SlideShare a Scribd company logo
Theoretical and Mathematical Physics manuscript No.
(will be inserted by the editor)
Density Density Correlation Function of Strongly Inhomogeneous Luttinger
Liquids
Nikhil Danny Babu*, Joy Prakash Das †
, Girish S. Setlur*
Abstract In this work, we show in pedagogical detail that the most singular contributions to the slow
part of the asymptotic density-density correlation function of Luttinger liquids with fermions interacting
mutually with only short-range forward scattering and also with localised scalar static impurities (where
backward scattering takes place) has a compact analytical expression in terms of simple functions that have
second order poles and involve only the scale-independent bare transmission and reflection coefficients. This
proof uses conventional fermionic perturbation theory resummed to all orders, together with the idea that
for such systems, the (connected) moments of the density operator all vanish beyond the second order
- the odd ones vanish identically and the higher order even moments are less singular than the second
order moment which is the only one included. This important result is the crucial input to the recently
introduced “Non-Chiral Bosonization Technique” (NCBT) to study such systems. The results of NCBT
cannot be easily compared with the results obtained using conventional bosonization as the former only
extracts the most singular parts of the correlation functions albeit for arbitrary impurity strengths and
mutual interactions. The latter, ambitiously attempts to study all the parts of the asymptotic correlation
functions and is thereby unable to find simple analytical expressions and is forced to operate in the vicinity
of the homogeneous system or the half line (the opposite extreme). For a fully homogeneous system or its
antithesis viz. the half-line, all the higher order connected moments of the density vanish identically which
means the results of chiral bosonization and NCBT ought to be the same and indeed they are.
Keywords Luttinger Liquid · Correlation functions · Bosonization
PACS 71.10.Pm, 73.21.Hb, 11.15.Tk
1 Introduction
The presence of impurities in one dimensional systems continues to be a challenging problem in quantum
many body physics [19,2,6,16,20,18,17]. A good number of analytical [11,21,19,18,27] and numerical ap-
proaches [25,14,8,7,22] have made their mark in the long history of strongly correlated 1D systems. Kane
and Fisher in their seminal works [19,18] have shown how the nature of the electron-electron interactions(
i.e repulsive or attractive) affect the transport properties across barriers or constrictions in a single-channel
Luttinger liquid. They elucidated that for repulsive interactions the electrons are always reflected by a weak
link and for attractive interactions the electrons are transmitted even through a strong barrier. In [17] they
studied the effect of electron interactions on resonant tunneling in presence of a double barrier and showed
that the resonances are of non-Lorentzian line shapes with a width that vanishes as T → 0, in striking
contrast to the noninteracting one dimensional electron gas. However,the exact analytical expressions of
the correlation functions of such systems with arbitrary strength of mutual interactions and in presence
of a scatterer of arbitrary strength are yet to be a part of the literature. Nevertheless, the attempts to
reach this central goal of calculating the most general result has led to many peripheral results where the
arbitrariness of one or more parameters had to be compromised. The most prevalent analytical tool to deal
with these systems, which belong to the universal class of Luttinger liquids [13], is bosonization where a
fermion field operator is expressed as the exponential of a bosonic field [10,31]. However the results of this
method are exact only for the extreme cases of very weak impurity and very strong impurity (apart from
some isolated examples such as the Bethe ansatz solutions [26,12]) and to deal with the general result one
has to rely on perturbative approach in terms of the impurity strength (or inter-chain hopping in the other
extreme) and renormalize the series to obtain a finite answer [19].
A recently developed alternative to this, which goes by the name ‘Non chiral bosonization technique
(NCBT)’, does a better job of avoiding RG methods and tackling impurities of arbitrary strengths [5,
† Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Center for Basic Sciences
Block-JD, Sector-III, Salt Lake, Kolkata 700098, India
*Department of Physics, Indian Institute of Technology Guwahati
Guwahati, Assam 781039, India
E-mail: gsetlur@iitg.ac.in
2 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur*
4]. But it can yield only the most singular part of the Green functions. On the other hand, Matveev et al.
[21] dealt with impurities of arbitrary strengths using fermionic renormalization only and without using
bosonization methods. However, their results are valid only for weak strengths of mutual interactions be-
tween the fermions.
The study of the density correlations of a Luttinger liquid is important, which is well reflected in the liter-
ature. Iucci et al. obtained a closed-form analytical expression for the zero-temperature Fourier transform
of the 2kF component of the density-density correlation function in a spinful Luttinger liquid [15]. Schulz
studied the density correlations in a one dimensional electron gas interacting with long ranged Coulomb
forces and calculated the 4kF component of the density which decays extremely slowly and represents a 1D
Wigner crystal [28]. Parola presented an exact analytical evaluation of the asymptotic spin-spin correlations
of the 1D Hubbard model with infinite on-site interaction (U → ∞) and away from half filling [23]. Their
results suggested that the renormalization-group scaling to the Tomonaga-Luttinger model is exact in the
U → ∞ Hubbard model. Stephan et al. calculated the dynamical density-density correlation function for
the one-dimensional, half-filled Hubbard model extended with nearest-neighbor repulsion for large on-site
repulsion compared to hopping amplitudes [30]. Caux et al. studied the dynamical density density corre-
lations in a 1D Bose gas with a delta function interaction using a Bethe-ansatz-based numerical method
[3]. Gambetta et al. have done a study of the correlation functions in a one-channel finite size Luttinger
liquid quantum dot [9]. Protopopov et al. investigated the four-point correlations of a Luttinger liquid in
a non-equilibrium setting [24]. In [29] Sen et al. performed a numerical study of the Luttinger liquid type
behaviour of the density-density correlation functions in the lattice Calogero-Sutherland model. Aristov
analyzed the modified density-density correlations when curvature in the fermionic dispersion is present [1].
In this work, it is shown that the most singular contributions (precise meaning defined later) of the slow
part of the density density correlation functions of a spinful Luttinger liquid (also spinless) with short-
range forward scattering mutual interactions in presence of localized static scalar impurities is shown to be
expressible in terms of elementary functions of positions and times which involve only second order poles
and also involve only the bare reflection and transmission coefficients of a single particle in the presence of
these impurities.
2 The Model
Consider a quantum system that comprises a 1D gas of electrons with forward scattering short-range
mutual interactions and in the presence of a scalar potential V (x) that is localized near an origin. The full
generic-Hamiltonian of the system contains three parts and can be written as follows.
H = H0 + Himp + Hfs (1)
where H0 is the Hamiltonian of free fermions and Himp is that of the impurity (or impurities). This has
an asymptotic form in terms of its Green function. Hfs is that of short-range forward scattering mutual
interactions between the fermions. Using the linear dispersion relations near the Fermi level (E = EF +kvF )
one can write,
H0 = −ivF dx
σ=↑,↓
(: ψ†
R(x, σ)∂xψR(x, σ) : − : ψ†
L(x, σ)∂xψL(x, σ) :) (2)
and the impurity Hamiltonian is given to be in Hermitian form as follows (the expression below taken at
face value is ill-defined and a regularization procedure is implied as discussed below).
Himp =V0
σ=↑,↓
(ψ†
R(0, σ)ψR(0, σ) + ψ†
L(0, σ)ψL(0, σ)) + V1
σ=↑,↓
ψ†
R(0, σ)ψL(0, σ) + V ∗
1
σ=↑,↓
ψ†
L(0, σ)ψR(0, σ) (3)
where the subscripts R (ν = +1) and L (ν = −1) are the usual right and left movers. The impurity
hamiltonian in equation (3) is ambiguous without proper regularisation. The point of view taken here is
that the meaning of equation (3) is indirectly fixed by demanding that the Green function of H0 + Himp
be given by equation (4). The Green function of this Hamiltonian H0 + Himp may be written as,
< T ψν(x, σ, t)ψ†
ν
(x , σ , t ) >0 ≡ δσ,σ
γ,γ =±1
Gν,ν
γ,γ
(x, t; x , t ) θ(γx)θ(γ x ) (4)
where θ(x > 0) = 1, θ(x < 0) = 0 and θ(0) = 1
2 is Heaviside’s step function. It can be shown that
Gν,ν
γ,γ
(x, t; x , t ) =
gγ,γ (ν, ν )
νx − ν x − vF (t − t )
(5)
Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 3
The complex numbers gγ,γ (ν, ν ) may be related to V0 and V1, alternatively, to the (bare) transmission (T)
and reflection (R) amplitudes. In terms of the reflection and transmission amplitudes, we have
