
6 mm 
Air 
Clear Glass 
Tinted pane 
24 mm 
Out In 
12 mm 
Inner 
Pane 
Middle 
Pane 
Outer 
Pane
Fan Model 
6 
Top Left Top Right 
Bottom Left Bottom Right 
Left Most 
Center Right 
Center Left 
Right Most
Fan Model 
7 
The Pressure Jumps of Fans 
Group Left Most Center Left Center Right Right Most 
Top Left (1-3k) Δpavg (1-k) Δpavg (1+k) Δpavg (1+3k) Δpavg 
Top Right (1+3k) Δpavg (1+k) Δpavg (1-k) Δpavg (1-3k) Δpavg 
Bottom Left (1-3k) Δpavg (1-k) Δpavg (1+k) Δpavg (1+3k) Δpavg 
Bottom Right (1+3k) Δpavg (1+k) Δpavg (1-k) Δpavg (1-3k) Δpavg 
Δpavg : average pressure jump produced by fans 
k : the slope of the pressure jumps 
• A linear pressure profile is assumed. 
• The total electric power consumption of all fans is negligible 
compared with that of the TE units. It is not minimized.
Weather Conditions 
8 
Indoor weather conditions: 
• Indoor temperature: 297 K (75 ℉) 
• Indoor heat transfer coefficient: 3.6 W/m2 
Outside weather conditions: 
• Outside temperature: 259 to 309 K (7 to 97 ℉) 
• Wind speed: 0 to 21.5 m/s 
• Solar radiation: 0 to 1000 W/m2 
Heating condition: Outside T < Inside T (usually in winter) 
Cooling condition: Outside T > Inside T (usually in summer)
Sample Weather Conditions 
9 
• Commonly used sampling methods 
• Latin hypercube sampling 
• Hammersley sequence sampling 
• Sobol’s quasirandom sequence generator algorithm 
• Number of weather conditions as training data: 10 x 3 
(the small set population size) 
• Number of weather conditions as testing data: 10
10 
Optimization Problems 
Heating Cooling
Optimization Results 
11 
No. 1 2 3 4 …… 28 29 30 
Red: heating conditions (Outside T < Inside T) 
Blue: cooling conditions (Outside T > Inside T) 
Weather 
Condition 
Tout (K) 284.0 296.5 271.5 277.8 …… 298.8 273.8 280.1 
Tout (℉) 51.5 74.0 29.0 40.3 …… 78.2 33.2 44.5 
Vwind (m/s) 10.75 5.38 16.13 8.06 …… 0.34 11.09 3.02 
Esolar (W/m2) 500 750 250 625 …… 359 859 234 
Optimal 
result 
VTE (V) 1.14 0.97 3.28 1.34 …… 1.37 1.86 1.84 
Δpavg (Pa) 0.96 0.95 1.77 1.00 …… 1.75 1.89 2.00 
k 0.07 0.07 0.02 0.08 …… 0.01 0.01 0.02
12 
Inputs and Outputs of Surrogate Models 
• Inputs are the three weather conditions (normalized): 
1. Outside temperature, Tout 
2. Wind speed, vwind 
3. Solar radiation , Esolar 
• Outputs are the optimal values of 
1. The absolute value of voltage supplied to the TE units, VTE 
2. The average pressure jump over one fan, Δpavg 
3. The pressure slope, k (scaled by 100) 
Outside Temperature 
Wind Speed 
Solar Radiation 
Thermometer 
Anemometer 
Light Sensor 
Thermostat 
Processor 
Memory 
TE Units Power 
Controller 
Fan Power 
Controller 
TE Units 
Fans
13 
Surrogate Models of Optimal Operation 
• Surrogate modeling methods 
• Quadratic Response Surface Methodology (QRSM) 
• Radial Basis Functions (RBF) 
• Extended Radial Basis Functions (E-RBF) 
• Kriging
Quadratic Response Surface Methodology 
14 
• Polynomial regression models using the method 
of least squares 
• Readily to implement 
• Show global trends 
Response Polynomial term Coefficient Error
Radial Basis Functions 
15 
The RBFs are expressed in terms of the Euclidean distance, 
One of the most effective forms is the multiquadric function: 
y (r) = r2 + c2 
where c > 0 is a prescribed parameter. 
r = x - xi 
The final approximation function is a linear combination of these basis 
functions across all data points. 
Unknown parameters
Extended Radial Basis Functions 
16 
Extended Radial Basis Functions (E-RBF) are linear combinations of Radial 
Basis Functions (RBFs) and Non-Radial Basis Functions (N-RBFs). 
N-RBFs: The non-radial basis functions are functions of each individual 
