SlideShare a Scribd company logo
2023.03.21
DDGK: Learning Graph Representations for Deep
Divergence Graph Kernels
Rami Al-Rfou, Dustin Zelle, and Bryan Perozzi
WWW ‘19
Nguyen Minh Duc
Contents
• Introduction
• Related Works
• Model Description
• DDGK Algorithm
• Experimental Results
• Extensions and Future Works
• Conclusion
3
Introduction
- Graph representation learning usually relies on
- Supervised learning
- Feature engineering
- Generic representations of graphs
- Algorithmic approach
- Graph similarity measure is hard due to
- NP-hard
- Graph isomorphism
- DDGK learns without supervision and domain knowledge
4
Contributions
Deep Divergence Graph Kernels (DDGK)
Isomorphism Attention
Experimental Results
5
Related Works
Traditional Graph Kernels:
- Graph Edit Distance (Gao, et al., 2010) and Maximum Common Subgraph (Bunke, et al., 2002)
- Weisfeiler-Lehman Graph Kernels (Kriege, et al., 2016)
Node Embedding Methods:
- DeepWalk (Perozzi, et al., 2014)
- Graph Attention (Abu-El-Haija, et al., 2018)
Graph Statistics (Feature engineering):
- NetSmilie (Berlingerio, et al., 2012)
- DeltaCon (Koutra, et al., 2013)
Supervised Graph Similarity
- CNN for graphs (Niepert, et al., 2016)
- Graph Convolutional Networks (T. Kipf and M. Welling, 2016)
6
Model Description
Node-To-Edges Encoder
Input: A one-hot encoded vertex
Output: The vertex’s neighbor
Consists of Fully connected DNN
Modeled as a Multi-Label Classifier
Graph encoding
1
7
Model Description
Isomorphism Attention
Given two graphs 𝑆 (Source graph) and 𝑇 (Target graph)
Provides a bidirectional mapping across the pair’s nodes
Input: A one-hot encoded vertex from 𝑇
Output: The vertex’s neighbor
Cross-Graph
Attention
2
8
Model Description
Cross-Graph
Attention
2
The first attention network (𝑀𝑇→𝑆 )
Place photo here
Assigns every node in 𝑇 with a probability
distribution over the nodes of 𝑆
Consists of one Linear layer
Modeled as a multiclass classifier
𝑃𝑟 𝑣𝑗 𝑢𝑖 =
𝑒𝑀𝑇→𝑆(𝑣𝑗,𝑢𝑖)
𝑣𝑘∈𝑉𝑆
𝑒𝑀𝑇→𝑆(𝑣𝑘,𝑢𝑖)
9
Model Description
Cross-Graph
Attention
2
The reverse attention network (𝑀𝑆→𝑇 )
Place photo here
Maps the neighborhood in 𝑆 to the neighborhood in 𝑇
Consists of one Linear layer
Modeled as a multilabel classifier
𝑃𝑟 𝑢𝑗 𝑁(𝑣𝑖) =
1
1 + 𝑒−𝑀𝑆→𝑇(𝑢𝑗,𝑁 𝑣𝑖 )
10
Model Description
Cross-Graph
Attention
2
Isomorphism Attention
Place photo here
11
Model Description
Node attribute regularizer
Attributes
Consistency
3
Attribute distribution over nodes
Vertices and edges could have their own
attributes
Cross-Graph attention could provide several
equally good mapping
Solution: adding regularizing losses to
preserve nodes and edges attributes
Replace 𝑄𝑛 with 𝑄𝑒, we obtain Edge Attribute
Regularizer
12
DDGK Algorithm
Parameter specification
The Algorithm
1
13
DDGK Algorithm
Train source graph encodings
The Algorithm
1
14
DDGK Algorithm
Train the Cross-Graph Attention
The Algorithm
1
15
DDGK Algorithm
Save the similarity score in the matrix 𝚿
for every pair of source and target graph
The Algorithm
1
Could be used as a representation vector
16
DDGK Algorithm
- Since Ψ is not a perfect function, 𝐷(𝑆| 𝑆 ≠ 0 could
happen.
- Setting
𝐷(𝑆| 𝑇 ≔ 𝐷(𝑆| 𝑇 − 𝐷(𝑆||𝑆)
ensures 𝐷(𝑆| 𝑆 = 0
- If symmetry is required, we can define
𝐷(𝑆| 𝑇 ≔ 𝐷(𝑆| 𝑇 + 𝐷(𝑇||𝑆)
Graph
Divergence
2
17
DDGK Algorithm
DDGK requires 𝑂(𝑇𝑁2
𝑉) computations, where
𝑇 = max(𝜌, 𝜏)
𝑁 = The number of graphs
𝑉 = The average number of nodes
Linear layers in Cross-Graph Attention could be replaced
by a DNN with fixed size hidden layers to reduce the
network size from 𝑂( 𝑉𝑆 × 𝑉𝑇 ) to 𝑂( 𝑉𝑆 + 𝑉𝑇 )
Scalability
3
For large number of source graphs, we could sample 20%
of them and DDGK could still achieve high accuracy
18
Experimental Results
19
Experimental Results
20
Experimental Results
21
Experimental Results
22
Experimental Results
23
Experimental Results
24
Extensions & Future Works
Graph Encoders
- Edge-to-Nodes Encoder.
- Neighborhood Encoder.
Attention Mechanism
- Subgraph alignment.
Regularization
- Better regularization to avoid overfitting.
Feature Engineering
- Combination of the two could be useful for graph classification.
Scalability
- Perozzi’s newer work: “Just SLaQ When You Approximate: Accurate Spectral Distances for Web-Scale
Graphs, WWW ’20” could handle graphs with billions of nodes within an hour.
25
Conclusion
- Neural Networks can learn powerful representations of graphs without feature engineering.
- Proposed DDGK:
- Graph Encoder
- Isomorphism preserving attention
- Provide interpretability into the alignment of pairs of graph
- Divergence score to measure (dis)similarity between source and target graphs
- Representations produced by DDGK are competitive with challenging baselines.
Thank you
Q&A time!
27
Icon Pack
https://www.flaticon.com
28
Design Pack
Adjust size!
Image caption here
Place photo here
Text here
Photo here
Photo title
Description
T
T
T
T