gγ1,γ2 (ν1, ν2) =
i
2π
δν1,ν2 δγ1,γ2 + (Tδν1,ν2 + Rδν1,−ν2 )δγ1,ν1 δγ2,−ν2 + (T∗
δν1,ν2 + R∗
δν1,−ν2 )δγ1,−ν1 δγ2,ν2
(6)
These amplitudes may also be related to the details of the impurity potentials. The relation between V0, V1 in
equation (3) to the bare transmission and reflection amplitudes is given by (see Appendix E for derivation),
V0 =
2i vF (T − T∗
)
2TT∗ + T + T∗
V1 = V ∗
1 = −
4i vF R∗
T
2TT∗ + T + T∗
=
4i vF RT∗
2TT∗ + T + T∗
(7)
The slow part of the asymptotic density-density correlation may be written down using Wick’s theorem as
(after subtracting the uncorrelated average product: ˜ρs = ρs− < ρs >),
< T ˜ρs(x, σ, t)˜ρs(x , σ , t ) >0 = − δσ,σ
γ,γ =±1 ν,ν =±1
|gγ,γ (ν, ν )|2
θ(γx)θ(γ x )
(νx − ν x − vF (t − t ))2
= −
δσ,σ
(2π)2
( sgn(x1)sgn(x2)
|R|2
(vF (t1 − t2) + |x1| + |x2|)2
+ sgn(x1)sgn(x2)
|R|2
(vF (t1 − t2) − |x1| − |x2|)2
+
1
(vF (t1 − t2) + x1 − x2)2
+
1
(vF (t1 − t2) − x1 + x2)2
)
(8)
where,
ρs(x, σ, t) = (: ψ†
R(x, σ, t)ψR(x, σ, t) : + : ψ†
L(x, σ, t)ψL(x, σ, t) :) (9)
In the presence of short-range forward scattering given by the additional piece,
Hfs =
1
2
σ,σ =↑,↓
dx dx v(x − x ) ρs(x, σ, t)ρs(x , σ , t) (10)
it is not possible to write down a simple formula such as equation (8) for the correlation function described
there. The reason is because |gγ,γ (ν, ν )|2
involves only the bare reflection and transmission coefficients -
but in conventional chiral bosonization, they are renormalized to become scale-dependent. Also there is no
guarantee that the function will continue to have simple second order poles as shown in equation (8). The
main claim of the non-chiral bosonization technique (NCBT) is that if one is willing to be content at the most
singular part of this correlation function then it is indeed possible to write down a simple formula very
similar to equation (8) even when short-range forward scattering i.e. equation (10) is present. Furthermore,
this most singular contribution will only involve the bare transmission and reflection coefficients as is the
case in equation (8). This most singular part of the slowly varying asymptotic density-density correlation
(ie. DDCF in presence of equation (10)) is given below and the proof is given in the next section.
T ρs(x1, σ1, t1)ρs(x2, σ2, t2) =
1
4
( T ρh(x1, t1)ρh(x2, t2) + σ1σ2 T ρn(x1, t1)ρn(x2, t2) ) (11)
where,
T ρh(x1, t1)ρh(x2, t2) =
vF
2π2vh ν=±1
−
1
(x1 − x2 + νvh(t1 − t2))2
−
vF
vh
sgn(x1)sgn(x2) |R|2
1−
(vh−vF )
vh
|R|2
(|x1| + |x2| + νvh(t1 − t2))2
T ρn(x1, t1)ρn(x2, t2) =
1
2π2
ν=±1
−
1
(x1 − x2 + νvF (t1 − t2))2
−
sgn(x1)sgn(x2) |R|2
(|x1| + |x2| + νvF (t1 − t2))2
(12)
with vh = v2
F + 2v0vF
π and σ =↑ (+1) and σ =↓ (−1).
One of the main results of NCBT is the assertion that the most singular contribution to < T ˜ρs(x1, σ1, t1)˜ρs(x2, σ2, t2) >
in the presence of short-range forward scattering between fermions viz. equation (10) is given by equation
(11) and equation (12).
4 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur*
3 Results: Density density correlation function
The density density correlation functions (DDCF) in absence of mutual interactions is given by equation
(8). This has to be systematically transformed to include mutual interactions. Firstly, the space time DDCF
is related to the momentum frequency DDCF as follows (x1 = x2 and x1 = 0 and x2 = 0).
< T ρs(x1, t1; σ1)ρs(x2, t2; σ2) >0=
1
L2
q,q ,n
e−iqx1
e−iq x2
e−wn(t1−t2)
< T ρs(q, n; σ1)ρs(q , −n; σ2) >0
(13)
From this we can obtain the DDCF in momentum and frequency space as follows (here β is the inverse
temperature which comes into the calculation because of converting summation to integration which is
allowed in the zero temperature limit:
n
f(zn) = β
2π f(z)dz where zn = 2π(n+1)
β ).
< T ρs(q, n; σ1)ρs(q , −n; σ2) >0 =
δσ1,σ2
β
(2vF q )(2vF q)|g1,1(1, −1)|2
|wn|(2π)
((vF q)2 + w2
n)((vF q )2 + w2
n)
+
δσ1,σ2
β
2q2
vF
w2
n + (qvF )2
δq+q ,0
L
(2π)
(14)
In Appendix A we show how to recover equation (8) from equation (13) and equation (14). Now the
generating function for an auxiliary field U in presence of mutual interactions between particles given by
v(x1 − x2) can be written as
Z[U] = D[ρ]eiSeff,0[ρ]
e q,n,σ ρq,n,σUq,n,σ
e−i −iβ
0
dt dx1 dx2
1
2
v(x1−x2)ρ(x1,t1;.)ρ(x2,t1;.)
(15)
where S0 is the action of free fermions and
ρ(x1, t1; .) =
1
L q,n
e−iqx
ewnt
ρq,n;.
v(x1 − x2) =
1
L
Q
e−iQ(x1−x2)
vQ
ρ(x1, t1; .) = ρ(x1, t1; ↑) + ρ(x1, t1; ↓)
Thus the generating function can be written as follows.
Z[U] = D[ρ]eiSeff,0[ρ]
e q,n,σ ρq,n,σUq,n,σ
e− q,n
βv0
2L ρq,n;.ρ−q,−n;.
(16)
If one denotes the generating function in absence of interactions as Z0, then
Z0[U] = D[ρ]eiSeff,0[ρ]
e q,n,σ ρq,n,σUq,n,σ
⇒eiSeff,0[ρ]
= D[U ]e− q,n,σ ρq,n,σUq,n,σ Z0[U ]
Inserting in equation (16),
Z[U] = D[ρ] D[U ] Z0[U ] e q,n,σ ρq,n,σ(Uq,n,σ−Uq,n,σ)
e− q,n
βv0
2L ρq,n;.ρ−q,−n;.
(17)
Set,
ρq,n,σ =
1
2
ρq,n;. +
1
2
σ σq,n ; Uq,n,σ =
1
2
Uq,n;. +
1
2
σ Wq,n ; Uq,n,σ =
1
2
Uq,n;. +
1
2
σ Wq,n
(18)
Using these relations the generating function can be written as
Z[U] = D[ρ] D[U ] Z0[U ] e
1
4 q,n,σ(ρq,n;.+σ σq,n)((Uq,n;.−Uq,n;.)+σ (Wq,n−Wq,n))
e− q,n
βv0
2L ρq,n;.ρ−q,−n;.
(19)
where in the RPA sense (for the homogeneous system, this choice corresponds to RPA, for the present
steeplechase problem this choice corresponds to the most singular truncation of the RPA generating func-
tion)
Z0[U ] = e
1
2 q,q ,n;σ
<ρq,nρq ,−n
>0 Uq,n;σU
q ,−n;σ (20)
Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 5
where < ρq,nρq ,−n >0 is equation (14) with σ1 = σ2. It is to be noted that we have neglected the higher
moments of ρ in Z0[U ] beyond the quadratic as they are less singular than the second moment (see section
4.1). Now,
Z[U] = D[ρ] D[U ] e
1
2 q,q ,n;σ
<ρq,nρq ,−n
>0
1
4
(Uq,n;.+σ Wq,n)(U
q ,−n;.
+σ W
q ,−n
)
e
1
4 q,n,σ(ρq,n;.+σ σq,n)((Uq,n;.−Uq,n;.)+σ (Wq,n−Wq,n))
e− q,n
βv0
2L ρq,n;.ρ−q,−n;.
= D[U ] e
1
2 q,q ,n
<ρq,nρq ,−n
>0
1
2
(Uq,n;.U
q ,−n;.
+Wq,nW
q ,−n
)
D[ρ] e
1
2 q,n(ρq,n;.(Uq,n;.−Uq,n;.)+σq,n(Wq,n−Wq,n))
e− q,n
βv0
2L ρq,n;.ρ−q,−n;.
= D[U ] e
1
4 q,q ,n
<ρq,nρq ,−n
>0 Wq,nWq ,−n e
1
4 q,q ,n
<ρq,nρq ,−n
>0 Uq,n;.U
q ,−n;.
D[ρ] e
1
2 q,n ρq,n;.(Uq,n;.−Uq,n;.)
e− q,n
βv0
2L ρq,n;.ρ−q,−n;.
The last result follows from the extremum condition viz.
ρ−q,−n;. =
L
2βv0
(Uq,n;. − Uq,n;.) (21)
Thus (including only the holon part),
Z[U] = D[U ] e
1
4 q,q ,n
<ρq,nρq ,−n
>0 Uq,n;.U
q ,−n;. e
1
4 q,n
L
2βv0
(U−q,−n;.−U−q,−n;.)(Uq,n;.−Uq,n;.)
(22)
The integration has to be done using the saddle point method. This involves finding the extremum of the
log of the integrand with respect to U which leads to the answer we are looking for. This means,
q
< ρq,nρq ,−n >0 Uq ,−n;. −
L
2βv0
(U−q,−n;. − U−q,−n;.) = 0 (23)
Hence,
β < ρq,nρq ,−n >0=
(2vF q )(2vF q)
((vF q)2 + w2
n)((vF q )2 + w2
n)
|g1,1(1, −1)|2
|wn|(2π) +
2q2
vF
w2
n + (qvF )2
δq+q ,0
L
(2π)
(24)
This means,
(2vF q)
((vF q)2 + w2
n)
q
(2vF q )
((vF q )2 + w2
n)
Uq ,−n;.|g1,1(1, −1)|2
|wn|(2π)
+
2q2
vF
w2
n + (qvF )2
U−q,−n;.
L
(2π)
−
L
2v0
(U−q,−n;. − U−q,−n;.) = 0
(25)
Let,
1
L
q
(2vF q )
((vF q )2 + w2
n)
Uq ,−n;. = un (26)
or,
(2vF q)
((vF q)2 + w2
n)
unL|g1,1(1, −1)|2
|wn|(2π) +
2q2
vF
w2
n + (qvF )2
U−q,−n;.
L
(2π)
−
L
2v0
(U−q,−n;. − U−q,−n;.) = 0
or,
L
2v0
+
L
(2π)
2q2
vF
w2
n + (qvF )2
U−q,−n;. = −
(2vF q)
((vF q)2 + w2
n)
unL|g1,1(1, −1)|2
|wn|(2π) +
L
2v0
U−q,−n;.
This means,
U−q,−n;. = −
(2vF q)
((vF q)2 + w2
n)
unL|g1,1(1, −1)|2
|wn|(2π)
L
2v0
+ L
(2π)
2q2vF
w2
n+(qvF )2
+
L
2v0
U−q,−n;.
L
2v0
+ L
(2π)
2q2vF
w2
n+(qvF )2
(27)
6 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur*
Set v2
= v2
F + 2vF v0
π .
U−q,−n;. = −(2vF q)
un2v0|g1,1(1, −1)|2
|wn|(2π)
(w2
n + (qv)2)
+
(w2
n + (qvF )2
)U−q,−n;.
(w2
n + (qv)2)
(28)
Hence,
un
1
L
q
(2vF q )2
((vF q )2 + w2
n)(w2
n + (q v)2)
2v0|g1,1(1, −1)|2
|wn|(2π) +
1
L
q
(2vF q )Uq ,−n;.
(w2
n + (q v)2)
= un (29)
Hence,
un =
1
L
q
(2vF q )Uq ,−n;.
1 − 4v0vF
(v+vF )v |g1,1(1, −1)|2(2π) (w2
n + (q v)2)
(30)
or,
q
< ρq,nρq ,−n >0 Uq ,−n;. −
L
2βv0
(U−q,−n;. − U−q,−n;.) = 0 (31)
Hence,
Z[U] = e
1
4 q,n
L
2βv0
(U−q,−n;.−U−q,−n;.)Uq,n;. (32)
U−q,−n;. − U−q,−n;. =
1
L
q
(2vF q )Uq ,−n;.
1 − 4v0vF
(v+vF )v |g1,1(1, −1)|2(2π) (w2
n + (q v)2)
(2vF q)
2v0|g1,1(1, −1)|2
|wn|(2π)
(w2
n + (qv)2)
+ U−q,−n;.
(qv)2
− (qvF )2
w2
n + (qv)2
(33)
But we had
Z[U] = D[U ] e
1
4 q,q ,n
<ρq,nρq ,−n
>0 Uq,n;.U
q ,−n;. e
1
4 q,n
L
2βv0
(U−q,−n;.−U−q,−n;.)(Uq,n;.−Uq,n;.)
This means
Z[U] =e q,n
L
8βv0
Uq,n;.U−q,−n;.
(qvh)2−(qvF )2
w2
n+(qvh)2
e
q,n
L
8βv0
1
L q
(2vF q )Uq,n;.U
q ,−n;.
1−
4v0vF
(vh+vF )vh
|g1,1(1,−1)|2(2π) (w2
n+(q vh)2
)
(2vF q)
2v0|g1,1(1,−1)|2|wn|(2π)
(w2
n+(qvh)2)
(34)
Here,
vh = v2
F +
2vF v0
π
(35)
Since we have,
ρq,n;. = ρq,n;↑ + ρq,n;↓ ; σq,n = ρq,n;↑ − ρq,n;↓ (36)
Thus,
1
4
< ρq,n;.ρq ,−n;. > = δq+q ,0
L
4β
2vF q2
π(w2
n + (qvh)2)
+
1
2β
(2vF q)(2vF q )|g1,1(1, −1)|2
|wn|(2π)
1 − (vh−vF )
vh
|g1,1(1, −1)|2(2π)2 (w2
n + (q vh)2) (w2
n + (qvh)2)
(37)
1
4
< σq,nσq ,−n > =
(2vF q )(2vF q)
2β((vF q)2 + w2
n)((vF q )2 + w2
n)
|g1,1(1, −1)|2
|wn|(2π) +
q2
vF L
2πβ(w2
n + (qvF )2)
δq+q ,0
< σq,nρq ,−n;. > = 0
(38)
Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 7
Finally, the full density density correlation functions in momentum frequency space can be written as,
< ρq,n,σρq ,−n,σ >=
1
4
< ρq,n;.ρq ,−n;. > +
1
4
σσ < σq,nσq ,−n > (39)
Doing an inverse Fourier transform of the above we get the DDCF in real space time.
<T ρs(x1, t1; σ)ρs(x2, t2; σ ) >=
−
v2
F
v4
h
sgn(x1)sgn(x2)

