This document discusses anomaly detection techniques. It begins with an introduction to anomaly detection and its applications in areas like intrusion detection, fraud detection, and healthcare. It then discusses the use of anomaly detection in AIOps and with graph databases. The document categorizes anomalies as point, contextual, or collective and describes methods for identifying outliers like extreme value analysis. It also discusses techniques for anomaly detection in time series data, including using recurrent neural networks, historical analysis with DBSCAN clustering, and time shift detection using cosine similarity. The document compares pros and cons of time shift detection and DBSCAN for anomaly detection.