More Related Content

What's hot

[DL輪読会]Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network A...
[DL輪読会]Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network A...[DL輪読会]Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network A...
[DL輪読会]Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network A...
Deep Learning JP
 
Azureの概要と学生無料枠内でWebアプリをデプロイするまで
Azureの概要と学生無料枠内でWebアプリをデプロイするまでAzureの概要と学生無料枠内でWebアプリをデプロイするまで
Azureの概要と学生無料枠内でWebアプリをデプロイするまで
4423
 
Graph U-Nets
Graph U-NetsGraph U-Nets
Graph U-Nets
Shion Honda
 
Anomaly Detection Technique
Anomaly Detection TechniqueAnomaly Detection Technique
Anomaly Detection Technique
Chakrit Phain
 
Graph neural networks overview
Graph neural networks overviewGraph neural networks overview
Graph neural networks overview
Rodion Kiryukhin
 
ゼロから学ぶAI
ゼロから学ぶAIゼロから学ぶAI
ゼロから学ぶAI
DIVE INTO CODE Corp.
 
2. BigQuery ML を用いた時系列データの解析 (ARIMA model)
2. BigQuery ML を用いた時系列データの解析 (ARIMA model)2. BigQuery ML を用いた時系列データの解析 (ARIMA model)
2. BigQuery ML を用いた時系列データの解析 (ARIMA model)
幸太朗 岩澤
 
[DL輪読会]End-to-End Object Detection with Transformers
[DL輪読会]End-to-End Object Detection with Transformers[DL輪読会]End-to-End Object Detection with Transformers
[DL輪読会]End-to-End Object Detection with Transformers
Deep Learning JP
 
Multimodal Learning Analytics
Multimodal Learning AnalyticsMultimodal Learning Analytics
Multimodal Learning Analytics
Xavier Ochoa
 
[系列活動] 一日搞懂生成式對抗網路
[系列活動] 一日搞懂生成式對抗網路[系列活動] 一日搞懂生成式對抗網路
[系列活動] 一日搞懂生成式對抗網路
台灣資料科學年會
 
2部グラフとソーシャルネットワーク
2部グラフとソーシャルネットワーク2部グラフとソーシャルネットワーク
2部グラフとソーシャルネットワーク
Hiroko Onari
 
Computer vision for transportation
Computer vision for transportationComputer vision for transportation
Computer vision for transportation
Wanjin Yu
 
Pythonではじめるロケーションデータ解析
Pythonではじめるロケーションデータ解析Pythonではじめるロケーションデータ解析
Pythonではじめるロケーションデータ解析
Hiroaki Sengoku
 
Feature Engineering
Feature EngineeringFeature Engineering
Feature Engineering
Sri Ambati
 
「機械学習:技術的負債の高利子クレジットカード」のまとめ
「機械学習:技術的負債の高利子クレジットカード」のまとめ「機械学習:技術的負債の高利子クレジットカード」のまとめ
「機械学習:技術的負債の高利子クレジットカード」のまとめ
Recruit Technologies
 
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
Takuji Tahara
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
tmtm otm
 
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | EdurekaSVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
Edureka!
 