 β
2π
1
[(t1 − t2) +
|x1|+|x2|
vh
]2
+
β
2π
1
[(t1 − t2) −
|x1|+|x2|
vh
]2

 1
2β
|g1,1(1, −1)|2(2π)
1 − 4v0vF
(vh+vF )vh
|g1,1(1, −1)|2(2π)
−
sgn(x1)sgn(x2)
v2
F

 β
2π
1
[(t1 − t2) +
|x1|+|x2|
vF
]2
+
β
2π
1
[(t1 − t2) −
|x1|+|x2|
vF
]2

 1
2β
|g1,1(1, −1)|2
(2πσσ )
−
vF
4πβv3
h

 β
2π
1
[(t1 − t2) +
|x1−x2|
vh
]2
+
β
2π
1
[(t1 − t2) −
|x1−x2|
vh
]2


−
σσ
4πβv2
F

 β
2π
1
[(t1 − t2) +
|x1−x2|
vF
]2
+
β
2π
1
[(t1 − t2) −
|x1−x2|
vF
]2


(40)
One can separate the holon and spinon parts of the DDCF and write as follows.
T ρh(x1, t1)ρh(x2, t2) =
vF
2π2vh ν=±1
−
1
(x1 − x2 + νvh(t1 − t2))2
−
vF
vh
sgn(x1)sgn(x2)
|R|2
1−
(vh−vF )
vh
|R|2
(|x1| + |x2| + νvh(t1 − t2))2
T ρn(x1, t1)ρn(x2, t2) =
1
2π2
ν=±1
−
1
(x1 − x2 + νvF (t1 − t2))2
−
sgn(x1)sgn(x2) |R|2
(|x1| + |x2| + νvF (t1 − t2))2
(41)
The full density density correlation functions can thus be written in a compact form as follows.
T ρs(x1, σ1, t1)ρs(x2, σ2, t2) =
1
4
( T ρh(x1, t1)ρh(x2, t2) + σ1σ2 T ρn(x1, t1)ρn(x2, t2) ) (42)
4 Discussion
We have said repeatedly that equation (41) and equation (42) displays the central result of this work,
viz., the most singular part of the density density correlation function of the generic Hamiltonian given in
equation (1). In this section, the key aspects of this result are discussed.
4.1 Gaussian approximation
In equation (20), it is seen that only the quadratic moment of ρ in the Z0[U ] is included, neglecting all the
higher moments. The reason for this is the following. The connected parts of the odd moments ρ vanish
identically (in the RPA limit) and that of the even moments are less singular than the second moment, etc.
For example, the connected 4-density function,
< Tρ(x1)ρ(x2)ρ(x3)ρ(x4) >c ∼ < Tψ(x1)ψ∗
(x2) >< Tψ(x2)ψ∗
(x3) >< Tψ(x3)ψ∗
(x4) >< Tψ(x4)ψ∗
(x1) >
+ permutations
(43)
has only first order poles and no second order poles. The NCBT does not claim to provide the asymptotic
Green functions of strongly inhomogeneous interacting Fermi systems exactly but it does claim to provide
the most singular part of the asymptotic Green functions of strongly inhomogeneous interacting Fermi
systems exactly. However this is not the case for the homogeneous systems (|R| = 0) and half-lines (|R| = 1)
where both the even and the odd moments higher than the quadratic moment of density functions vanishes.
Hence for these extreme cases, the density density correlation functions are not just the most singular part
but the full story. To prove this, a quantity ‘∆’ is defined as follows.
∆ ≡ < T ρs(x1, σ1, t1)ρs(x2, σ2, t2)ρs(x3, σ3, σ3, t3)ρs(x4, σ4, t4) >0
− < T ρs(x1, σ1, t1)ρs(x2, σ2, t2) >0 < T ρs(x3, σ3, t3)ρs(x4, σ4, t4) >0
− < T ρs(x1, σ1, t1)ρs(x3, σ3, t3) >0 < T ρs(x2, σ2, t2)ρs(x4, σ4, t4) >0
− < T ρs(x1, σ1, t1)ρs(x4, σ4, t4) >0 < T ρs(x2, σ2, t2)ρs(x3, σ3, t3) >0
(44)
8 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur*
If ∆ = 0 it means Wick’s theorem is applicable at the level of pairs of fermions which makes the Gaussian
theory valid. So now, the question is whether ∆ is zero or not. Expanding the above expression using
conventional Wick’s theorem and using the form of the Green function shown in equation (4) we have the
following results for various cases.
Case I: All four points on same side (x1 > 0, x2 > 0, x3 > 0, x4 > 0)
We have ρs(x, σ, t) =: ψ†
R(x, σ, t)ψR(x, σ, t) + ψ†
L(x, σ, t)ψL(x, σ, t) : where :: represents normal ordering. For
this case we obtain,
< T ρs(x1, σ, t1)ρs(x2, σ, t2)ρs(x3, σ, t3)ρs(x4, σ, t4) >c =
|R|2|T|2
2π4
×
1
((t3 − t1)vF + x1 + x3)((t3 − t2)vF + x2 + x3)((t4 − t1)vF + x1 + x4)((t4 − t2)vF + x2 + x4)
+
1
((t1 − t2)vF + x1 + x2)((t3 − t2)vF + x2 + x3)((t1 − t4)vF + x1 + x4)((t3 − t4)vF + x3 + x4)
+
1
((t2 − t1)vF + x1 + x2)((t3 − t1)vF + x1 + x3)((t2 − t4)vF + x2 + x4)((t3 − t4)vF + x3 + x4)
+
1
((t2 − t1)vF + x1 + x2)((t2 − t3)vF + x2 + x3)((t4 − t1)vF + x1 + x4)((t4 − t3)vF + x3 + x4)
+
1
((t1 − t2)vF + x1 + x2)((t1 − t3)vF + x1 + x3)((t4 − t2)vF + x2 + x4)((t4 − t3)vF + x3 + x4)
+
1
((t1 − t3)vF + x1 + x3)((t2 − t3)vF + x2 + x3)((t1 − t4)vF + x1 + x4)((t2 − t4)vF + x2 + x4)
(45)
Case II: Three points on same side (x1 < 0, x2 > 0, x3 > 0, x4 > 0)
< T ρs(x1, σ, t1)ρs(x2, σ, t2)ρs(x3, σ, t3)ρs(x4, σ, t4) >c =
|R|2|T|2
2π4
×
−
1
((t1 − t3)vF + x1 − x3)((t3 − t2)vF + x2 + x3)((t1 − t4)vF + x1 − x4)((t4 − t2)vF + x2 + x4)
−
1
((t1 − t2)vF − x1 + x2)((t3 − t2)vF + x2 + x3)((t1 − t4)vF − x1 + x4)((t3 − t4)vF + x3 + x4)
−
1
((t1 − t2)vF + x1 − x2)((t1 − t3)vF + x1 − x3)((t2 − t4)vF + x2 + x4)((t3 − t4)vF + x3 + x4)
−
1
((t1 − t2)vF + x1 − x2)((t2 − t3)vF + x2 + x3)((t1 − t4)vF + x1 − x4)((t4 − t3)vF + x3 + x4)
−
1
((t1 − t2)vF − x1 + x2)((t1 − t3)vF − x1 + x3)((t4 − t2)vF + x2 + x4)((t4 − t3)vF + x3 + x4)
+
1
((t3 − t1)vF + x1 − x3)((t2 − t3)vF + x2 + x3)((t1 − t4)vF − x1 + x4)((t2 − t4)vF + x2 + x4)
(46)
Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 9
Case III: Two points on same side (x1 < 0, x2 < 0, x3 > 0, x4 > 0)
< T ρs(x1, σ, t1)ρs(x2, σ, t2)ρs(x3, σ, t3)ρs(x4, σ, t4) >c =
|R|2|T|2
4π4
−
1
((t1 − t3)vF + x1 − x3)((t3 − t2)vF − x2 + x3)((t1 − t4)vF + x1 − x4)((t2 − t4)vF + x2 − x4)
−
2
((t3 − t2)vF + x2 − x3)((t1 − t3)vF − x1 + x3)((t1 − t4)vF − x1 + x4)((t2 − t4)vF − x2 + x4)
−
1
((t2 − t3)vF + x2 − x3)((t3 − t1)vF − x1 + x3)((t1 − t4)vF + x1 − x4)((t2 − t4)vF + x2 − x4)
+
R∗2T2
4π4
−
1
((t1 − t2)vF + x1 + x2)((t1 − t3)vF + x1 − x3)((t2 − t4)vF − x2 + x4)((t3 − t4)vF + x3 + x4)
−
1
((t1 − t2)vF + x1 + x2)((t2 − t3)vF − x2 + x3)((t1 − t4)vF + x1 − x4)((t4 − t3)vF + x3 + x4)
−
1
((t2 − t1)vF + x1 + x2)((t1 − t3)vF − x1 + x3)((t2 − t4)vF + x2 − x4)((t4 − t3)vF + x3 + x4)
−
1
((t2 − t1)vF + x1 + x2)((t2 − t3)vF + x2 − x3)((t1 − t4)vF − x1 + x4)((t3 − t4)vF + x3 + x4)
+
R2T∗2
4π4
−
1
((t1 − t2)vF + x1 + x2)((t1 − t3)vF + x1 − x3)((t2 − t4)vF − x2 + x4)((t3 − t4)vF + x3 + x4)
−
1
((t1 − t2)vF + x1 + x2)((t2 − t3)vF − x2 + x3)((t1 − t4)vF + x1 − x4)((t4 − t3)vF + x3 + x4)
−
1
((t2 − t1)vF + x1 + x2)((t1 − t3)vF − x1 + x3)((t2 − t4)vF + x2 − x4)((t4 − t3)vF + x3 + x4)
−
1
((t2 − t1)vF + x1 + x2)((t2 − t3)vF + x2 − x3)((t1 − t4)vF − x1 + x4)((t3 − t4)vF + x3 + x4)
(47)
Now it is easy to see that for all the three possible cases above, the fourth moment of density will vanish
when either of |R| or |T| vanishes. Hence the Gaussian theory is exact for a homogeneous system and a half
line. For all intermediate cases (0 < |R| < 1), the fourth moment (and similarly the higher even moments)
are less singular with first order poles as compared to the second moment which contains second order
poles. Also note that all the above cases were done for all the four spins to be identical. If any one of them
is different, then all the results on the RHSs of the above cases will also vanish.
4.2 Relation between fast and slow parts of DDCF
In the RPA sense, the density ρ(x, σ, t) may be “harmonically analysed” as follows.
ρ(x, σ, t) = ρs(x, σ, t) + e2ikF x
ρf (x, σ, t) + e−2ikF x
ρ∗
f (x, σ, t) (48)
Here ρs and ρf are the slowly varying and the rapidly varying parts respectively. The most singular parts
of the rapidly varying components of the DDCF may be obtained by the following “non-standard harmonic
analysis”
ρf (x, σ, t) ∼ e2πi x
dy(ρs(y,t)+λ ρs(−y,t))
(49)
where λ = 0 or λ = 1 depending upon which correlation function we want to reproduce. The presence
of ρs(−y, t) automatically incorporates (at the level of correlation functions), the presence of localised
impurities in the system. This is unlike the conventional chiral bosonization method where the impurities
lead to non-local hamiltonians whereas the Fermi-Bose correspondence is left untouched. The conventional
method, though correct in principle, is unwieldy and unnatural since the impurities which lead to strong
qualitative changes in the ground state of the system are introduced as an afterthought whereas the short-
range forward scattering which leads only to subtle (but qualitative) changes are treated exactly. NCBT
does a good job of including both but it is still not exact as it can only provide the most singular parts of
the correlation functions in terms of elementary functions of positions and times.
10 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur*
Furthermore, in NCBT, the field “operator” (only a mnemonic for the correlation functions it generates)
has a modified form which automatically takes into account the presence of impurities.
ψν(x, σ, t) ∼ eiΞν (x,σ,t)
;
Ξν(x, σ, t) ≡ θν(x, σ, t) + 2πλν
x
dy ρs(−y, σ, t)
(50)
where ν = R, L and λ = 0, 1 depending upon which 2-point correlation function we are looking for ( right-
right, right-left, left-right, left-left movers and both points on same (opposite) sides of the origin ) . Also
θν(x, σ, t) is the same as what is found in chiral bosonization. It may be related to currents and densities
and through the continuity equation, finally only to the slow parts of the density.
θν(x, σ, t) = π
x
dy νρs(y, σ, t) −
y
dy ∂vF tρs(y , σ, t) (51)
As usual ρs(y, σ, t) ≡: ψ†
R(y, σ, t)ψR(y, σ, t) + ψ†
L(y, σ, t)ψL(y, σ, t) : Note that unlike in chiral bosonization,
equation (50) is not an operator identity. It is only meant to capture the most singular parts of the two
point functions by employing the following device. We assert that the most singular parts of the 2-point
functions are given by retaining only the leading terms in the cumulant expansion.
< ψν (x, σ, t)ψ†
ν
(x , σ, t ) > ∼ < eiΞν (x,σ,t)
e
−iΞ
ν
(x ,σ,t )
>∼ e− 1
2
<Ξ2
ν (x,σ,t)>
e
− 1
2
<Ξ2
ν
(x ,σ,t )>
e
<Ξν (x,σ,t)Ξ
ν
(x ,σ,t )>
(52)
As long as the symbol < ... > on both sides of the equation equation (52) is read as “most singular part of
the expectation value”, equation (52) is in fact the exact answer for the two-point functions of a strongly
inhomogeneous Luttinger liquid. The higher order terms in the cumulant expansion are purposely dropped
as they can be shown to be less singular (see subsection 4.1).
The other important point worth mentioning is that in chiral bosonization, the 2-point Green functions
in presence of impurities are discontinuous functions of the short-range forward scattering strength. This