coordinate instead of the Euclidean distance. 
E-RBF:
Kriging 
17 
The basic Kriging method estimates the summation of two parts. 
A linear model A systematic departure from the polynomial 
A popularly used exponential correlation model is
Surrogate Models of VTE 
18 
5 
4 
3 
2 
1 
Tcr 
260 270 280 290 300 
T 
out 
V 
TE 
QRSM 
RBF 
E-RBF 
Kriging 
Median values: vwind = 10.75 m/s, Esolar = 500 W/m2 
The explanation of the heat transfer process: 
• Tout < Tcr, TE units heat up the window. 
• Tout > Tcr, TE units cool down the window.
Surrogate Models of VTE 
19 
1.6 
1.4 
1.2 
1 
0.8 
vcr1 
vcr2 
0 5 10 15 20 
v 
wind 
V 
TE 
QRSM 
RBF 
E-RBF 
Kriging 
Median values: Tout = 284 K, Esolar = 500 W/m2 
A possible explanation of the heat transfer process: 
• Factors: convection and thermal resistance of fins. 
• vwind < vcr2, the loss of the volumetric heat in the panes increases as vwind 
increases 
• vwind > vcr2, the thermal resistance of heat sink decreases as vwind increases
Surrogate Models of VTE 
20 
2 
1.8 
1.6 
1.4 
1.2 
1 
0.8 
Ecr 
0 200 400 600 800 1000 
E 
solar 
V 
TE 
QRSM 
RBF 
E-RBF 
Kriging 
Median values: Tout = 284 K, vwind = 10.75 m/s 
The physics behind the models: 
• Esolar < Ecr, TE units heat up the window 
• Esolar > Ecr, TE units cool down the window
Surrogate Models of Δpavg 
21 
1.8 
1.6 
1.4 
1.2 
1 
0.8 
260 270 280 290 300 
T 
out 
avg 
D p 
1.3 
1.2 
1.1 
1 
p 
D 0.9 
0.8 
0.7 
v 
wind 0 5 10 15 20 
avg 
2 
1.5 
1 
0.5 
0 200 400 600 800 1000 
E 
solar 
avg 
D p 
QRSM 
RBF 
E-RBF 
Kriging 
QRSM 
RBF 
E-RBF 
Kriging 
QRSM 
RBF 
E-RBF 
Kriging 
vwind = 10.75 m/s 
Esolar = 500 W/m2 
Tout = 284 K 
Esolar = 500 W/m2 
Tout = 284 K 
Esolar = 500 W/m2
Surrogate Models of k 
22 
0.1 
0.05 
0 
-0.05 
-0.1 
260 270 280 290 300 
T 
out 
k 
0.1 
0.05 
0 
-0.05 
-0.1 
0 5 10 15 20 
v 
wind 
k 
0.08 
0.06 
0.04 
0.02 
0 
-0.02 
0 200 400 600 800 1000 
E 
solar 
k 
QRSM 
RBF 
E-RBF 
Kriging 
QRSM 
RBF 
E-RBF 
Kriging 
QRSM 
RBF 
E-RBF 
Kriging 
vwind = 10.75 m/s 
Esolar = 500 W/m2 
Tout = 284 K 
Esolar = 500 W/m2 
Tout = 284 K 
Esolar = 500 W/m2
Comparison of Surrogate Model Performance 
23 
Two standard accuracy measures: 
• Root Mean Squared Error (RMSE) 
• Maximum Absolute Error (MAE)
Comparison of Surrogate Model Performance 
24 
Ten sets of testing data are used to evaluate the two performance metrics. 
Output Range Metric QRSM RBF E-RBF Kriging 
VTE 2.9245 
RMSE 0.3056 (10%) 0.2754 (9%) 0.4564 (16%) 0.2855 (10%) 
MAE 0.5623 (19%) 0.5669 (19%) 1.1492 (39%) 0.537 (18%) 
Δpavg 16 
RMSE 0.6132 (4%) 0.6858 (4%) 0.7198 (4%) 0.6234 (4%) 
MAE 1.2303 (8%) 1.3257 (8%) 1.5004 (9%) 1.3247 (8%) 
k 0.8 
RMSE 0.0534 (7%) 0.0341 (4%) 0.0337 (4%) 0.0548 (7%) 
MAE 0.0962 (12%) 0.0578 (7%) 0.0595 (7%) 0.0996 (12%) 
• The values of RMSE and MAE for each output are at the same order of 
magnitude. 
• Surrogate models with higher accuracy for different outputs 
• VTE: RBF and Kriging 
• Δpavg: QRSM and Kriging 
• k: E-RBF and RBF
Trust Region based Local Accurate Models 
25 
• Divide the whole domain into appropriate regions. 
• Sample the space accordingly. 
• Latin hypercube sampling method 
x1 
x2 
• Evaluate surrogate models in the different regions at the 
sample points using testing data. 
• Based on the evaluation, select locally accurate models.
26 
Concluding Remarks 
• The values of the two error metrics are at the same 
order of magnitude. None of the surrogate modeling 
methods has an overall better performance than the 
others in accuracy. 
• For the different outputs of the optimal operation, 
particular surrogate modeling methods are 
preferable to represent the optimal operation.
27 
Thank you
Questions 
28