【DL輪読会】Semi-Parametric Neural Image Synthesis
【DL輪読会】Semi-Parametric Neural Image Synthesis【DL輪読会】Semi-Parametric Neural Image Synthesis
【DL輪読会】Semi-Parametric Neural Image Synthesis
Deep Learning JP
 
CuPy解説
CuPy解説CuPy解説
CuPy解説
Ryosuke Okuta
 

What's hot (20)

[DL輪読会]Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network A...
[DL輪読会]Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network A...[DL輪読会]Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network A...
[DL輪読会]Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network A...
 
Azureの概要と学生無料枠内でWebアプリをデプロイするまで
Azureの概要と学生無料枠内でWebアプリをデプロイするまでAzureの概要と学生無料枠内でWebアプリをデプロイするまで
Azureの概要と学生無料枠内でWebアプリをデプロイするまで
 
Graph U-Nets
Graph U-NetsGraph U-Nets
Graph U-Nets
 
Anomaly Detection Technique
Anomaly Detection TechniqueAnomaly Detection Technique
Anomaly Detection Technique
 
Graph neural networks overview
Graph neural networks overviewGraph neural networks overview
Graph neural networks overview
 
ゼロから学ぶAI
ゼロから学ぶAIゼロから学ぶAI
ゼロから学ぶAI
 
2. BigQuery ML を用いた時系列データの解析 (ARIMA model)
2. BigQuery ML を用いた時系列データの解析 (ARIMA model)2. BigQuery ML を用いた時系列データの解析 (ARIMA model)
2. BigQuery ML を用いた時系列データの解析 (ARIMA model)
 
[DL輪読会]End-to-End Object Detection with Transformers
[DL輪読会]End-to-End Object Detection with Transformers[DL輪読会]End-to-End Object Detection with Transformers
[DL輪読会]End-to-End Object Detection with Transformers
 
Multimodal Learning Analytics
Multimodal Learning AnalyticsMultimodal Learning Analytics
Multimodal Learning Analytics
 
[系列活動] 一日搞懂生成式對抗網路
[系列活動] 一日搞懂生成式對抗網路[系列活動] 一日搞懂生成式對抗網路
[系列活動] 一日搞懂生成式對抗網路
 
2部グラフとソーシャルネットワーク
2部グラフとソーシャルネットワーク2部グラフとソーシャルネットワーク
2部グラフとソーシャルネットワーク
 
Computer vision for transportation
Computer vision for transportationComputer vision for transportation
Computer vision for transportation
 
Pythonではじめるロケーションデータ解析
Pythonではじめるロケーションデータ解析Pythonではじめるロケーションデータ解析
Pythonではじめるロケーションデータ解析
 
Feature Engineering
Feature EngineeringFeature Engineering
Feature Engineering
 
「機械学習:技術的負債の高利子クレジットカード」のまとめ
「機械学習:技術的負債の高利子クレジットカード」のまとめ「機械学習:技術的負債の高利子クレジットカード」のまとめ
「機械学習:技術的負債の高利子クレジットカード」のまとめ
 
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
 
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | EdurekaSVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
 
【DL輪読会】Semi-Parametric Neural Image Synthesis
【DL輪読会】Semi-Parametric Neural Image Synthesis【DL輪読会】Semi-Parametric Neural Image Synthesis
【DL輪読会】Semi-Parametric Neural Image Synthesis
 
CuPy解説
CuPy解説CuPy解説
CuPy解説
 

Similar to DDGK: Learning Graph Representations for Deep Divergence Graph Kernels

Machine-Learned_3D_Building_Vectorization_From_Satellite_Imagery__paper.pdf
Machine-Learned_3D_Building_Vectorization_From_Satellite_Imagery__paper.pdfMachine-Learned_3D_Building_Vectorization_From_Satellite_Imagery__paper.pdf
Machine-Learned_3D_Building_Vectorization_From_Satellite_Imagery__paper.pdf
Yugank Aman
 
Beginning direct3d gameprogramming01_thehistoryofdirect3dgraphics_20160407_ji...
Beginning direct3d gameprogramming01_thehistoryofdirect3dgraphics_20160407_ji...Beginning direct3d gameprogramming01_thehistoryofdirect3dgraphics_20160407_ji...
Beginning direct3d gameprogramming01_thehistoryofdirect3dgraphics_20160407_ji...
JinTaek Seo
 
Laplacian-regularized Graph Bandits
Laplacian-regularized Graph BanditsLaplacian-regularized Graph Bandits
Laplacian-regularized Graph Bandits
lauratoni4
 
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
taeseon ryu
 
Learning Graph Representation for Data-Efficiency RL
Learning Graph Representation for Data-Efficiency RLLearning Graph Representation for Data-Efficiency RL
Learning Graph Representation for Data-Efficiency RL
lauratoni4
 
Sparse Graph Attention Networks 2021.pptx
Sparse Graph Attention Networks 2021.pptxSparse Graph Attention Networks 2021.pptx
Sparse Graph Attention Networks 2021.pptx
ssuser2624f71
 
Semantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite ImagerySemantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite Imagery
RAHUL BHOJWANI
 
Edge Representation Learning with Hypergraphs
Edge Representation Learning with HypergraphsEdge Representation Learning with Hypergraphs
Edge Representation Learning with Hypergraphs
MLAI2
 
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...
Edge AI and Vision Alliance
 
Massive parallelism with gpus for centrality ranking in complex networks
Massive parallelism with gpus for centrality ranking in complex networksMassive parallelism with gpus for centrality ranking in complex networks
Massive parallelism with gpus for centrality ranking in complex networks
ijcsit
 
SCALABLE PATTERN MATCHING OVER COMPRESSED GRAPHS VIA DE-DENSIFICATION
SCALABLE PATTERN MATCHING OVER COMPRESSED GRAPHS VIA DE-DENSIFICATIONSCALABLE PATTERN MATCHING OVER COMPRESSED GRAPHS VIA DE-DENSIFICATION
SCALABLE PATTERN MATCHING OVER COMPRESSED GRAPHS VIA DE-DENSIFICATION
aftab alam
 
crowd counting.pptx
crowd counting.pptxcrowd counting.pptx
crowd counting.pptx
shubhampawar445982
 
Automatic Detection of Window Regions in Indoor Point Clouds Using R-CNN
Automatic Detection of Window Regions in Indoor Point Clouds Using R-CNNAutomatic Detection of Window Regions in Indoor Point Clouds Using R-CNN
Automatic Detection of Window Regions in Indoor Point Clouds Using R-CNNZihao(Gerald) Zhang
 
FastV2C-HandNet - ICICC 2020
FastV2C-HandNet - ICICC 2020FastV2C-HandNet - ICICC 2020
FastV2C-HandNet - ICICC 2020
RohanLekhwani
 
Sigmod11 outsource shortest path
Sigmod11 outsource shortest pathSigmod11 outsource shortest path
Sigmod11 outsource shortest pathredhatdb
 
node2vec: Scalable Feature Learning for Networks.pptx
node2vec: Scalable Feature Learning for Networks.pptxnode2vec: Scalable Feature Learning for Networks.pptx
node2vec: Scalable Feature Learning for Networks.pptx
ssuser2624f71
 
Optimal Chain Matrix Multiplication Big Data Perspective
Optimal Chain Matrix Multiplication Big Data PerspectiveOptimal Chain Matrix Multiplication Big Data Perspective
Optimal Chain Matrix Multiplication Big Data Perspective
পল্লব রায়
 
Energy and latency aware application
Energy and latency aware applicationEnergy and latency aware application
Energy and latency aware application
csandit
 
ENERGY AND LATENCY AWARE APPLICATION MAPPING ALGORITHM & OPTIMIZATION FOR HOM...
ENERGY AND LATENCY AWARE APPLICATION MAPPING ALGORITHM & OPTIMIZATION FOR HOM...ENERGY AND LATENCY AWARE APPLICATION MAPPING ALGORITHM & OPTIMIZATION FOR HOM...
ENERGY AND LATENCY AWARE APPLICATION MAPPING ALGORITHM & OPTIMIZATION FOR HOM...
cscpconf
 

Similar to DDGK: Learning Graph Representations for Deep Divergence Graph Kernels (20)

Machine-Learned_3D_Building_Vectorization_From_Satellite_Imagery__paper.pdf
Machine-Learned_3D_Building_Vectorization_From_Satellite_Imagery__paper.pdfMachine-Learned_3D_Building_Vectorization_From_Satellite_Imagery__paper.pdf
Machine-Learned_3D_Building_Vectorization_From_Satellite_Imagery__paper.pdf
 
Beginning direct3d gameprogramming01_thehistoryofdirect3dgraphics_20160407_ji...
Beginning direct3d gameprogramming01_thehistoryofdirect3dgraphics_20160407_ji...Beginning direct3d gameprogramming01_thehistoryofdirect3dgraphics_20160407_ji...
Beginning direct3d gameprogramming01_thehistoryofdirect3dgraphics_20160407_ji...
 
Laplacian-regularized Graph Bandits
Laplacian-regularized Graph BanditsLaplacian-regularized Graph Bandits
Laplacian-regularized Graph Bandits
 
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
 
Learning Graph Representation for Data-Efficiency RL
Learning Graph Representation for Data-Efficiency RLLearning Graph Representation for Data-Efficiency RL
Learning Graph Representation for Data-Efficiency RL
 
Sparse Graph Attention Networks 2021.pptx
Sparse Graph Attention Networks 2021.pptxSparse Graph Attention Networks 2021.pptx
Sparse Graph Attention Networks 2021.pptx
 
Semantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite ImagerySemantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite Imagery
 
Edge Representation Learning with Hypergraphs
Edge Representation Learning with HypergraphsEdge Representation Learning with Hypergraphs
Edge Representation Learning with Hypergraphs
 
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...
 