means in presence of impurities, the full asymptotic Green functions for weak short-range forward scattering
are qualitatively (discontinuously) different from the corresponding quantities for no short-range forward
scattering. This is the origin of the “cutting the chain” and “healing the chain” metaphors applicable for
repulsive and attractive short-range forward scattering respectively.
However NCBT only yields the most singular part of the asymptotic Green functions. This attribute
exhibits a behaviour complementary to the what is seen in the full Green function. The most singular part
of the 2-point Green functions are discontinuous functions of the impurity strength in presence of short-
range forward scattering between fermions. This means the NCBT Green functions with weak impurities
are qualitatively (ie. discontinuously) different from the corresponding quantity for no impurities.
This is the main reason why the results of chiral bosonization and NCBT cannot be easily compared
with one another as they are fully complementary. The only exception is for a fully homogeneous system
or its antithesis viz. the half line where the two results coincide.
4.3 Obtaining the spinless results
It is easy to transform equation (41) and equation (42) to show the results for the spinless fermions. For
doing so, the density density correlation functions of the holons ρhρh needs to be doubled and that of the
spinons ρnρn are allowed to vanish. The holon velocity in this case will be related to the Fermi velocity
as vh = v2
h + v0vF /π. Hence the density density correlation function for the spinless case is the following.
T ρs(x1, t1)ρs(x2, t2) =
vF
4π2vh ν=±1
−
1
(x1 − x2 + νvh(t1 − t2))2
−
|R|2
1 −
(vh−vF )
vh
|R|2
vF
vh
sgn(x1)sgn(x2)
(|x1| + |x2| + νvh(t1 − t2))2
(53)
5 Comparison with perturbative results
The density density correlation functions of a strongly inhomogeneous Luttinger liquid given by equation
(41) can be verified by a comparison with those obtained using standard fermionic perturbation (the
Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 11
comparison for the limiting cases, viz., |R| = 0 and |R| = 1 are given in Appendix B and Appendix C
respectively). The general case viz. 0 < |R| < 1 is given in Appendix D. Since the spinon DDCF is the
same as that of the non-interacting DDCF (it is only the total density that couples with the interaction),
hence it will suffice only to compare the holon DDCF to perturbative results. For this, the holon DDCF
is expanded in powers of the interaction parameter v0. Note that the holon velocity vh is related to the
Fermi velocity and the interaction parameter v0 by the relation vh = vF 1 + 2v0/(πvF ). The holon DDCF
is given as follows.
T ρh(x1, t1)ρh(x2, t2) =
vF
2π2vh ν=±1
−
1
(x1 − x2 + νvh(t1 − t2))2
−
vF
vh
sgn(x1x2) |R|2
1−
(vh−vF )
vh
|R|2
(|x1| + |x2| + νvh(t1 − t2))2
(54)
Expanding in powers of interaction parameter v0 and retaining up to the first order, the following is
obtained.
T ρh(x1, t1)ρh(x2, t2)
= T ρh(x1, t1)ρh(x2, t2) 0
+ v0 T ρh(x1, t1)ρh(x2, t2) 1
+ O[v2
0]
(55)
Now
T ρh(x1, t1)ρh(x2, t2) 0
= −
1
2π2
sgn(x1)sgn(x2)|R|2
(|x1| + |x2| + vF (t1 − t2))2
+
sgn(x1)sgn(x2)|R|2
(|x1| + |x2| − vF (t1 − t2))2
+
1
(x1 − x2 + vF (t1 − t2))2
+
1
(x1 − x2 − vF (t1 − t2))2
(56)
and
T ρh(x1, t1)ρh(x2, t2) 1
=
1
4π3vF
(
|R|2sgn(x1)sgn(x2)(−(|R|2 − 1) |x1| − (|R|2 − 1) |x2| + (|R|2 − 3)vF (t1 − t2))
(|x1| + |x2| + vF (t2 − t1))3
+
|R|2sgn(x1)sgn(x2)
(|x1| + |x2| + vF (t1 − t2))2
+
|R|2sgn(x1)sgn(x2)
(|x1| + |x2| + vF (t2 − t1))2
−
|R|2sgn(x1)sgn(x2)((|R|2 − 1) |x1| + (|R|2 − 1) |x2| + (|R|2 − 3)vF (t1 − t2))
(|x1| + |x2| + vF (t1 − t2))3
+
2vF (t1 − t2)
(t1vF − t2vF + x1 − x2)3
+
2vF (t1 − t2)
(t1vF − t2vF − x1 + x2)3
+
1
(t1vF − t2vF + x1 − x2)2
+
1
(t1vF − t2vF − x1 + x2)2
)
(57)
The first order term viz. equation (57) has to be compared with that obtained using standard fermionic
perturbation theory. Using the perturbative approach, the density density correlation functions in presence
of interactions can be written in terms of the non-interacting ones as follows.
T ρh(x1, t1)ρh(x2, t2) =
TS ρh(x1, t1)ρh(x2, t2) 0
TS 0
(58)
Here T represents the time ordering and the action S can be written as follows.
S = e−i Hfs(t)dt
= 1 − i Hfs(t)dt + .... (59)
Hence the zeroth order term is simply T ρh(x1, t1)ρh(x2, t2) 0 and the first order perturbation term can
be written as follows.
T ρh(x1, t1)ρh(x2, t2) 1
= −i T HI(t1)ρh(x1, t1)ρh(x2, t2) 0dt1
From equation (10) the interacting part of the Hamiltonian can be written as
Hfs(t) =
1
2
∞
−∞
dx
∞
−∞
dx v(x − x ) ρh(x, t)ρh(x , t)
Hence the first order term in the perturbation series can be written as follows.
Tρh(x1, t1)ρh(x2, t2) 1
= −
i
2
dτ dy dy v(y − y ) T ρs(y, τ+)ρs(y , τ)ρh(x1, t1)ρh(x2, t2) 0 (60)
12 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur*
Here v(y − y ) = v0δ(y − y ) is the short ranged mutual interaction term. The symbol .. 0 on the RHS
indicates single particle functions. The next step is crucial. We wish to only include the most singular
contributions to the exact first order term in Eq.(60). This involves simply pairing up the densities (as
explained in section 4.1). Using equation (60), the most singular contribution up to the first order in
interaction parameter can be obtained as follows:
T ρh(x1, t1)ρh(x2, t2) 1
= −iv0
C
dτ
∞
−∞
dy T ρh(y, τ)ρh(x1, t1) 0 T ρh(y, τ)ρh(x2, t2) 0 (61)
This has been worked out separately for |R| = 0, |R| = 1 and 0 < |R| < 1 in Appendix B, Appendix C and
Appendix D respectively. In Appendix D, the perturbation series to all orders is exhibited in momentum
and frequency space and is explicitly evaluated up to second order in v0.
6 Conclusions
In this work, the most singular contributions of the slow part of the density density correlation functions
of a Luttinger liquid with short-range forward scattering mutual interactions in presence of static scalar
impurities has been rigorously shown to be expressible in terms of elementary functions of positions and
times. This formula has simple second order poles (when the 2-point functions are seen as functions of the
complex variable τ = t − t ). Furthermore, it only involves the bare reflection and transmission coefficients
of a single fermion in presence of the localised impurities.
In chiral bosonization, the 2-point Green functions in presence of impurities are discontinuous functions
of the short-range forward scattering strength. This means in presence of impurities, the full asymptotic
Green functions for weak short-range forward scattering are qualitatively (discontinuously) different from
the corresponding quantities for no short-range forward scattering. This is the origin of the “cutting the
chain” and “healing the chain” metaphors applicable for repulsive and attractive short-range forward scat-
tering respectively.
However NCBT only yields the most singular part of the asymptotic Green functions. This attribute
exhibits a behaviour complementary to the what is seen in the full Green function. The most singular part
of the 2-point Green functions are discontinuous functions of the impurity strength in presence of short-
range forward scattering between fermions. This means the NCBT Green functions with weak impurities
are qualitatively (ie. discontinuously) different from the corresponding quantity for no impurities.
This is the main reason why the results of chiral bosonization and NCBT cannot be easily compared
with one another as they are fully complementary. The only exception is for a fully homogeneous system
or its antithesis viz. the half line where the two results coincide.
APPENDIX A: Fourier transform
In the main text, we are required to show that equation (8) may be recovered from equation (13) and
equation (14). For this we are required to make sense of integrals such as (x = x and x, x = 0),
I0(x − x ) =
q
e−iq(x−x ) 2q2
vF
w2
n + (qvF )2 (A.1)
and
I1(x) =
q
e−iqx 2vF q
w2
n + (qvF )2 (A.2)
We write,
I0(x − x ) =
q
e−iq(x−x )
(
q
iwn + (qvF )
+
q
−iwn + (qvF )
) (A.3)
Set X = x − x . Then,
I0(X) = i
d
dX q
e−iqX
(
1
iwn + (qvF )
+
1
−iwn + (qvF )
) = i
d
dX
I1(X) (A.4)
and
I1(x) =
q
e−iqx
(
1
iwn + (qvF )
+
1
−iwn + (qvF )
) = −
iL sgn(x) e
− |wn| |x|
vF
vF
(A.5)
Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 13
Now,
I1(X > 0) = −
iL e
− |wn| X
vF
vF
; I1(X < 0) =
iL e
|wn| X
vF
vF
(A.6)
and
I0(X > 0) = −
|wn|
vF
L e
− |wn| X
vF
vF
; I0(X < 0) = −
|wn|
vF
L e
|wn| X
vF
vF
(A.7)
or
I0(X) = −
L |wn|
v2
F
e
− |wn| |X|
vF (A.8)
Finally we are called upon to transform the Matsubara frequency to (imaginary) time.
J0(x) =
n
e−wnτ
I0(x) ; J1(x) =
n
e−wnτ
I1(x) (A.9)
or,
J0(X) = −
n
e−wnτ L |wn|
v2
F
e
− |wn| |X|
vF ; J1(x) = −
n
e−wnτ iL sgn(x) e
− |wn| |x|
vF
vF
or,
J0(X) =
β
2π
0
−∞
dwn e−wnτ Lwn
v2
F
e
wn |X|
vF −
β
2π
∞
0
dwn e−wnτ Lwn
v2
F
e
− wn |X|
vF
J1(x) = −
β
2π
0
−∞
dwn e−wnτ iL sgn(x) e
wn |x|
vF
vF
−
β
2π
∞
0
dwn e−wnτ iL sgn(x) e
− wn |x|
vF
vF
or,
J0(X) =
β
2π
0
−∞
dwn e−wnτ Lwn
v2
F
e
wn |X|
vF −
β
2π
∞
0
dwn e−wnτ Lwn
v2
F
e
− wn |X|
vF
J1(x) = −
β
2π
0
−∞
dwn e−wnτ iL sgn(x) e
wn |x|
vF
vF
−
β
2π
∞
0
dwn e−wnτ iL sgn(x) e
− wn |x|
vF
vF
or,
J0(X) = −
βL
2π(|X| − τvF )2
−
βL
2π(|X| + τvF )2 (A.10)
J1(x) =
βiL sgn(x)
2π(τvF − |x|)
−
βiL sgn(x)
2π(|x| + τvF )
(A.11)
Thus equation (40) is just some combination of these functions J0, J1.
APPENDIX B: Perturbative comparison for |R| = 0 case
T ρa(x1, t1)ρa(x2, t2) =
vF
2π2va
ν=±1
−
1
(x1 − x2 + νva(t1 − t2))2 (B.1)
where a = n or h,
vh = v2
F +
2vF v0
π
(B.2)
vn = vF
T ρn(x1, t1)ρn(x2, t2) =
1
2π2
ν=±1
−
1
(x1 − x2 + νvF (t1 − t2))2 (B.3)
and T ρn(x1, t1)ρh(x2, t2) = 0. This means T ρn(x1, t1)ρn(x2, t2) 1
= 0.
On the one hand
Simply expanding the full final answer equation (B.1) to first power in v0 we get,
T ρh(x1, t1)ρh(x2, t2) 1
=
v0
2π3vF
(
2vF (t1 − t2)
((t1 − t2)vF + x1 − x2)3
+
2vF (t1 − t2)
((t1 − t2)vF − x1 + x2)3
+
1
((t1 − t2)vF + x1 − x2)2
+
1
((t1 − t2)vF − x1 + x2)2
)
(B.4)
14 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur*