More Related Content

What's hot

20 supsi workshop schinke
20 supsi workshop schinke20 supsi workshop schinke
ACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniYasha Parvini
 
22 2017 7th-pvpm_herrmann_final
22 2017 7th-pvpm_herrmann_final22 2017 7th-pvpm_herrmann_final
10 measuring the spectral and angular distribution of the diffuse solar radiance
10 measuring the spectral and angular distribution of the diffuse solar radiance10 measuring the spectral and angular distribution of the diffuse solar radiance
10 measuring the spectral and angular distribution of the diffuse solar radiance
Sandia National Laboratories: Energy & Climate: Renewables
 
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
Sandia National Laboratories: Energy & Climate: Renewables
 
07 huld presentation_61853_3_th
07 huld presentation_61853_3_th07 huld presentation_61853_3_th
A Detailed Modelingof a Five Parameters Model for Photovoltaic Modules
A Detailed Modelingof a Five Parameters Model for Photovoltaic  ModulesA Detailed Modelingof a Five Parameters Model for Photovoltaic  Modules
A Detailed Modelingof a Five Parameters Model for Photovoltaic Modules
IJMER
 
12 wittmer p_vsyst_pvpmc_7
12 wittmer p_vsyst_pvpmc_712 wittmer p_vsyst_pvpmc_7
Pv array and inverter matching
Pv array and inverter matchingPv array and inverter matching
Pv array and inverter matching
Chalitha Senevirathna
 
08 kyumin lee (cfv) single-diode model with rs temperature dependence
08 kyumin lee (cfv)   single-diode model with rs temperature dependence08 kyumin lee (cfv)   single-diode model with rs temperature dependence
08 kyumin lee (cfv) single-diode model with rs temperature dependence
Sandia National Laboratories: Energy & Climate: Renewables
 
2 2 mitchell lee_am and pwat spectral correction_pvpmc5
2 2 mitchell lee_am and pwat spectral correction_pvpmc52 2 mitchell lee_am and pwat spectral correction_pvpmc5
2 2 mitchell lee_am and pwat spectral correction_pvpmc5
Sandia National Laboratories: Energy & Climate: Renewables
 
PROJECT DOCUMENT ON EXERGY final
PROJECT DOCUMENT ON EXERGY final  PROJECT DOCUMENT ON EXERGY final
PROJECT DOCUMENT ON EXERGY final Alekhya Madisetty
 
IEE572 Final Report
IEE572 Final ReportIEE572 Final Report
IEE572 Final Reportjgoldpac
 
AFRL_MAET_Presentation
AFRL_MAET_PresentationAFRL_MAET_Presentation
AFRL_MAET_PresentationAanish Sikora
 
Progress Report (Aug. 11 To Aug. 18 2009)
Progress Report (Aug. 11 To Aug. 18 2009)Progress Report (Aug. 11 To Aug. 18 2009)
Progress Report (Aug. 11 To Aug. 18 2009)
ateneo wind team site
 
Optimized, Low-Power Dissipative and Precise Pulsating Constant Current Sourc...
Optimized, Low-Power Dissipative and Precise Pulsating Constant Current Sourc...Optimized, Low-Power Dissipative and Precise Pulsating Constant Current Sourc...
Optimized, Low-Power Dissipative and Precise Pulsating Constant Current Sourc...
IJMER
 
Electromagnetic Levitation (control project)
Electromagnetic Levitation (control project)Electromagnetic Levitation (control project)
Electromagnetic Levitation (control project)
Salim Al Oufi
 
05. operational amplifier
05. operational amplifier05. operational amplifier
05. operational amplifier
Ali Sadiyoko
 
Exergy notes
Exergy notesExergy notes
Exergy notes
Safeer Mt
 

What's hot (20)

20 supsi workshop schinke
20 supsi workshop schinke20 supsi workshop schinke
20 supsi workshop schinke
 
ACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniACC_2014_Yasha_Parvini
ACC_2014_Yasha_Parvini
 
22 2017 7th-pvpm_herrmann_final
22 2017 7th-pvpm_herrmann_final22 2017 7th-pvpm_herrmann_final
22 2017 7th-pvpm_herrmann_final
 
10 measuring the spectral and angular distribution of the diffuse solar radiance
10 measuring the spectral and angular distribution of the diffuse solar radiance10 measuring the spectral and angular distribution of the diffuse solar radiance
10 measuring the spectral and angular distribution of the diffuse solar radiance
 
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
 
07 huld presentation_61853_3_th
07 huld presentation_61853_3_th07 huld presentation_61853_3_th
07 huld presentation_61853_3_th
 
A Detailed Modelingof a Five Parameters Model for Photovoltaic Modules
A Detailed Modelingof a Five Parameters Model for Photovoltaic  ModulesA Detailed Modelingof a Five Parameters Model for Photovoltaic  Modules
A Detailed Modelingof a Five Parameters Model for Photovoltaic Modules
 
12 wittmer p_vsyst_pvpmc_7
12 wittmer p_vsyst_pvpmc_712 wittmer p_vsyst_pvpmc_7
12 wittmer p_vsyst_pvpmc_7
 
Pv array and inverter matching
Pv array and inverter matchingPv array and inverter matching
Pv array and inverter matching
 