Massive parallelism with gpus for centrality ranking in complex networks
Massive parallelism with gpus for centrality ranking in complex networksMassive parallelism with gpus for centrality ranking in complex networks
Massive parallelism with gpus for centrality ranking in complex networks
 
SCALABLE PATTERN MATCHING OVER COMPRESSED GRAPHS VIA DE-DENSIFICATION
SCALABLE PATTERN MATCHING OVER COMPRESSED GRAPHS VIA DE-DENSIFICATIONSCALABLE PATTERN MATCHING OVER COMPRESSED GRAPHS VIA DE-DENSIFICATION
SCALABLE PATTERN MATCHING OVER COMPRESSED GRAPHS VIA DE-DENSIFICATION
 
crowd counting.pptx
crowd counting.pptxcrowd counting.pptx
crowd counting.pptx
 
Automatic Detection of Window Regions in Indoor Point Clouds Using R-CNN
Automatic Detection of Window Regions in Indoor Point Clouds Using R-CNNAutomatic Detection of Window Regions in Indoor Point Clouds Using R-CNN
Automatic Detection of Window Regions in Indoor Point Clouds Using R-CNN
 
FastV2C-HandNet - ICICC 2020
FastV2C-HandNet - ICICC 2020FastV2C-HandNet - ICICC 2020
FastV2C-HandNet - ICICC 2020
 
Sigmod11 outsource shortest path
Sigmod11 outsource shortest pathSigmod11 outsource shortest path
Sigmod11 outsource shortest path
 
node2vec: Scalable Feature Learning for Networks.pptx
node2vec: Scalable Feature Learning for Networks.pptxnode2vec: Scalable Feature Learning for Networks.pptx
node2vec: Scalable Feature Learning for Networks.pptx
 
Soumyadip_Chandra
Soumyadip_ChandraSoumyadip_Chandra
Soumyadip_Chandra
 
Optimal Chain Matrix Multiplication Big Data Perspective
Optimal Chain Matrix Multiplication Big Data PerspectiveOptimal Chain Matrix Multiplication Big Data Perspective
Optimal Chain Matrix Multiplication Big Data Perspective
 
Energy and latency aware application
Energy and latency aware applicationEnergy and latency aware application
Energy and latency aware application
 
ENERGY AND LATENCY AWARE APPLICATION MAPPING ALGORITHM & OPTIMIZATION FOR HOM...
ENERGY AND LATENCY AWARE APPLICATION MAPPING ALGORITHM & OPTIMIZATION FOR HOM...ENERGY AND LATENCY AWARE APPLICATION MAPPING ALGORITHM & OPTIMIZATION FOR HOM...
ENERGY AND LATENCY AWARE APPLICATION MAPPING ALGORITHM & OPTIMIZATION FOR HOM...
 

More from ivaderivader

Argument Mining
Argument MiningArgument Mining
Argument Mining
ivaderivader
 
Papers at CHI23
Papers at CHI23Papers at CHI23
Papers at CHI23
ivaderivader
 
So Predictable! Continuous 3D Hand Trajectory Prediction in Virtual Reality
So Predictable! Continuous 3D Hand Trajectory Prediction in Virtual Reality So Predictable! Continuous 3D Hand Trajectory Prediction in Virtual Reality
So Predictable! Continuous 3D Hand Trajectory Prediction in Virtual Reality
ivaderivader
 
Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...
Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...
Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...
ivaderivader
 
Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...
Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...
Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...
ivaderivader
 
Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Orien...
Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Orien...Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Orien...
Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Orien...
ivaderivader
 
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial NetworksA Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
ivaderivader
 
CatchLIve: Real-time Summarization of Live Streams with Stream Content and In...
CatchLIve: Real-time Summarization of Live Streams with Stream Content and In...CatchLIve: Real-time Summarization of Live Streams with Stream Content and In...
CatchLIve: Real-time Summarization of Live Streams with Stream Content and In...
ivaderivader
 
Perception! Immersion! Empowerment! Superpowers as Inspiration for Visualization
Perception! Immersion! Empowerment! Superpowers as Inspiration for VisualizationPerception! Immersion! Empowerment! Superpowers as Inspiration for Visualization
Perception! Immersion! Empowerment! Superpowers as Inspiration for Visualization
ivaderivader
 
Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic F...
Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic F...Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic F...
Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic F...
ivaderivader
 
Neural Approximate Dynamic Programming for On-Demand Ride-Pooling
Neural Approximate Dynamic Programming for On-Demand Ride-PoolingNeural Approximate Dynamic Programming for On-Demand Ride-Pooling
Neural Approximate Dynamic Programming for On-Demand Ride-Pooling
ivaderivader
 