On the other hand
Using standard perturbation and retaining the most singular terms we get,
T ρh(x1, t1)ρh(x2, t2) 1
= (−i)v0
C
dτ
∞
−∞
dy T ρh(y, τ)ρh(x1, t1) 0 T ρh(y, τ)ρh(x2, t2) 0 (B.5)
But,
T ρh(x1, t1)ρh(x2, t2) 0 =
1
2π2
ν=±1
−
1
(x1 − x2 + νvF (t1 − t2))2 (B.6)
Hence,
T ρh(x1, t1)ρh(x2, t2) 1
= (−i)v0
C
dτ
∞
−∞
dy
1
4π4(−vF (τ − t1) − x1 + y)2(vF (τ − t2) − x2 + y)2
+ (−i)v0
C
dτ
∞
−∞
dy
1
4π4(vF (τ − t1) − x1 + y)2(−vF (τ − t2) − x2 + y)2
+ (−i)v0
C
dτ
∞
−∞
dy
1
4π4(−vF (τ − t1) − x1 + y)2(−vF (τ − t2) − x2 + y)2
+ (−i)v0
C
dτ
∞
−∞
dy
1
4π4(vF (τ − t1) − x1 + y)2(vF (τ − t2) − x2 + y)2
Hence,
T ρh(x1, t1)ρh(x2, t2) 1
= (−i)v0
C
dτ
1
4π4
4πi
(−vF (τ − t1) − x1 − vF (τ − t2) + x2)3
(θ(−(τ − t1))θ(−(τ − t2)) − θ(τ − t1)θ(τ − t2))
+ (−i)v0
C
dτ
1
4π4
4πi
(vF (τ − t1) − x1 + vF (τ − t2) + x2)3
(θ(τ − t1)θ(τ − t2) − θ(−(τ − t1))θ(−(τ − t2))
+ (−i)v0
C
dτ
1
4π4
4πi
(−vF (τ − t1) − x1 + vF (τ − t2) + x2)3
(θ(−(τ − t1))θ(τ − t2) − θ(τ − t1)θ(−(τ − t2)))
+ (−i)v0
C
dτ
1
4π4
4πi
(vF (τ − t1) − x1 − vF (τ − t2) + x2)3
(θ(τ − t1)θ(−(τ − t2)) − θ(−(τ − t1))θ(τ − t2))
Specifically consider t1 > t2 (t1 is on the lower contour and t2 is on the upper contour). In this case,
θ(−(τ − t1))θ(−(τ − t2)) − θ(τ − t1)θ(τ − t2) = θ(−(τ − t2)) − θ(τ − t1)
θ(τ − t1)θ(τ − t2) − θ(−(τ − t1))θ(−(τ − t2)) = θ(τ − t1) − θ(−(τ − t2))
θ(−(τ − t1))θ(τ − t2) − θ(τ − t1)θ(−(τ − t2)) = θ(−(τ − t1))θ(τ − t2)
θ(τ − t1)θ(−(τ − t2)) − θ(−(τ − t1))θ(τ − t2) = −θ(−(τ − t1))θ(τ − t2)
or,
T ρh(x1, t1)ρh(x2, t2) 1
= (−i)v0
C
dτ
1
4π4
4πi
(−vF (τ − t1) − x1 − vF (τ − t2) + x2)3
(θ(−(τ − t2)) − θ(τ − t1))
+ (−i)v0
C
dτ
1
4π4
4πi
(vF (τ − t1) − x1 + vF (τ − t2) + x2)3
(θ(τ − t1) − θ(−(τ − t2)))
+ (−i)v0
C
dτ
1
4π4
4πi
(−vF (τ − t1) − x1 + vF (τ − t2) + x2)3
(θ(−(τ − t1))θ(τ − t2))
+ (−i)v0
C
dτ
1
4π4
4πi
(vF (τ − t1) − x1 − vF (τ − t2) + x2)3
(−θ(−(τ − t1))θ(τ − t2))
or,
T ρh(x1, t1)ρh(x2, t2) 1
= (−i)v0
1
4π4
(
t2
−∞
dτ −
−∞
t1
dτ)
4πi
(−vF (τ − t1) − x1 − vF (τ − t2) + x2)3
+ (−i)v0
1
4π4
(
−∞
t1
dτ −
t2
−∞
dτ)
4πi
(vF (τ − t1) − x1 + vF (τ − t2) + x2)3
+ (−i)v0
1
4π4
t1
t2
dτ
4πi
(−vF (τ − t1) − x1 + vF (τ − t2) + x2)3
+ (−i)v0
1
4π4
(−
t1
t2
dτ)
4πi
(vF (τ − t1) − x1 − vF (τ − t2) + x2)3
Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 15
Or,
T ρh(x1, t1)ρh(x2, t2) 1
= (−i)v0
1
4π4
(
iπ
vF (t1vF − t2vF + x1 − x2)2
+
iπ
vF (t1vF − t2vF − x1 + x2)2
)
+ (−i)v0
1
4π4
(
iπ
vF (t1vF − t2vF + x1 − x2)2
+
iπ
vF (t1vF − t2vF − x1 + x2)2
)
+ (−i)v0
1
4π4
4πi
(x2 − x1 + vF (t1 − t2))3
(t1 − t2)
+ (−i)v0
1
4π4
4πi
(x2 − x1 − vF (t1 − t2))3
(−(t1 − t2))
Or,
T ρh(x1, t1)ρh(x2, t2) 1
=
v0
2π3vF
2vF (t1 − t2)
((t1 − t2)vF + x1 − x2)3
+
2vF (t1 − t2)
((t1 − t2)vF − x1 + x2)3
+
1
((t1 − t2)vF + x1 − x2)2
+
1
((t1 − t2)vF − x1 + x2)2
(B.7)
equation (B.7) matches with the earlier result equation (B.4).
APPENDIX C: Perturbative comparison for |R| = 1 case
T ρh(x1, t1)ρh(x2, t2) =
vF
2π2vh ν=±1
−
1
(x1 − x2 + νvh(t1 − t2))2
−
vF
vh
sgn(x1)sgn(x2) Zh
(|x1| + |x2| + νvh(t1 − t2))2
(C.1)
Zh =
1
1 − 4v0vF
(vh+vF )vh
1
(2π)
; vh = v2
F +
2v0vF
π (C.2)
Expanding to first power of v0 we get,
T ρh(x1, t1)ρh(x2, t2) ≈
−
1
2π2
(
sgn(x1)sgn(x2)
(|x1| + |x2| + vF (t1 − t2))2
+
sgn(x1)sgn(x2)
(|x1| + |x2| − vF (t1 − t2))2
+
1
(x1 − x2 + vF (t1 − t2))2
+
1
(x1 − x2 − vF (t1 − t2))2
)
+
v0
2π3vF
sgn(x1)sgn(x2)
1
(|x1| + |x2| + vF (t1 − t2))2
+
1
(|x1| + |x2| − vF (t1 − t2))2
+
2vF (t1 − t2)
(|x1| + |x2| + vF (t1 − t2))3
−
2vF (t1 − t2)
(|x1| + |x2| − vF (t1 − t2))3
−
2vF (t1 − t2)
(x1 − x2 − vF (t1 − t2))3
+
2vF (t1 − t2)
(x1 − x2 + vF (t1 − t2))3
+
1
(x1 − x2 + vF (t1 − t2))2
+
1
(x1 − x2 − vF (t1 − t2))2
Or,
δ T ρh(x1, t1)ρh(x2, t2) ≈
θ(x1x2)
v0
2π3vF
(
1
(x1 + x2 + vF (t1 − t2))2
+
1
(x1 + x2 − vF (t1 − t2))2
+
1
(x1 − x2 + vF (t1 − t2))2
+
1
(x1 − x2 − vF (t1 − t2))2
)
+θ(x1x2)
v0
2π3vF
(
2vF (t1 − t2)
(x1 + x2 + vF (t1 − t2))3
−
2vF (t1 − t2)
(x1 + x2 − vF (t1 − t2))3
−
2vF (t1 − t2)
(x1 − x2 − vF (t1 − t2))3
+
2vF (t1 − t2)
(x1 − x2 + vF (t1 − t2))3
)
(C.3)
On the other hand, using standard perturbation and retaining the most singular terms we get,
T ρh(x1, t1)ρh(x2, t2) 1
= (−i)v0
C
dτ
∞
−∞
dy T ρh(y, τ)ρh(x1, t1) 0 T ρh(y, τ)ρh(x2, t2) 0 (C.4)
This means,
16 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur*
T ρh(x1, t1)ρh(x2, t2) 1
= (−i)v0
C
dτ
0
−∞
dy
1
2π2
−sgn(x1)
(−y + |x1| + vF (τ − t1))2
+
−sgn(x1)
(−y + |x1| − vF (τ − t1))2
+
1
(y − x1 + vF (τ − t1))2
+
1
(y − x1 − vF (τ − t1))2
1
2π2
−sgn(x2)
(−y + |x2| + vF (τ − t2))2
+
−sgn(x2)
(−y + |x2| − vF (τ − t2))2
+
1
(y − x2 + vF (τ − t2))2
+
1
(y − x2 − vF (τ − t2))2
+ (−i)v0
C
dτ
∞
0
dy
1
2π2
sgn(x1)
(y + |x1| + vF (τ − t1))2
+
sgn(x1)
(y + |x1| − vF (τ − t1))2
+
1
(y − x1 + vF (τ − t1))2
+
1
(y − x1 − vF (τ − t1))2
1
2π2
sgn(x2)
(y + |x2| + vF (τ − t2))2
+
sgn(x2)
(y + |x2| − vF (τ − t2))2
+
1
(y − x2 + vF (τ − t2))2
+
1
(y − x2 − vF (τ − t2))2
This means,
T ρh(x1, t1)ρh(x2, t2) 1
= (−i)v0 θ(−x1)θ(−x2)
C
dτ
0
−∞
dy
1
2π2
1
(−y − x1 + vF (τ − t1))2
+
1
(−y − x1 − vF (τ − t1))2
+
1
(y − x1 + vF (τ − t1))2
+
1
(y − x1 − vF (τ − t1))2
1
2π2
1
(−y − x2 + vF (τ − t2))2
+
1
(−y − x2 − vF (τ − t2))2
+
1
(y − x2 + vF (τ − t2))2
+
1
(y − x2 − vF (τ − t2))2
+ (−i)v0 θ(x1)θ(x2)
C
dτ
∞
0
dy
1
2π2
1
(y + x1 + vF (τ − t1))2
+
1
(y + x1 − vF (τ − t1))2
+
1
(y − x1 + vF (τ − t1))2
+
1
(y − x1 − vF (τ − t1))2
1
2π2
1
(y + x2 + vF (τ − t2))2
+
1
(y + x2 − vF (τ − t2))2
+
1
(y − x2 + vF (τ − t2))2
+
1
(y − x2 − vF (τ − t2))2
This means,
T ρh(x1, t1)ρh(x2, t2) 1
= (−i)v0 θ(x1x2) ∂x1 ∂x2
C
dτ
0
−∞
dy
1
4π4
× (
1
(y − x1 − vF (τ − t1))
+
1
(y − x1 + vF (τ − t1))
−
1
(y + x1 − vF (τ − t1))
−
1
(y + x1 + vF (τ − t1))
)
× (
1
(y − x2 − vF (τ − t2))
+
1
(y − x2 + vF (τ − t2))
−
1
(y + x2 − vF (τ − t2))
−
1
(y + x2 + vF (τ − t2))
)
This means,
T ρh(x1, t1)ρh(x2, t2) 1
=
a1,ν1,a2,ν2=±1
(−i)v0 θ(x1x2) ∂x1 ∂x2
C
dτ
0
−∞
dy
1
4π4
a1
(y − a1x1 − ν1vF (τ − t1))
a2
(y − a2x2 − ν2vF (τ − t2))
This also means,
T ρh(x1, t1)ρh(x2, t2) 1
=
a1,ν1,a2,ν2=±1
(−i)v0 θ(x1x2) ∂x1 ∂x2
C
dτ
∞
0
dy
1
4π4
a1
(y − a1x1 − ν1vF (τ − t1))
a2
(y − a2x2 − ν2vF (τ − t2))
This means,
T ρh(x1, t1)ρh(x2, t2) 1
=
a1,ν1,a2,ν2=±1
(−i)
v0
2
θ(x1x2)
C
dτ
∞
−∞
dy
1
4π4
1
(y − a1x1 − ν1vF (τ − t1))2(y − a2x2 − ν2vF (τ − t2))2
This means,
T ρh(x1, t1)ρh(x2, t2) 1
=
a1,ν1,a2,ν2=±1
(−i)
v0
2
θ(x1x2)
C
dτ
∞
−∞
dy
1
4π4
1
(y − a1x1 − ν1vF (τ − t1))2(y − a2x2 − ν2vF (τ − t2))2
(C.5)
Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 17
T ρh(x1, t1)ρh(x2, t2) 1
=
a1,ν1,a2,ν2=±1
(−i)
v0
2
θ(x1x2)
C
dτ
1
4π4
4πi
(−a1x1 − ν1vF (τ − t1) − (−a2x2 − ν2vF (τ − t2)))3
× (θ(−Im[−ν1(τ − t1)])θ(Im[−ν2(τ − t2)]) − θ(Im[−ν1(τ − t1)])θ(−Im[−ν2(τ − t2)]))
(C.6)
T ρh(x1, t1)ρh(x2, t2) 1
=
a1,ν1,a2,ν2=±1
(−i)
v0
2
θ(x1x2)
C
dτ
1
4π4
4πi
(−a1x1 − ν1vF (τ − t1) − (−a2x2 − ν2vF (τ − t2)))3
(θC (−ν1(τ − t1))θC (ν2(τ − t2)) − θC (ν1(τ − t1))θC (−ν2(τ − t2)))
T ρh(x1, t1)ρh(x2, t2) 1
=
a1,a2,ν=±1
(−i)
v0
2
θ(x1x2)
C
dτ
1
4π4
4πi
(−a1x1 + a2x2 + νvF (t1 − t2))3
(θC (−ν(τ − t1))θC (ν(τ − t2)) − θC (ν(τ − t1))θC (−ν(τ − t2)))
+
a1,a2,ν=±1
(−i)
v0
2
θ(x1x2)
C
dτ
1
4π4
4πi
(−a1x1 + a2x2 + νvF (t1 + t2) − 2νvF τ)3
(θC (−ν(τ − t1))θC (−ν(τ − t2)) − θC (ν(τ − t1))θC (ν(τ − t2)))
T ρh(x1, t1)ρh(x2, t2) 1
=
a1,a2=±1
(−i)
v0
2
θ(x1x2)
C
dτ
1
4π4
4πi
(−a1x1 + a2x2 + vF (t1 − t2))3
(θC (−(τ − t1))θC (τ − t2) − θC (τ − t1)θC (−(τ − t2)))
+
C
dτ
1
4π4
4πi
(−a1x1 + a2x2 − vF (t1 − t2))3
(θC (τ − t1)θC (−(τ − t2)) − θC (−(τ − t1))θC (τ − t2))
+
C
dτ
1
4π4
4πi
(−a1x1 + a2x2 − vF (t1 + t2) + 2vF τ)3
(θC (τ − t1)θC (τ − t2) − θC (−(τ − t1))θC (−(τ − t2)))
+
C
dτ
1
4π4
4πi
(−a1x1 + a2x2 + vF (t1 + t2) − 2vF τ)3
(θC (−(τ − t1))θC (−(τ − t2)) − θC (τ − t1)θC (τ − t2)
If t1 > t2,
T ρh(x1, t1)ρh(x2, t2) 1
=
a1,a2=±1
(−i)
v0
2
θ(x1x2)
1
4π4
4πi
(−a1x1 + a2x2 + vF (t1 − t2))3
(
t1
t2
dτ)
+
a1,a2=±1
(−i)
v0
2
θ(x1x2)
1
4π4
4πi
(−a1x1 + a2x2 − vF (t1 − t2))3
(−
t1
t2
dτ)
+
a1,a2=±1
(−i)
v0
2
θ(x1x2)
1
4π4
(−
t1
−∞
dτ −
t2
−∞
dτ)
4πi
(−a1x1 + a2x2 − vF (t1 + t2) + 2vF τ)3
+
a1,a2=±1
(−i)
v0
2
θ(x1x2)
1
4π4
(
t2
−∞
dτ +
t1
−∞
dτ)
4πi
(−a1x1 + a2x2 + vF (t1 + t2) − 2vF τ)3
(C.7)
T ρh(x1, t1)ρh(x2, t2) 1
=
a1,a2=±1
(−i)
v0
2
θ(x1x2)
1
4π4
4πi
(−a1x1 + a2x2 + vF (t1 − t2))3
(t1 − t2)
+
a1,a2=±1
(−i)
v0
2
θ(x1x2)
1
4π4
4πi
(−a1x1 + a2x2 − vF (t1 − t2))3
(t2 − t1)
+
a1,a2=±1
(−i)
v0
2
θ(x1x2)
1
4π4
(−
t1
−∞
dτ −
t2
−∞
dτ)
4πi
(−a1x1 + a2x2 − vF (t1 + t2) + 2vF τ)3
+
a1,a2=±1
(−i)
v0
2
θ(x1x2)
1
4π4
(
t2
−∞
dτ +
t1
−∞
dτ)
4πi
(−a1x1 + a2x2 + vF (t1 + t2) − 2vF τ)3
(C.8)
18 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur*
T ρh(x1, t1)ρh(x2, t2) 1
=
a1,a2=±1
(−i)v0 θ(x1x2)
1
4π4
4πi
(−a1x1 + a2x2 + vF (t1 − t2))3
(t1 − t2)
+
a1,a2=±1
(−i)v0 θ(x1x2)
1
4π4
(
iπ
vF (a1x1 − a2x2 + t1vF − t2vF )2
+
iπ
vF (−a1x1 + a2x2 + t1vF − t2vF )2
)
(C.9)
T ρh(x1, t1)ρh(x2, t2) 1
=
a1,a2=±1
v0
2π3vF
θ(x1x2)
2vF (t1 − t2)
(−a1x1 + a2x2 + vF (t1 − t2))3
+
1
(a1x1 − a2x2 + vF (t1 − t2))2
(C.10)
Hence equation (C.3) matches with equation (C.10)
APPENDIX D: Perturbative comparison for 0 < |R| < 1 case
The conventional method of performing perturbation expansion is the S-matrix method viz. ρs(x1, t1) =
ρs(x1, ↑, t1) + ρs(x1, ↓, t1),
< T ρs(x1, t1)ρs(x2, t2) > =
< T S ρs(x1, t1)ρs(x2, t2) >0
< T S >0
= < T ρs(x1, t1)ρs(x2, t2) >0 −i
C
dt < T Hfs(t) ρs(x1, t1)ρs(x2, t2) >0,c
+
(−i)2
2 C
dt
C
dt < T Hfs(t)Hfs(t ) ρs(x1, t1)ρs(x2, t2) >0,c
(D.1)
where S = e−i C dt Hfs(t)
where Hfs is given by equation (10). Retaining only the most singular terms,
< T ρs(x1, t1)ρs(x2, t2) >=< T ρs(x1, t1)ρs(x2, t2) >0 −iv0
C
dt dy < T ρs(x1, t1)ρs(y, t) >0< T ρs(y, t)ρs(x2, t2) >0
+ v2
0(−i)2
C
dt
C
dt dy dz < T ρs(x1, t1)ρs(z, t) >0 < T ρs(z, t)ρs(y, t ) >0 < T ρs(y, t )ρs(x2, t2) >0 +....
(D.2)
Since we are going beyond leading order, it is more convenient to work in momentum and frequency space.
< T ρs(x1, t1)ρs(x2, t2) >=
1
L2
q,q ,n
e−iqx1
e−iq x2
e−wn(t1−t2)
< ρq,n;.ρq ,−n;. > (D.3)
Thus the most singular parts are captured by the following perturbation series,
< ρq,n;.ρq ,−n;. > = < ρq,n;.ρq ,−n;. >0 −
v0β
L
Q
< ρq,n;.ρQ ,−n;. >0< ρ−Q ,n;.ρq ,−n;. >0
+
v2
0β2
L2
Q ,Q
< ρq,n;.ρQ ,−n;. >0< ρ−Q ,n;.ρQ ,−n;. >0< ρ−Q ,n;.ρq ,−n;. >0 +....