08 kyumin lee (cfv) single-diode model with rs temperature dependence
08 kyumin lee (cfv)   single-diode model with rs temperature dependence08 kyumin lee (cfv)   single-diode model with rs temperature dependence
08 kyumin lee (cfv) single-diode model with rs temperature dependence
 
2 2 mitchell lee_am and pwat spectral correction_pvpmc5
2 2 mitchell lee_am and pwat spectral correction_pvpmc52 2 mitchell lee_am and pwat spectral correction_pvpmc5
2 2 mitchell lee_am and pwat spectral correction_pvpmc5
 
PROJECT DOCUMENT ON EXERGY final
PROJECT DOCUMENT ON EXERGY final  PROJECT DOCUMENT ON EXERGY final
PROJECT DOCUMENT ON EXERGY final
 
IEE572 Final Report
IEE572 Final ReportIEE572 Final Report
IEE572 Final Report
 
AFRL_MAET_Presentation
AFRL_MAET_PresentationAFRL_MAET_Presentation
AFRL_MAET_Presentation
 
Progress Report (Aug. 11 To Aug. 18 2009)
Progress Report (Aug. 11 To Aug. 18 2009)Progress Report (Aug. 11 To Aug. 18 2009)
Progress Report (Aug. 11 To Aug. 18 2009)
 
Hw5
Hw5Hw5
Hw5
 
Optimized, Low-Power Dissipative and Precise Pulsating Constant Current Sourc...
Optimized, Low-Power Dissipative and Precise Pulsating Constant Current Sourc...Optimized, Low-Power Dissipative and Precise Pulsating Constant Current Sourc...
Optimized, Low-Power Dissipative and Precise Pulsating Constant Current Sourc...
 
Electromagnetic Levitation (control project)
Electromagnetic Levitation (control project)Electromagnetic Levitation (control project)
Electromagnetic Levitation (control project)
 
05. operational amplifier
05. operational amplifier05. operational amplifier
05. operational amplifier
 
Exergy notes
Exergy notesExergy notes
Exergy notes
 

Similar to ATE_MAO_2010_Jun

ATI_SDM_2010_Jun
ATI_SDM_2010_JunATI_SDM_2010_Jun
ATI_SDM_2010_Jun
MDO_Lab
 
【潔能講堂】大型風力發電廠之發電效率分析與預測
【潔能講堂】大型風力發電廠之發電效率分析與預測【潔能講堂】大型風力發電廠之發電效率分析與預測
【潔能講堂】大型風力發電廠之發電效率分析與預測
Energy-Education-Resource-Center
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir Morgulis
 
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Tim Krimmel, MEM
 
Engineers australia 2019
Engineers australia 2019Engineers australia 2019
Engineers australia 2019
Majid Malekpour
 
Datasheet
DatasheetDatasheet
Datasheet
olvit
 
KEMET Webinar - C4AQ/C4AF power box film capacitors
KEMET Webinar -  C4AQ/C4AF power box film capacitorsKEMET Webinar -  C4AQ/C4AF power box film capacitors
KEMET Webinar - C4AQ/C4AF power box film capacitors
Ivana Ivanovska
 
IRJET- TEG Assists Performance Enhancement on Solar Roof-Top System
IRJET- TEG Assists Performance Enhancement on Solar Roof-Top SystemIRJET- TEG Assists Performance Enhancement on Solar Roof-Top System
IRJET- TEG Assists Performance Enhancement on Solar Roof-Top System
IRJET Journal
 
KEMET Webinar -C44U_C44P-R Power Can Film Capacitors
KEMET Webinar -C44U_C44P-R Power Can Film CapacitorsKEMET Webinar -C44U_C44P-R Power Can Film Capacitors
KEMET Webinar -C44U_C44P-R Power Can Film Capacitors
Ivana Ivanovska
 
Use of Nanofluids to increase the efficiency of solar panels
Use of Nanofluids to increase the efficiency of solar panelsUse of Nanofluids to increase the efficiency of solar panels
Use of Nanofluids to increase the efficiency of solar panels
varungoyal98
 
Ruben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docxRuben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docx
joellemurphey
 
Analysis and Modeling of Transformerless Photovoltaic Inverter Systems
Analysis and Modeling of Transformerless Photovoltaic Inverter SystemsAnalysis and Modeling of Transformerless Photovoltaic Inverter Systems
Analysis and Modeling of Transformerless Photovoltaic Inverter Systems
IJMER
 
Next Generation Researchers in Power Systems_Tao Yang_UCD EI
Next Generation Researchers in Power Systems_Tao Yang_UCD EINext Generation Researchers in Power Systems_Tao Yang_UCD EI
Next Generation Researchers in Power Systems_Tao Yang_UCD EITao Yang
 
KEMET Webinar - Long Life and Humidity Grade New Film Box AC Filters
KEMET Webinar - Long Life and Humidity Grade New Film Box AC FiltersKEMET Webinar - Long Life and Humidity Grade New Film Box AC Filters
KEMET Webinar - Long Life and Humidity Grade New Film Box AC Filters
Markus Trautz
 
Impact of solar radiation and temperature levels on the variation of the seri...
Impact of solar radiation and temperature levels on the variation of the seri...Impact of solar radiation and temperature levels on the variation of the seri...
Impact of solar radiation and temperature levels on the variation of the seri...
eSAT Journals
 