StoryMap: Using Social Modeling and Self-Modeling to Support Physical Activit...
StoryMap: Using Social Modeling and Self-Modeling to Support Physical Activit...StoryMap: Using Social Modeling and Self-Modeling to Support Physical Activit...
StoryMap: Using Social Modeling and Self-Modeling to Support Physical Activit...
ivaderivader
 
Bad Breakdowns, Useful Seams, and Face Slapping: Analysis of VR Fails on YouTube
Bad Breakdowns, Useful Seams, and Face Slapping: Analysis of VR Fails on YouTubeBad Breakdowns, Useful Seams, and Face Slapping: Analysis of VR Fails on YouTube
Bad Breakdowns, Useful Seams, and Face Slapping: Analysis of VR Fails on YouTube
ivaderivader
 
Invertible Denoising Network: A Light Solution for Real Noise Removal
Invertible Denoising Network: A Light Solution for Real Noise RemovalInvertible Denoising Network: A Light Solution for Real Noise Removal
Invertible Denoising Network: A Light Solution for Real Noise Removal
ivaderivader
 
Traffic Demand Prediction Based Dynamic Transition Convolutional Neural Network
Traffic Demand Prediction Based Dynamic Transition Convolutional Neural NetworkTraffic Demand Prediction Based Dynamic Transition Convolutional Neural Network
Traffic Demand Prediction Based Dynamic Transition Convolutional Neural Network
ivaderivader
 
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training  MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training
ivaderivader
 
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components
Screen2Vec: Semantic Embedding of GUI Screens and GUI ComponentsScreen2Vec: Semantic Embedding of GUI Screens and GUI Components
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components
ivaderivader
 
Augmenting Decisions of Taxi Drivers through Reinforcement Learning for Impro...
Augmenting Decisions of Taxi Drivers through Reinforcement Learning for Impro...Augmenting Decisions of Taxi Drivers through Reinforcement Learning for Impro...
Augmenting Decisions of Taxi Drivers through Reinforcement Learning for Impro...
ivaderivader
 
Natural Language to Visualization by Neural Machine Translation
Natural Language to Visualization by Neural Machine TranslationNatural Language to Visualization by Neural Machine Translation
Natural Language to Visualization by Neural Machine Translation
ivaderivader
 
Recommending What Video to Watch Next: A Multitask Ranking System
Recommending What Video to Watch Next: A Multitask Ranking SystemRecommending What Video to Watch Next: A Multitask Ranking System
Recommending What Video to Watch Next: A Multitask Ranking System
ivaderivader
 

More from ivaderivader (20)

Argument Mining
Argument MiningArgument Mining
Argument Mining
 
Papers at CHI23
Papers at CHI23Papers at CHI23
Papers at CHI23
 
So Predictable! Continuous 3D Hand Trajectory Prediction in Virtual Reality
So Predictable! Continuous 3D Hand Trajectory Prediction in Virtual Reality So Predictable! Continuous 3D Hand Trajectory Prediction in Virtual Reality
So Predictable! Continuous 3D Hand Trajectory Prediction in Virtual Reality
 
Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...
Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...
Reinforcement Learning-based Placement of Charging Stations in Urban Road Net...
 
Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...
Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...
Prediction for Retrospection: Integrating Algorithmic Stress Prediction into ...
 
Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Orien...
Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Orien...Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Orien...
Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Orien...
 
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial NetworksA Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
 
CatchLIve: Real-time Summarization of Live Streams with Stream Content and In...
CatchLIve: Real-time Summarization of Live Streams with Stream Content and In...CatchLIve: Real-time Summarization of Live Streams with Stream Content and In...
CatchLIve: Real-time Summarization of Live Streams with Stream Content and In...
 
Perception! Immersion! Empowerment! Superpowers as Inspiration for Visualization
Perception! Immersion! Empowerment! Superpowers as Inspiration for VisualizationPerception! Immersion! Empowerment! Superpowers as Inspiration for Visualization
Perception! Immersion! Empowerment! Superpowers as Inspiration for Visualization
 
Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic F...
Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic F...Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic F...
Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic F...
 
Neural Approximate Dynamic Programming for On-Demand Ride-Pooling
Neural Approximate Dynamic Programming for On-Demand Ride-PoolingNeural Approximate Dynamic Programming for On-Demand Ride-Pooling
Neural Approximate Dynamic Programming for On-Demand Ride-Pooling
 
StoryMap: Using Social Modeling and Self-Modeling to Support Physical Activit...
StoryMap: Using Social Modeling and Self-Modeling to Support Physical Activit...StoryMap: Using Social Modeling and Self-Modeling to Support Physical Activit...
StoryMap: Using Social Modeling and Self-Modeling to Support Physical Activit...
 