(D.4)
NCBT says that when the above series is summed to all orders we get,
< ρq,n;.ρq ,−n;. >= δq+q ,0
L
β
2vF q2
π(w2
n + (qvh)2)
+
|wn|
πβ
|R|2
1 − (vh−vF )
vh
|R|2
(2vF q)(2vF q )
(w2
n + (q vh)2) (w2
n + (qvh)2)
(D.5)
where vh = v2
F + 2v0vF
π . However when vh = vF (no short-range forward scattering between fermions),
< ρq,n;.ρq ,−n;. >0 = δq+q ,0
L
β
2vF q2
π(w2
n + (qvF )2)
+
|wn|
πβ
|R|2 (2vF q)(2vF q )
(w2
n + (q vF )2) (w2
n + (qvF )2)
(D.6)
Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 19
Here we want to verify that this is consistent upto second order. The resummation to all orders has already
been done using the generating function method in the main text. The series equation (D.4) may be
evaluated as follows:
The term proportional to v0 in < ρq,n;.ρq ,−n;. > − < ρq,n;.ρq ,−n;. >0 in the series equation (D.4) is:
−
4Lq2
q 2
v0v2
F δ0,q+q
π2β q2v2
F + w2
n q 2v2
F + w2
n
+
L
∞
−∞
16qq2
1 q |R|4
v0v4
F |wn|2
π2βL(q2v2
F +w2
n)(q2
1 v2
F +w2
n)2
(q 2v2
F +w2
n)
dq1
2π
−
8qq 3
|R|2
v0v3
F |wn|
π2β q2v2
F + w2
n q 2v2
F + w2
n
2
−
8q3
q |R|2
v0v3
F |wn|
π2β q2v2
F + w2
n
2
q 2v2
F + w2
n
(D.7)
This simplifies to,
T1 = −
4qq v0vF Lqq vF (q2
v2
F +w2
n) q 2
v2
F +w2
n δ0,q+q
−|R|2
|wn| q2
q 2
(|R|2
−4)v4
F +(|R|2
−2)v2
F w2
n q2
+q 2
+|R|2
w4
n
π2β q2v2
F + w2
n
2
q 2v2
F + w2
n
2
(D.8)
The term proportional to v2
0 in < ρq,n;.ρq ,−n;. > − < ρq,n;.ρq ,−n;. >0 in the series equation (D.4) is:
8Lq2q4v2
0v3
F δ0,q+q
π3β q2v2
F + w2
n q2v2
F + w2
n q2v2
F + w2
n
+
L
2π
2 ∞
−∞
∞
−∞
64qq Q 2Q 2|R|6v2
0v6
F |wn|3
π3βL2 q2v2
F + w2
n q 2v2
F + w2
n Q 2v2
F + w2
n
2
Q 2v2
F + w2
n
2
dQ dQ
−
L
2π
∞
−∞
32qq Q 3Q |R|4v2
0v5
F |wn|2
π3βL q2v2
F + w2
n q 2v2
F + w2
n Q 2v2
F + w2
n
2
Q 2v2
F + w2
n
dQ
+
L
2π
∞
−∞
32q2(−q)q Q 2|R|4v2
0v5
F |wn|2
π3βL q2v2
F + w2
n q2v2
F + w2
n q 2v2
F + w2
n Q 2v2
F + w2
n
2
dQ
−
L
2π
∞
−∞
32qq 3Q 2|R|4v2
0v5
F |wn|2
π3βL q2v2
F + w2
n q 2v2
F + w2
n
2
Q 2v2
F + w2
n
2
dQ
−
16q2(−q)3q |R|2v2
0v4
F |wn|
π3β q2v2
F + w2
n q2v2
F + w2
n q2v2
F + w2
n q 2v2
F + w2
n
+
16qq 3q 2|R|2v2
0v4
F |wn|
π3β q2v2
F + w2
n q 2v2
F + w2
n
2
q 2v2
F + w2
n
−
16q2(−q)q 3|R|2v2
0v4
F |wn|
π3β q2v2
F + w2
n q2v2
F + w2
n q 2v2
F + w2
n
2
(D.9)
This simplifies to,
T2 =
2qq v2
0
π3β(q2v2
F + w2
n)3(q 2v2
F + w2
n)3
4Lq2
q 2
v3
F (q2
v2
F + w2
n)(q 2
v2
F + w2
n)(qq v2
F − w2
n)δ0,q+q
+ |R|2
|wn| (q4
q 4
(|R|2
(2|R|2
− 11) + 24)v8
F + 2q2
q 2
(|R|2
(2|R|2
− 9) + 12)v6
F w2
n(q2
+ q 2
)
+ 2|R|2
(2|R|2
− 5)v2
F w6
n(q2
+ q 2
) + v4
F w4
n((|R|2
(2|R|2
− 7) + 8)(q4
+ q 4
)
+ 4q2
q 2
(|R|2
(2|R|2
− 7) + 2)) + |R|2
(2|R|2
− 3)w8
n)
(D.10)
It is easy to verify that both T1 and T2 may also be obtained by simply expanding equation (D.5) in powers
of v0 and retaining upto order v2
0.
APPENDIX E: Derivation of formulas for the parameters of the generalized Hamiltonian (VR, VL, V1, V ∗
1 )
in terms of T, R
H0 = − i vF dx (ψ†
R(x)∂xψR(x) − ψ†
L(x)∂xψL(x)) + VRψ†
R(0)ψR(0) + VLψ†
L(0)ψL(0)
+ V1 ψ†
R(0)ψL(0) + V ∗
1 ψ†
L(0)ψR(0)
(E.1)
20 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur*
Note that we may write V1 = |V1| eiδ
. This phase may be absorbed by a redefinition of the fields ψR(x) →
eiδ
ψR(x) for example. This means V1 can be chosen to be real without loss of generality.
< T ψν(x, t)ψ†
ν
(x , t ) > =
Γν,ν
(x, x )
νx − ν x − vF (t − t )
(E.2)
and
Γν,ν
(x, x ) =
γ,γ =±1
θ(γx)θ(γ x ) gγ,γ (ν, ν ) (E.3)
i∂t < ψν(x, t)ψ†
ν
(x , t ) > = i vF
Γν,ν
(x, x )
(νx − ν x − vF (t − t ))2
(E.4)
i∂t < ψν(x, t)ψ†
ν
(x , t ) > = < [ψν(x, t), H0]ψ†
ν
(x , t ) > (E.5)
or
i∂t < ψν (x, t)ψ†
ν
(x , t ) > = − i vF ν < ∂xψν (x, t)ψ†
ν
(x , t ) >
+ < [ψν (x, t), VRψ†
R(0)ψR(0)]ψ†
ν
(x , t ) > + < [ψν (x, t), VLψ†
L(0)ψL(0)]ψ†
ν
(x , t ) >
+ < [ψν (x, t), V1 ψ†
R(0)ψL(0)]ψ†
ν
(x , t ) > + < [ψν (x, t), V ∗
1 ψ†
L(0)ψR(0)]ψ†
ν
(x , t ) >
or
i vF
Γν,ν (x, x )
(νx − ν x − vF (t − t ))2
= i vF
Γν,ν (x, x )
(νx − ν x − vF (t − t ))2
− i vF ν
[∂xΓν,ν (x, x )]
νx − ν x − vF (t − t )
+ δν,1δ(x) VR < ψR(0, t)ψ†
ν
(x , t ) > +VLδν,−1δ(x) < ψL(0, t)ψ†
ν
(x , t ) >
+ V1δ(x)δν,1 < ψL(0, t)ψ†
ν
(x , t ) > +V ∗
1 δν,−1δ(x) < ψR(0, t)ψ†
ν
(x , t ) >
or
0 = − i vF ν
γ,γ =±1
δ(x)γθ(γ x ) gγ,γ
(ν, ν )
νx − ν x − vF (t − t )
+ δν,1δ(x) VR
Γ1,ν (0, x )
−ν x − vF (t − t )
+ VLδν,−1δ(x)
Γ−1,ν (0, x )
−ν x − vF (t − t )
+ V1δ(x)δν,1
Γ−1,ν (0, x )
−ν x − vF (t − t )
+ V ∗
1 δν,−1δ(x)
Γ1,ν (0, x )
−ν x − vF (t − t )
or
0 = − i vF ν
γ,γ =±1 δ(x)γθ(γ x ) gγ,γ (ν, ν )
−ν x − vF (t − t )
+ δν,1δ(x) VR
γ,γ =±1
1
2 θ(γ x ) gγ,γ (1, ν )
−ν x − vF (t − t )
+ VLδν,−1δ(x)
γ,γ =±1
1
2 θ(γ x ) gγ,γ (−1, ν )
−ν x − vF (t − t )
+ V1δ(x)δν,1
γ,γ =±1
1
2 θ(γ x ) gγ,γ (−1, ν )
−ν x − vF (t − t )
+ V ∗
1 δν,−1δ(x)
γ,γ =±1
1
2 θ(γ x ) gγ,γ (1, ν )
−ν x − vF (t − t )
or
0 =
γ=±1
(−i vF ν γ gγ,γ (ν, ν ) + δν,1 VR
1
2
gγ,γ (1, ν ) + VLδν,−1
1
2
gγ,γ (−1, ν )
+ V1δν,1
1
2
gγ,γ (−1, ν ) + V ∗
1 δν,−1
1
2
gγ,γ (1, ν ))
The above equation gives,
VR = VL =
2i vF (T − T∗
)
2TT∗ + T + T∗
V1 = V ∗
1 = −
4i vF R∗
T
2TT∗ + T + T∗
=
4i vF RT∗
2TT∗ + T + T∗
(E.6)
This automatically means
−R∗
T = RT∗
(E.7)
Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 21
References
1. Aristov, D.: Luttinger liquids with curvature: Density correlations and coulomb drag effect. Physical Review B 76(8),
085327 (2007)
2. Artemenko, S.N., Remizov, S.: Low-temperature conductivity of quasi-one-dimensional conductors: Luttinger liquid
stabilized by impurities. Physical Review B 72(12), 125118 (2005)
3. Caux, J.S., Calabrese, P.: Dynamical density-density correlations in the one-dimensional bose gas. Physical Review A
74(3), 031605 (2006)
4. Das, J.P., Chowdhury, C., Setlur, G.S.: Nonchiral bosonization of strongly inhomogeneous luttinger liquids. Theoretical
and Mathematical Physics 199(2), 736–760 (2019)
5. Das, J.P., Setlur, G.S.: The quantum steeplechase. International Journal of Modern Physics A p. 1850174 (2018)
6. Dinh, S.N., Bagrets, D.A., Mirlin, A.D.: Tunneling into a nonequilibrium luttinger liquid with impurity. Physical
Review B 81(8), 081306 (2010)
7. Ejima, S., Fehske, H.: Luttinger parameters and momentum distribution function for the half-filled spinless fermion
holstein model: A dmrg approach. EPL (Europhysics Letters) 87(2), 27001 (2009)
8. Freyn, A., Florens, S.: Numerical renormalization group at marginal spectral density: Application to tunneling in
luttinger liquids. Physical Review Letters 107(1), 017201 (2011)
9. Gambetta, F., Ziani, N.T., Cavaliere, F., Sassetti, M.: Correlation functions for the detection of wigner molecules in a
one-channel luttinger liquid quantum dot. EPL (Europhysics Letters) 107(4), 47010 (2014)
10. Giamarchi, T.: Quantum Physics in One dimension. Clarendon Oxford (2004)
11. Grishin, A., Yurkevich, I.V., Lerner, I.V.: Functional integral bosonization for an impurity in a luttinger liquid. Physical
Review B 69(16), 165108 (2004)
12. Haldane, F.: Demonstration of the luttinger liquid character of bethe-ansatz-soluble models of 1-d quantum fluids.
Physics Letters A 81(2-3), 153–155 (1981)
13. Haldane, F.: ’luttinger liquid theory’of one-dimensional quantum fluids. i. properties of the luttinger model and their
extension to the general 1d interacting spinless fermi gas. Journal of Physics C: Solid State Physics 14(19), 2585 (1981)
14. Hamamoto, Y., Imura, K.I., Kato, T.: Numerical study of transport through a single impurity in a spinful tomonaga–
luttinger liquid. Physical Review B 77(16), 165402 (2008)
15. Iucci, A., Fiete, G.A., Giamarchi, T.: Fourier transform of the 2 k f luttinger liquid density correlation function with
different spin and charge velocities. Physical Review B 75(20), 205116 (2007)
16. Kainaris, N., Carr, S.T., Mirlin, A.D.: Transmission through a potential barrier in luttinger liquids with a topological
spin gap. Physical Review B 97(11), 115107 (2018)
17. Kane, C., Fisher, M.P.: Resonant tunneling in an interacting one-dimensional electron gas. Physical Review B 46(11),
7268 (1992)
18. Kane, C., Fisher, M.P.: Transmission through barriers and resonant tunneling in an interacting one-dimensional electron
gas. Physical Review B 46(23), 15233 (1992)
19. Kane, C., Fisher, M.P.: Transport in a one-channel luttinger liquid. Physical Review Letters 68(8), 1220 (1992)
20. Lo, C.Y., Fukusumi, Y., Oshikawa, M., Kao, Y.J., Chen, P., et al.: Crossover of correlation functions near a quantum
impurity in a tomonaga-luttinger liquid. Physical Review B 99(12), 121103 (2019)
21. Matveev, K., Yue, D., Glazman, L.: Tunneling in one-dimensional non-luttinger electron liquid. Physical Review Letters
71(20), 3351 (1993)
22. Moon, K., Yi, H., Kane, C., Girvin, S., Fisher, M.P.: Resonant tunneling between quantum hall edge states. Physical
Review Letters 71(26), 4381 (1993)
23. Parola, A., Sorella, S.: Asymptotic spin-spin correlations of the u one-dimensional hubbard model. Physical Review
Letters 64(15), 1831 (1990)
24. Protopopov, I., Gutman, D., Mirlin, A.: Many-particle correlations in a non-equilibrium luttinger liquid. Journal of
Statistical Mechanics: Theory and Experiment 2011(11), P11001 (2011)
25. Qin, S., Fabrizio, M., Yu, L.: Impurity in a luttinger liquid: A numerical study of the finite-size energy spectrum and
of the orthogonality catastrophe exponent. Physical Review B 54(14), R9643 (1996)
26. Rylands, C., Andrei, N.: Quantum impurity in a luttinger liquid: Exact solution of the kane-fisher model. Physical
Review B 94(11), 115142 (2016)
27. Samokhin, K.: Lifetime of excitations in a clean luttinger liquid. Journal of Physics: Condensed Matter 10(31), L533
(1998)
28. Schulz, H.: Wigner crystal in one dimension. Physical Review Letters 71(12), 1864 (1993)
29. Sen, D., Bhaduri, R.: Density-density correlations in a luttinger liquid: Lattice approximation in the calogero-sutherland
model. Canadian Journal of Physics 77(5), 327–341 (1999)
30. Stephan, W., Penc, K.: Dynamical density-density correlations in one-dimensional mott insulators. Physical Review B
54(24), R17269 (1996)
31. Von Delft, J., Schoeller, H.: Bosonization for beginners refermionization for experts. Annalen der Physik 7(4), 225–305
(1998)