GSA TUNED HIGH EXERGY IN PV ARRAY
GSA TUNED HIGH EXERGY IN PV ARRAYGSA TUNED HIGH EXERGY IN PV ARRAY
GSA TUNED HIGH EXERGY IN PV ARRAY
Journal For Research
 
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
Ali Al-Waeli
 

Similar to ATE_MAO_2010_Jun (20)

ATI_SDM_2010_Jun
ATI_SDM_2010_JunATI_SDM_2010_Jun
ATI_SDM_2010_Jun
 
【潔能講堂】大型風力發電廠之發電效率分析與預測
【潔能講堂】大型風力發電廠之發電效率分析與預測【潔能講堂】大型風力發電廠之發電效率分析與預測
【潔能講堂】大型風力發電廠之發電效率分析與預測
 
shagufta-final review
shagufta-final reviewshagufta-final review
shagufta-final review
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
 
40220130406011 2-3-4
40220130406011 2-3-440220130406011 2-3-4
40220130406011 2-3-4
 
NASA 2004 PP
NASA 2004 PPNASA 2004 PP
NASA 2004 PP
 
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
 
Engineers australia 2019
Engineers australia 2019Engineers australia 2019
Engineers australia 2019
 
Datasheet
DatasheetDatasheet
Datasheet
 
KEMET Webinar - C4AQ/C4AF power box film capacitors
KEMET Webinar -  C4AQ/C4AF power box film capacitorsKEMET Webinar -  C4AQ/C4AF power box film capacitors
KEMET Webinar - C4AQ/C4AF power box film capacitors
 
IRJET- TEG Assists Performance Enhancement on Solar Roof-Top System
IRJET- TEG Assists Performance Enhancement on Solar Roof-Top SystemIRJET- TEG Assists Performance Enhancement on Solar Roof-Top System
IRJET- TEG Assists Performance Enhancement on Solar Roof-Top System
 
KEMET Webinar -C44U_C44P-R Power Can Film Capacitors
KEMET Webinar -C44U_C44P-R Power Can Film CapacitorsKEMET Webinar -C44U_C44P-R Power Can Film Capacitors
KEMET Webinar -C44U_C44P-R Power Can Film Capacitors
 
Use of Nanofluids to increase the efficiency of solar panels
Use of Nanofluids to increase the efficiency of solar panelsUse of Nanofluids to increase the efficiency of solar panels
Use of Nanofluids to increase the efficiency of solar panels
 
Ruben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docxRuben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docx
 
Analysis and Modeling of Transformerless Photovoltaic Inverter Systems
Analysis and Modeling of Transformerless Photovoltaic Inverter SystemsAnalysis and Modeling of Transformerless Photovoltaic Inverter Systems
Analysis and Modeling of Transformerless Photovoltaic Inverter Systems
 
Next Generation Researchers in Power Systems_Tao Yang_UCD EI
Next Generation Researchers in Power Systems_Tao Yang_UCD EINext Generation Researchers in Power Systems_Tao Yang_UCD EI
Next Generation Researchers in Power Systems_Tao Yang_UCD EI
 
KEMET Webinar - Long Life and Humidity Grade New Film Box AC Filters
KEMET Webinar - Long Life and Humidity Grade New Film Box AC FiltersKEMET Webinar - Long Life and Humidity Grade New Film Box AC Filters
KEMET Webinar - Long Life and Humidity Grade New Film Box AC Filters
 
Impact of solar radiation and temperature levels on the variation of the seri...
Impact of solar radiation and temperature levels on the variation of the seri...Impact of solar radiation and temperature levels on the variation of the seri...
Impact of solar radiation and temperature levels on the variation of the seri...
 
GSA TUNED HIGH EXERGY IN PV ARRAY
GSA TUNED HIGH EXERGY IN PV ARRAYGSA TUNED HIGH EXERGY IN PV ARRAY
GSA TUNED HIGH EXERGY IN PV ARRAY
 
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
 

More from MDO_Lab

ModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_AliModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_Ali
MDO_Lab
 
MOWF_SchiTech_2015_Weiyang
MOWF_SchiTech_2015_WeiyangMOWF_SchiTech_2015_Weiyang
MOWF_SchiTech_2015_Weiyang
MDO_Lab
 
SA_SciTech_2014_Weiyang
SA_SciTech_2014_WeiyangSA_SciTech_2014_Weiyang
SA_SciTech_2014_Weiyang
MDO_Lab
 
MOMDPSO_IDETC_2014_Weiyang
MOMDPSO_IDETC_2014_WeiyangMOMDPSO_IDETC_2014_Weiyang
MOMDPSO_IDETC_2014_Weiyang
MDO_Lab
 
MOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_WeiyangMOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_Weiyang
MDO_Lab
 
WFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_WeiyangWFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_Weiyang
MDO_Lab
 
WM_MAO_2012_Weiyang
WM_MAO_2012_WeiyangWM_MAO_2012_Weiyang
WM_MAO_2012_Weiyang
MDO_Lab
 