Bad Breakdowns, Useful Seams, and Face Slapping: Analysis of VR Fails on YouTube
Bad Breakdowns, Useful Seams, and Face Slapping: Analysis of VR Fails on YouTubeBad Breakdowns, Useful Seams, and Face Slapping: Analysis of VR Fails on YouTube
Bad Breakdowns, Useful Seams, and Face Slapping: Analysis of VR Fails on YouTube
 
Invertible Denoising Network: A Light Solution for Real Noise Removal
Invertible Denoising Network: A Light Solution for Real Noise RemovalInvertible Denoising Network: A Light Solution for Real Noise Removal
Invertible Denoising Network: A Light Solution for Real Noise Removal
 
Traffic Demand Prediction Based Dynamic Transition Convolutional Neural Network
Traffic Demand Prediction Based Dynamic Transition Convolutional Neural NetworkTraffic Demand Prediction Based Dynamic Transition Convolutional Neural Network
Traffic Demand Prediction Based Dynamic Transition Convolutional Neural Network
 
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training  MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training
 
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components
Screen2Vec: Semantic Embedding of GUI Screens and GUI ComponentsScreen2Vec: Semantic Embedding of GUI Screens and GUI Components
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components
 
Augmenting Decisions of Taxi Drivers through Reinforcement Learning for Impro...
Augmenting Decisions of Taxi Drivers through Reinforcement Learning for Impro...Augmenting Decisions of Taxi Drivers through Reinforcement Learning for Impro...
Augmenting Decisions of Taxi Drivers through Reinforcement Learning for Impro...
 
Natural Language to Visualization by Neural Machine Translation
Natural Language to Visualization by Neural Machine TranslationNatural Language to Visualization by Neural Machine Translation
Natural Language to Visualization by Neural Machine Translation
 
Recommending What Video to Watch Next: A Multitask Ranking System
Recommending What Video to Watch Next: A Multitask Ranking SystemRecommending What Video to Watch Next: A Multitask Ranking System
Recommending What Video to Watch Next: A Multitask Ranking System
 

Recently uploaded

UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Tobias Schneck
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 

Recently uploaded (20)

UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 

DDGK: Learning Graph Representations for Deep Divergence Graph Kernels

  • 1. 2023.03.21 DDGK: Learning Graph Representations for Deep Divergence Graph Kernels Rami Al-Rfou, Dustin Zelle, and Bryan Perozzi WWW ‘19 Nguyen Minh Duc
  • 2. Contents • Introduction • Related Works • Model Description • DDGK Algorithm • Experimental Results • Extensions and Future Works • Conclusion
  • 3. 3 Introduction - Graph representation learning usually relies on - Supervised learning - Feature engineering - Generic representations of graphs - Algorithmic approach - Graph similarity measure is hard due to - NP-hard - Graph isomorphism - DDGK learns without supervision and domain knowledge
  • 4. 4 Contributions Deep Divergence Graph Kernels (DDGK) Isomorphism Attention Experimental Results
  • 5. 5 Related Works Traditional Graph Kernels: - Graph Edit Distance (Gao, et al., 2010) and Maximum Common Subgraph (Bunke, et al., 2002) - Weisfeiler-Lehman Graph Kernels (Kriege, et al., 2016) Node Embedding Methods: - DeepWalk (Perozzi, et al., 2014) - Graph Attention (Abu-El-Haija, et al., 2018) Graph Statistics (Feature engineering): - NetSmilie (Berlingerio, et al., 2012) - DeltaCon (Koutra, et al., 2013) Supervised Graph Similarity - CNN for graphs (Niepert, et al., 2016) - Graph Convolutional Networks (T. Kipf and M. Welling, 2016)
  • 6. 6 Model Description Node-To-Edges Encoder Input: A one-hot encoded vertex Output: The vertex’s neighbor Consists of Fully connected DNN Modeled as a Multi-Label Classifier Graph encoding 1
  • 7. 7 Model Description Isomorphism Attention Given two graphs 𝑆 (Source graph) and 𝑇 (Target graph) Provides a bidirectional mapping across the pair’s nodes Input: A one-hot encoded vertex from 𝑇 Output: The vertex’s neighbor Cross-Graph Attention 2
  • 8. 8 Model Description Cross-Graph Attention 2 The first attention network (𝑀𝑇→𝑆 ) Place photo here Assigns every node in 𝑇 with a probability distribution over the nodes of 𝑆 Consists of one Linear layer Modeled as a multiclass classifier 𝑃𝑟 𝑣𝑗 𝑢𝑖 = 𝑒𝑀𝑇→𝑆(𝑣𝑗,𝑢𝑖) 𝑣𝑘∈𝑉𝑆 𝑒𝑀𝑇→𝑆(𝑣𝑘,𝑢𝑖)
  • 9. 9 Model Description Cross-Graph Attention 2 The reverse attention network (𝑀𝑆→𝑇 ) Place photo here Maps the neighborhood in 𝑆 to the neighborhood in 𝑇 Consists of one Linear layer Modeled as a multilabel classifier 𝑃𝑟 𝑢𝑗 𝑁(𝑣𝑖) = 1 1 + 𝑒−𝑀𝑆→𝑇(𝑢𝑗,𝑁 𝑣𝑖 )
  • 11. 11 Model Description Node attribute regularizer Attributes Consistency 3 Attribute distribution over nodes Vertices and edges could have their own attributes Cross-Graph attention could provide several equally good mapping Solution: adding regularizing losses to preserve nodes and edges attributes Replace 𝑄𝑛 with 𝑄𝑒, we obtain Edge Attribute Regularizer
  • 13. 13 DDGK Algorithm Train source graph encodings The Algorithm 1
  • 14. 14 DDGK Algorithm Train the Cross-Graph Attention The Algorithm 1
  • 15. 15 DDGK Algorithm Save the similarity score in the matrix 𝚿 for every pair of source and target graph The Algorithm 1 Could be used as a representation vector
  • 16. 16 DDGK Algorithm - Since Ψ is not a perfect function, 𝐷(𝑆| 𝑆 ≠ 0 could happen. - Setting 𝐷(𝑆| 𝑇 ≔ 𝐷(𝑆| 𝑇 − 𝐷(𝑆||𝑆) ensures 𝐷(𝑆| 𝑆 = 0 - If symmetry is required, we can define 𝐷(𝑆| 𝑇 ≔ 𝐷(𝑆| 𝑇 + 𝐷(𝑇||𝑆) Graph Divergence 2
  • 17. 17 DDGK Algorithm DDGK requires 𝑂(𝑇𝑁2 𝑉) computations, where 𝑇 = max(𝜌, 𝜏) 𝑁 = The number of graphs 𝑉 = The average number of nodes Linear layers in Cross-Graph Attention could be replaced by a DNN with fixed size hidden layers to reduce the network size from 𝑂( 𝑉𝑆 × 𝑉𝑇 ) to 𝑂( 𝑉𝑆 + 𝑉𝑇 ) Scalability 3 For large number of source graphs, we could sample 20% of them and DDGK could still achieve high accuracy
  • 24. 24 Extensions & Future Works Graph Encoders - Edge-to-Nodes Encoder. - Neighborhood Encoder. Attention Mechanism - Subgraph alignment. Regularization - Better regularization to avoid overfitting. Feature Engineering - Combination of the two could be useful for graph classification. Scalability - Perozzi’s newer work: “Just SLaQ When You Approximate: Accurate Spectral Distances for Web-Scale Graphs, WWW ’20” could handle graphs with billions of nodes within an hour.
  • 25. 25 Conclusion - Neural Networks can learn powerful representations of graphs without feature engineering. - Proposed DDGK: - Graph Encoder - Isomorphism preserving attention - Provide interpretability into the alignment of pairs of graph - Divergence score to measure (dis)similarity between source and target graphs - Representations produced by DDGK are competitive with challenging baselines.
  • 28. 28 Design Pack Adjust size! Image caption here Place photo here Text here Photo here Photo title Description T T T T

Editor's Notes

  1. Generic representations of graphs -> Generic node alignment -> Extract useful information Algorithmic approach from theoretical computer science NP-hard natural of the classical measurement such as Graph Edit Distance, and Maximum Common Subgraph Graph isomorphism is a hard problem (no polynomial algorithm)
  2. DeepWalk learns embeddings of a graph's vertices, by modeling a stream of short random walks
  3. Overfit the model on the source graph to accurately obtain the graph’s structure
  4. Similar idea with Target Graph
  5. The idea is given a vertex in the target graph, find the most similar vertex from the source graph Activation layer is Softmax
  6. The source graph encoder outputs the neighbors of the chosen vertex From that, the reverse attention predict its corresponding position in the target graph Activation layer: Sigmoid
  7. Overall structure of the model
  8. There could be a lot of node mappings from the target to the source graphs. But not all of them preserve the attributes on the graph’s nodes and edges. Solution?
  9. This is to demonstrate the power of attribute regularization. They are two identical graph, and the attention map should produce an Identity matrix
  10. This is one application of DDGK, Hierarchical Clustering. 30 different graphs Graphs are sampled from different data sets such as neural network structure, social network, network of common nouns and adjectives in a novel, and chemistry-related graph.
  11. Dimension sampling. Experiment with different amount of sampling in the source graph set. You can notice that the accuracy converges quickly from just 20% of the original size.
  12. I also did my own experiment on this method I implemented this model on Google Colab and measure the time taken to process graphs of different sizes.
  13. SLaQ uses spectral analysis on graph, which relies on some linear algebra properties of graph. I have looked at this paper but it’s quite hard to understand.