More Related Content

What's hot

Order of a reaction 2302
Order of a reaction 2302Order of a reaction 2302
Order of a reaction 2302
Prawin Ddy
 
New chm 152 unit 1 power points sp13
New chm 152 unit 1 power points sp13New chm 152 unit 1 power points sp13
New chm 152 unit 1 power points sp13
caneman1
 
1204.5674v1
1204.5674v11204.5674v1
1204.5674v1
Uttam M Shrestha
 
Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...
Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...
Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...
IOSRJAP
 
summer-project-developing-solvation-model
summer-project-developing-solvation-modelsummer-project-developing-solvation-model
summer-project-developing-solvation-model
Alex Gheorghiu
 
Dimension Analysis in Fluid mechanics
Dimension Analysis in Fluid mechanics Dimension Analysis in Fluid mechanics
Dimension Analysis in Fluid mechanics
Ravaliya Nirmal
 
Buckingham's theorem
Buckingham's  theoremBuckingham's  theorem
Buckingham's theorem
MuhammadNomanAslam3
 
Miscibility and Thermodynamics of Polymer Blends
Miscibility and Thermodynamics of Polymer BlendsMiscibility and Thermodynamics of Polymer Blends
Miscibility and Thermodynamics of Polymer Blends
Abhinand Krishna
 
Order reaction , s.j.shah
Order reaction , s.j.shahOrder reaction , s.j.shah
Order reaction , s.j.shah
sahilhusen
 
Similitude and Dimensional Analysis -Hydraulics engineering
Similitude and Dimensional Analysis -Hydraulics engineering Similitude and Dimensional Analysis -Hydraulics engineering
Similitude and Dimensional Analysis -Hydraulics engineering
Civil Zone
 
Dimensional analysis
Dimensional analysisDimensional analysis
Dimensional analysis
Ronak Parmar
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
Edhole.com
 
Relationship between hansch analysis and free wilson analysis
Relationship between hansch analysis and free wilson analysisRelationship between hansch analysis and free wilson analysis
Relationship between hansch analysis and free wilson analysis
KomalJAIN122
 
DIMENSIONAL ANALYSIS (Lecture notes 08)
DIMENSIONAL ANALYSIS (Lecture notes 08)DIMENSIONAL ANALYSIS (Lecture notes 08)
DIMENSIONAL ANALYSIS (Lecture notes 08)
Shekh Muhsen Uddin Ahmed
 
Energy gateway.blogspot.com-chemical kinetics-complete note
Energy gateway.blogspot.com-chemical kinetics-complete noteEnergy gateway.blogspot.com-chemical kinetics-complete note
Energy gateway.blogspot.com-chemical kinetics-complete note
BidutSharkarShemanto
 
Solving kinetics problems
Solving kinetics problemsSolving kinetics problems
Solving kinetics problems
North East ISD
 
Quantative Structure-Activity Relationships (QSAR)
Quantative Structure-Activity Relationships (QSAR)Quantative Structure-Activity Relationships (QSAR)
Quantative Structure-Activity Relationships (QSAR)
Atai Rabby
 
1 s2.0-s0927775715001314-main
1 s2.0-s0927775715001314-main1 s2.0-s0927775715001314-main
1 s2.0-s0927775715001314-main
Nestor Posada
 
Rate equations
Rate equationsRate equations
Rate equations
dhmcmillan
 
10. fm dimensional analysis adam
10. fm dimensional analysis adam10. fm dimensional analysis adam
10. fm dimensional analysis adam
Zaza Eureka
 

What's hot (20)

Order of a reaction 2302
Order of a reaction 2302Order of a reaction 2302
Order of a reaction 2302
 
New chm 152 unit 1 power points sp13
New chm 152 unit 1 power points sp13New chm 152 unit 1 power points sp13
New chm 152 unit 1 power points sp13
 
1204.5674v1
1204.5674v11204.5674v1
1204.5674v1
 
Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...
Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...
Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...
 
summer-project-developing-solvation-model
summer-project-developing-solvation-modelsummer-project-developing-solvation-model
summer-project-developing-solvation-model
 
Dimension Analysis in Fluid mechanics
Dimension Analysis in Fluid mechanics Dimension Analysis in Fluid mechanics
Dimension Analysis in Fluid mechanics
 
Buckingham's theorem
Buckingham's  theoremBuckingham's  theorem
Buckingham's theorem
 
Miscibility and Thermodynamics of Polymer Blends
Miscibility and Thermodynamics of Polymer BlendsMiscibility and Thermodynamics of Polymer Blends
Miscibility and Thermodynamics of Polymer Blends
 
Order reaction , s.j.shah
Order reaction , s.j.shahOrder reaction , s.j.shah
Order reaction , s.j.shah
 
Similitude and Dimensional Analysis -Hydraulics engineering
Similitude and Dimensional Analysis -Hydraulics engineering Similitude and Dimensional Analysis -Hydraulics engineering
Similitude and Dimensional Analysis -Hydraulics engineering
 
Dimensional analysis
Dimensional analysisDimensional analysis
Dimensional analysis
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
 
Relationship between hansch analysis and free wilson analysis
Relationship between hansch analysis and free wilson analysisRelationship between hansch analysis and free wilson analysis
Relationship between hansch analysis and free wilson analysis
 