CP3_SDM_2010_Souma
CP3_SDM_2010_SoumaCP3_SDM_2010_Souma
CP3_SDM_2010_Souma
MDO_Lab
 
PF_MAO_2010_Souam
PF_MAO_2010_SouamPF_MAO_2010_Souam
PF_MAO_2010_Souam
MDO_Lab
 
WFO_MAO_2010_Souma
WFO_MAO_2010_SoumaWFO_MAO_2010_Souma
WFO_MAO_2010_Souma
MDO_Lab
 
COST_MAO_2010_Jie
COST_MAO_2010_JieCOST_MAO_2010_Jie
COST_MAO_2010_Jie
MDO_Lab
 
WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_Souma
MDO_Lab
 
COSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_JieCOSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_Jie
MDO_Lab
 
WFO_TIERF_2011_Messac
WFO_TIERF_2011_MessacWFO_TIERF_2011_Messac
WFO_TIERF_2011_Messac
MDO_Lab
 
WFO_SDM_2011_Souma
WFO_SDM_2011_SoumaWFO_SDM_2011_Souma
WFO_SDM_2011_Souma
MDO_Lab
 
RBHF_SDM_2011_Jie
RBHF_SDM_2011_JieRBHF_SDM_2011_Jie
RBHF_SDM_2011_Jie
MDO_Lab
 
WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_Souma
MDO_Lab
 
AHF_IDETC_2011_Jie
AHF_IDETC_2011_JieAHF_IDETC_2011_Jie
AHF_IDETC_2011_Jie
MDO_Lab
 
WPPE_ES_2011_Jie
WPPE_ES_2011_JieWPPE_ES_2011_Jie
WPPE_ES_2011_Jie
MDO_Lab
 
MMWD_ES_2011_Jie
MMWD_ES_2011_JieMMWD_ES_2011_Jie
MMWD_ES_2011_Jie
MDO_Lab
 

More from MDO_Lab (20)

ModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_AliModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_Ali
 
MOWF_SchiTech_2015_Weiyang
MOWF_SchiTech_2015_WeiyangMOWF_SchiTech_2015_Weiyang
MOWF_SchiTech_2015_Weiyang
 
SA_SciTech_2014_Weiyang
SA_SciTech_2014_WeiyangSA_SciTech_2014_Weiyang
SA_SciTech_2014_Weiyang
 
MOMDPSO_IDETC_2014_Weiyang
MOMDPSO_IDETC_2014_WeiyangMOMDPSO_IDETC_2014_Weiyang
MOMDPSO_IDETC_2014_Weiyang
 
MOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_WeiyangMOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_Weiyang
 
WFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_WeiyangWFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_Weiyang
 
WM_MAO_2012_Weiyang
WM_MAO_2012_WeiyangWM_MAO_2012_Weiyang
WM_MAO_2012_Weiyang
 
CP3_SDM_2010_Souma
CP3_SDM_2010_SoumaCP3_SDM_2010_Souma
CP3_SDM_2010_Souma
 
PF_MAO_2010_Souam
PF_MAO_2010_SouamPF_MAO_2010_Souam
PF_MAO_2010_Souam
 
WFO_MAO_2010_Souma
WFO_MAO_2010_SoumaWFO_MAO_2010_Souma
WFO_MAO_2010_Souma
 
COST_MAO_2010_Jie
COST_MAO_2010_JieCOST_MAO_2010_Jie
COST_MAO_2010_Jie
 
WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_Souma
 
COSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_JieCOSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_Jie
 
WFO_TIERF_2011_Messac
WFO_TIERF_2011_MessacWFO_TIERF_2011_Messac
WFO_TIERF_2011_Messac
 
WFO_SDM_2011_Souma
WFO_SDM_2011_SoumaWFO_SDM_2011_Souma
WFO_SDM_2011_Souma
 
RBHF_SDM_2011_Jie
RBHF_SDM_2011_JieRBHF_SDM_2011_Jie
RBHF_SDM_2011_Jie
 
WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_Souma
 
AHF_IDETC_2011_Jie
AHF_IDETC_2011_JieAHF_IDETC_2011_Jie
AHF_IDETC_2011_Jie
 
WPPE_ES_2011_Jie
WPPE_ES_2011_JieWPPE_ES_2011_Jie
WPPE_ES_2011_Jie
 
MMWD_ES_2011_Jie
MMWD_ES_2011_JieMMWD_ES_2011_Jie
MMWD_ES_2011_Jie
 

Recently uploaded

Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
CarlosHernanMontoyab2
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 

Recently uploaded (20)

Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 

ATE_MAO_2010_Jun

  • 1. Comparison of Surrogate Models Used for Adaptive Optimal Control of Active Thermoelectric Windows Junqiang Zhang*, Achille Messac#, Jie Zhang*, and Souma Chowdhury * * Rensselaer Polytechnic Institute, Department of Mechanical, Aerospace, and Nuclear Engineering # Syracuse University, Department of Mechanical and Aerospace Engineering 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference Sep 13 – 15, 2010 Fort Worth, Texas
  • 2. 2 Outline • Motivation • Design and Modeling of Active Thermoelectric (ATE) Window • Optimization of Energy Efficiency • Surrogate Models of Optimal Operations • Comparison of Surrogate Model Performance • Concluding Remarks
  • 3. Simulation and optimization Surrogate models 3 Motivation Optimal control under varying conditions • Select appropriate surrogate models • Increase global and local accuracy Sample Condition space Sampling Condition 1 Optimal Solution 1 Condition n Optimal Solution n Optimal solutions
  • 4. 4 Thermoelectric (TE) Units • A TE unit will form hot and cold sides when subjected to electric current. Melcor Center Hole Series Thermoelectric Cooler VTE Hot Side Cold Side Heat Flow TE Unit TE Unit
  • 5. 5 ATE Window Design Window Front View Cross Section of Side View 5 Side Channel Clear glass Side Channel Fans Heating air flow in Winter 1 m .5 m TE Units & Fin Dividing Wall 6 mm Air Clear Glass Tinted pane 24 mm Out In 12 mm Inner Pane Middle Pane Outer Pane
  • 6. Fan Model 6 Top Left Top Right Bottom Left Bottom Right Left Most Center Right Center Left Right Most
  • 7. Fan Model 7 The Pressure Jumps of Fans Group Left Most Center Left Center Right Right Most Top Left (1-3k) Δpavg (1-k) Δpavg (1+k) Δpavg (1+3k) Δpavg Top Right (1+3k) Δpavg (1+k) Δpavg (1-k) Δpavg (1-3k) Δpavg Bottom Left (1-3k) Δpavg (1-k) Δpavg (1+k) Δpavg (1+3k) Δpavg Bottom Right (1+3k) Δpavg (1+k) Δpavg (1-k) Δpavg (1-3k) Δpavg Δpavg : average pressure jump produced by fans k : the slope of the pressure jumps • A linear pressure profile is assumed. • The total electric power consumption of all fans is negligible compared with that of the TE units. It is not minimized.
  • 8. Weather Conditions 8 Indoor weather conditions: • Indoor temperature: 297 K (75 ℉) • Indoor heat transfer coefficient: 3.6 W/m2 Outside weather conditions: • Outside temperature: 259 to 309 K (7 to 97 ℉) • Wind speed: 0 to 21.5 m/s • Solar radiation: 0 to 1000 W/m2 Heating condition: Outside T < Inside T (usually in winter) Cooling condition: Outside T > Inside T (usually in summer)
  • 9. Sample Weather Conditions 9 • Commonly used sampling methods • Latin hypercube sampling • Hammersley sequence sampling • Sobol’s quasirandom sequence generator algorithm • Number of weather conditions as training data: 10 x 3 (the small set population size) • Number of weather conditions as testing data: 10
  • 10. 10 Optimization Problems Heating Cooling
  • 11. Optimization Results 11 No. 1 2 3 4 …… 28 29 30 Red: heating conditions (Outside T < Inside T) Blue: cooling conditions (Outside T > Inside T) Weather Condition Tout (K) 284.0 296.5 271.5 277.8 …… 298.8 273.8 280.1 Tout (℉) 51.5 74.0 29.0 40.3 …… 78.2 33.2 44.5 Vwind (m/s) 10.75 5.38 16.13 8.06 …… 0.34 11.09 3.02 Esolar (W/m2) 500 750 250 625 …… 359 859 234 Optimal result VTE (V) 1.14 0.97 3.28 1.34 …… 1.37 1.86 1.84 Δpavg (Pa) 0.96 0.95 1.77 1.00 …… 1.75 1.89 2.00 k 0.07 0.07 0.02 0.08 …… 0.01 0.01 0.02
  • 12. 12 Inputs and Outputs of Surrogate Models • Inputs are the three weather conditions (normalized): 1. Outside temperature, Tout 2. Wind speed, vwind 3. Solar radiation , Esolar • Outputs are the optimal values of 1. The absolute value of voltage supplied to the TE units, VTE 2. The average pressure jump over one fan, Δpavg 3. The pressure slope, k (scaled by 100) Outside Temperature Wind Speed Solar Radiation Thermometer Anemometer Light Sensor Thermostat Processor Memory TE Units Power Controller Fan Power Controller TE Units Fans
  • 13. 13 Surrogate Models of Optimal Operation • Surrogate modeling methods • Quadratic Response Surface Methodology (QRSM) • Radial Basis Functions (RBF) • Extended Radial Basis Functions (E-RBF) • Kriging
  • 14. Quadratic Response Surface Methodology 14 • Polynomial regression models using the method of least squares • Readily to implement • Show global trends Response Polynomial term Coefficient Error
  • 15. Radial Basis Functions 15 The RBFs are expressed in terms of the Euclidean distance, One of the most effective forms is the multiquadric function: y (r) = r2 + c2 where c > 0 is a prescribed parameter. r = x - xi The final approximation function is a linear combination of these basis functions across all data points. Unknown parameters
  • 16. Extended Radial Basis Functions 16 Extended Radial Basis Functions (E-RBF) are linear combinations of Radial Basis Functions (RBFs) and Non-Radial Basis Functions (N-RBFs). N-RBFs: The non-radial basis functions are functions of each individual coordinate instead of the Euclidean distance. E-RBF:
  • 17. Kriging 17 The basic Kriging method estimates the summation of two parts. A linear model A systematic departure from the polynomial A popularly used exponential correlation model is
  • 18. Surrogate Models of VTE 18 5 4 3 2 1 Tcr 260 270 280 290 300 T out V TE QRSM RBF E-RBF Kriging Median values: vwind = 10.75 m/s, Esolar = 500 W/m2 The explanation of the heat transfer process: • Tout < Tcr, TE units heat up the window. • Tout > Tcr, TE units cool down the window.
  • 19. Surrogate Models of VTE 19 1.6 1.4 1.2 1 0.8 vcr1 vcr2 0 5 10 15 20 v wind V TE QRSM RBF E-RBF Kriging Median values: Tout = 284 K, Esolar = 500 W/m2 A possible explanation of the heat transfer process: • Factors: convection and thermal resistance of fins. • vwind < vcr2, the loss of the volumetric heat in the panes increases as vwind increases • vwind > vcr2, the thermal resistance of heat sink decreases as vwind increases
  • 20. Surrogate Models of VTE 20 2 1.8 1.6 1.4 1.2 1 0.8 Ecr 0 200 400 600 800 1000 E solar V TE QRSM RBF E-RBF Kriging Median values: Tout = 284 K, vwind = 10.75 m/s The physics behind the models: • Esolar < Ecr, TE units heat up the window • Esolar > Ecr, TE units cool down the window
  • 21. Surrogate Models of Δpavg 21 1.8 1.6 1.4 1.2 1 0.8 260 270 280 290 300 T out avg D p 1.3 1.2 1.1 1 p D 0.9 0.8 0.7 v wind 0 5 10 15 20 avg 2 1.5 1 0.5 0 200 400 600 800 1000 E solar avg D p QRSM RBF E-RBF Kriging QRSM RBF E-RBF Kriging QRSM RBF E-RBF Kriging vwind = 10.75 m/s Esolar = 500 W/m2 Tout = 284 K Esolar = 500 W/m2 Tout = 284 K Esolar = 500 W/m2
  • 22. Surrogate Models of k 22 0.1 0.05 0 -0.05 -0.1 260 270 280 290 300 T out k 0.1 0.05 0 -0.05 -0.1 0 5 10 15 20 v wind k 0.08 0.06 0.04 0.02 0 -0.02 0 200 400 600 800 1000 E solar k QRSM RBF E-RBF Kriging QRSM RBF E-RBF Kriging QRSM RBF E-RBF Kriging vwind = 10.75 m/s Esolar = 500 W/m2 Tout = 284 K Esolar = 500 W/m2 Tout = 284 K Esolar = 500 W/m2
  • 23. Comparison of Surrogate Model Performance 23 Two standard accuracy measures: • Root Mean Squared Error (RMSE) • Maximum Absolute Error (MAE)
  • 24. Comparison of Surrogate Model Performance 24 Ten sets of testing data are used to evaluate the two performance metrics. Output Range Metric QRSM RBF E-RBF Kriging VTE 2.9245 RMSE 0.3056 (10%) 0.2754 (9%) 0.4564 (16%) 0.2855 (10%) MAE 0.5623 (19%) 0.5669 (19%) 1.1492 (39%) 0.537 (18%) Δpavg 16 RMSE 0.6132 (4%) 0.6858 (4%) 0.7198 (4%) 0.6234 (4%) MAE 1.2303 (8%) 1.3257 (8%) 1.5004 (9%) 1.3247 (8%) k 0.8 RMSE 0.0534 (7%) 0.0341 (4%) 0.0337 (4%) 0.0548 (7%) MAE 0.0962 (12%) 0.0578 (7%) 0.0595 (7%) 0.0996 (12%) • The values of RMSE and MAE for each output are at the same order of magnitude. • Surrogate models with higher accuracy for different outputs • VTE: RBF and Kriging • Δpavg: QRSM and Kriging • k: E-RBF and RBF
  • 25. Trust Region based Local Accurate Models 25 • Divide the whole domain into appropriate regions. • Sample the space accordingly. • Latin hypercube sampling method x1 x2 • Evaluate surrogate models in the different regions at the sample points using testing data. • Based on the evaluation, select locally accurate models.
  • 26. 26 Concluding Remarks • The values of the two error metrics are at the same order of magnitude. None of the surrogate modeling methods has an overall better performance than the others in accuracy. • For the different outputs of the optimal operation, particular surrogate modeling methods are preferable to represent the optimal operation.

Editor's Notes

  1. Current energy production methods are unsustainable. Comment on the demand side.
  2. We chose thermoelectric units for our system because they are very small and are solid state.
  3. Introduce the heat sinks. Start with heat sinks, then move to single TE units, then to cascades of units
  4. Introduce the heat sinks. Start with heat sinks, then move to single TE units, then to cascades of units