DIMENSIONAL ANALYSIS (Lecture notes 08)
DIMENSIONAL ANALYSIS (Lecture notes 08)DIMENSIONAL ANALYSIS (Lecture notes 08)
DIMENSIONAL ANALYSIS (Lecture notes 08)
 
Energy gateway.blogspot.com-chemical kinetics-complete note
Energy gateway.blogspot.com-chemical kinetics-complete noteEnergy gateway.blogspot.com-chemical kinetics-complete note
Energy gateway.blogspot.com-chemical kinetics-complete note
 
Solving kinetics problems
Solving kinetics problemsSolving kinetics problems
Solving kinetics problems
 
Quantative Structure-Activity Relationships (QSAR)
Quantative Structure-Activity Relationships (QSAR)Quantative Structure-Activity Relationships (QSAR)
Quantative Structure-Activity Relationships (QSAR)
 
1 s2.0-s0927775715001314-main
1 s2.0-s0927775715001314-main1 s2.0-s0927775715001314-main
1 s2.0-s0927775715001314-main
 
Rate equations
Rate equationsRate equations
Rate equations
 
10. fm dimensional analysis adam
10. fm dimensional analysis adam10. fm dimensional analysis adam
10. fm dimensional analysis adam
 

Similar to Ddcf

QIT_part_III_essay_Named
QIT_part_III_essay_NamedQIT_part_III_essay_Named
QIT_part_III_essay_Named
Ali Farznahe Far
 
Calculando o tensor de condutividade em materiais topológicos
Calculando o tensor de condutividade em materiais topológicosCalculando o tensor de condutividade em materiais topológicos
Calculando o tensor de condutividade em materiais topológicos
Vtonetto
 
Electronic structure of strongly correlated materials
Electronic structure of strongly correlated materialsElectronic structure of strongly correlated materials
Electronic structure of strongly correlated materials
ABDERRAHMANE REGGAD
 
Double General Point Interactions Symmetry and Tunneling Times
Double General Point Interactions Symmetry and Tunneling TimesDouble General Point Interactions Symmetry and Tunneling Times
Double General Point Interactions Symmetry and Tunneling Times
Molly Lee
 
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
Liwei Ren任力偉
 
A multiphase lattice Boltzmann model with sharp interfaces
A multiphase lattice Boltzmann model with sharp interfacesA multiphase lattice Boltzmann model with sharp interfaces
A multiphase lattice Boltzmann model with sharp interfaces
Tim Reis
 
0504006v1
0504006v10504006v1
0504006v1
Mikhail Kopytin
 
Final Report 201045581
Final Report 201045581Final Report 201045581
Final Report 201045581
Roseanne Clement
 
Nature16059
Nature16059Nature16059
Nature16059
Lagal Tchixa
 
ResearchStatementCapps2
ResearchStatementCapps2ResearchStatementCapps2
ResearchStatementCapps2
Jeremy Capps
 
Dynamics of Twointeracting Electronsinthree-Dimensional Lattice
Dynamics of Twointeracting Electronsinthree-Dimensional LatticeDynamics of Twointeracting Electronsinthree-Dimensional Lattice
Dynamics of Twointeracting Electronsinthree-Dimensional Lattice
IOSR Journals
 
Khalid elhasnaoui DR Version final (groupe LPPPC)
Khalid elhasnaoui DR Version final (groupe LPPPC)Khalid elhasnaoui DR Version final (groupe LPPPC)
Khalid elhasnaoui DR Version final (groupe LPPPC)
Khalid El Hasnaoui
 
Excitons, lifetime and Drude tail within the current~current response framew...
Excitons, lifetime and Drude tail  within the current~current response framew...Excitons, lifetime and Drude tail  within the current~current response framew...
Excitons, lifetime and Drude tail within the current~current response framew...
Claudio Attaccalite
 
10.1.1.31.6238ghhj.pdf
10.1.1.31.6238ghhj.pdf10.1.1.31.6238ghhj.pdf
10.1.1.31.6238ghhj.pdf
JahanTejarat
 
Phase locking in chains of multiple-coupled oscillators
Phase locking in chains of multiple-coupled oscillatorsPhase locking in chains of multiple-coupled oscillators
Phase locking in chains of multiple-coupled oscillators
Liwei Ren任力偉
 
International journal of engineering and mathematical modelling vol2 no1_2015_2
International journal of engineering and mathematical modelling vol2 no1_2015_2International journal of engineering and mathematical modelling vol2 no1_2015_2
International journal of engineering and mathematical modelling vol2 no1_2015_2
IJEMM
 
Probing spin dynamics from the Mott insulating to the superfluid regime in a ...
Probing spin dynamics from the Mott insulating to the superfluid regime in a ...Probing spin dynamics from the Mott insulating to the superfluid regime in a ...
Probing spin dynamics from the Mott insulating to the superfluid regime in a ...
Arijit Sharma
 
writingsamplecritiquenew
writingsamplecritiquenewwritingsamplecritiquenew
writingsamplecritiquenew
Pamela Benet
 
San Diego 2009
San Diego 2009San Diego 2009
San Diego 2009
kumarajiva
 
Dr khalid elhasnaoui 2
Dr khalid elhasnaoui 2Dr khalid elhasnaoui 2
Dr khalid elhasnaoui 2
Khalid El Hasnaoui
 

Similar to Ddcf (20)

QIT_part_III_essay_Named
QIT_part_III_essay_NamedQIT_part_III_essay_Named
QIT_part_III_essay_Named
 
Calculando o tensor de condutividade em materiais topológicos
Calculando o tensor de condutividade em materiais topológicosCalculando o tensor de condutividade em materiais topológicos
Calculando o tensor de condutividade em materiais topológicos
 
Electronic structure of strongly correlated materials
Electronic structure of strongly correlated materialsElectronic structure of strongly correlated materials
Electronic structure of strongly correlated materials
 
Double General Point Interactions Symmetry and Tunneling Times
Double General Point Interactions Symmetry and Tunneling TimesDouble General Point Interactions Symmetry and Tunneling Times
Double General Point Interactions Symmetry and Tunneling Times
 
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
 
A multiphase lattice Boltzmann model with sharp interfaces
A multiphase lattice Boltzmann model with sharp interfacesA multiphase lattice Boltzmann model with sharp interfaces
A multiphase lattice Boltzmann model with sharp interfaces
 
0504006v1
0504006v10504006v1
0504006v1
 
Final Report 201045581
Final Report 201045581Final Report 201045581
Final Report 201045581
 
Nature16059
Nature16059Nature16059
Nature16059
 
ResearchStatementCapps2
ResearchStatementCapps2ResearchStatementCapps2
ResearchStatementCapps2
 
Dynamics of Twointeracting Electronsinthree-Dimensional Lattice
Dynamics of Twointeracting Electronsinthree-Dimensional LatticeDynamics of Twointeracting Electronsinthree-Dimensional Lattice
Dynamics of Twointeracting Electronsinthree-Dimensional Lattice
 
Khalid elhasnaoui DR Version final (groupe LPPPC)
Khalid elhasnaoui DR Version final (groupe LPPPC)Khalid elhasnaoui DR Version final (groupe LPPPC)
Khalid elhasnaoui DR Version final (groupe LPPPC)
 
Excitons, lifetime and Drude tail within the current~current response framew...
Excitons, lifetime and Drude tail  within the current~current response framew...Excitons, lifetime and Drude tail  within the current~current response framew...
Excitons, lifetime and Drude tail within the current~current response framew...
 
10.1.1.31.6238ghhj.pdf
10.1.1.31.6238ghhj.pdf10.1.1.31.6238ghhj.pdf
10.1.1.31.6238ghhj.pdf
 
Phase locking in chains of multiple-coupled oscillators
Phase locking in chains of multiple-coupled oscillatorsPhase locking in chains of multiple-coupled oscillators
Phase locking in chains of multiple-coupled oscillators
 
International journal of engineering and mathematical modelling vol2 no1_2015_2
International journal of engineering and mathematical modelling vol2 no1_2015_2International journal of engineering and mathematical modelling vol2 no1_2015_2
International journal of engineering and mathematical modelling vol2 no1_2015_2
 
Probing spin dynamics from the Mott insulating to the superfluid regime in a ...
Probing spin dynamics from the Mott insulating to the superfluid regime in a ...Probing spin dynamics from the Mott insulating to the superfluid regime in a ...
Probing spin dynamics from the Mott insulating to the superfluid regime in a ...
 
writingsamplecritiquenew
writingsamplecritiquenewwritingsamplecritiquenew
writingsamplecritiquenew
 
San Diego 2009
San Diego 2009San Diego 2009
San Diego 2009
 
Dr khalid elhasnaoui 2
Dr khalid elhasnaoui 2Dr khalid elhasnaoui 2
Dr khalid elhasnaoui 2
 

Recently uploaded

Tissue fluids_etiology_volume regulation_pressure.pptx
Tissue fluids_etiology_volume regulation_pressure.pptxTissue fluids_etiology_volume regulation_pressure.pptx
Tissue fluids_etiology_volume regulation_pressure.pptx
muralinath2
 
Microbiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdfMicrobiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdf
sammy700571
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
Sérgio Sacani
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
University of Hertfordshire
 
Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
PirithiRaju
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
Sérgio Sacani
 
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDSJAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
Sérgio Sacani
 
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Sérgio Sacani
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
PirithiRaju
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
Leonel Morgado
 
The cost of acquiring information by natural selection
The cost of acquiring information by natural selectionThe cost of acquiring information by natural selection
The cost of acquiring information by natural selection
Carl Bergstrom
 
8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
by6843629
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
vluwdy49
 
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
Scintica Instrumentation
 
fermented food science of sauerkraut.pptx
fermented food science of sauerkraut.pptxfermented food science of sauerkraut.pptx
fermented food science of sauerkraut.pptx
ananya23nair
 
Immersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths ForwardImmersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths Forward
Leonel Morgado
 
Compexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titrationCompexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titration
Vandana Devesh Sharma
 
23PH301 - Optics - Optical Lenses.pptx
23PH301 - Optics  -  Optical Lenses.pptx23PH301 - Optics  -  Optical Lenses.pptx
23PH301 - Optics - Optical Lenses.pptx
RDhivya6
 
Direct Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart AgricultureDirect Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart Agriculture
International Food Policy Research Institute- South Asia Office
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
hozt8xgk
 

Recently uploaded (20)

Tissue fluids_etiology_volume regulation_pressure.pptx
Tissue fluids_etiology_volume regulation_pressure.pptxTissue fluids_etiology_volume regulation_pressure.pptx
Tissue fluids_etiology_volume regulation_pressure.pptx
 
Microbiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdfMicrobiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdf
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
 
Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
 
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDSJAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
 
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
 
The cost of acquiring information by natural selection
The cost of acquiring information by natural selectionThe cost of acquiring information by natural selection
The cost of acquiring information by natural selection
 
8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
 
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
 
fermented food science of sauerkraut.pptx
fermented food science of sauerkraut.pptxfermented food science of sauerkraut.pptx
fermented food science of sauerkraut.pptx
 
Immersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths ForwardImmersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths Forward
 
Compexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titrationCompexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titration
 
23PH301 - Optics - Optical Lenses.pptx
23PH301 - Optics  -  Optical Lenses.pptx23PH301 - Optics  -  Optical Lenses.pptx
23PH301 - Optics - Optical Lenses.pptx
 
Direct Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart AgricultureDirect Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart Agriculture
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
 

Ddcf

  • 1. Theoretical and Mathematical Physics manuscript No. (will be inserted by the editor) Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids Nikhil Danny Babu*, Joy Prakash Das † , Girish S. Setlur* Abstract In this work, we show in pedagogical detail that the most singular contributions to the slow part of the asymptotic density-density correlation function of Luttinger liquids with fermions interacting mutually with only short-range forward scattering and also with localised scalar static impurities (where backward scattering takes place) has a compact analytical expression in terms of simple functions that have second order poles and involve only the scale-independent bare transmission and reflection coefficients. This proof uses conventional fermionic perturbation theory resummed to all orders, together with the idea that for such systems, the (connected) moments of the density operator all vanish beyond the second order - the odd ones vanish identically and the higher order even moments are less singular than the second order moment which is the only one included. This important result is the crucial input to the recently introduced “Non-Chiral Bosonization Technique” (NCBT) to study such systems. The results of NCBT cannot be easily compared with the results obtained using conventional bosonization as the former only extracts the most singular parts of the correlation functions albeit for arbitrary impurity strengths and mutual interactions. The latter, ambitiously attempts to study all the parts of the asymptotic correlation functions and is thereby unable to find simple analytical expressions and is forced to operate in the vicinity of the homogeneous system or the half line (the opposite extreme). For a fully homogeneous system or its antithesis viz. the half-line, all the higher order connected moments of the density vanish identically which means the results of chiral bosonization and NCBT ought to be the same and indeed they are. Keywords Luttinger Liquid · Correlation functions · Bosonization PACS 71.10.Pm, 73.21.Hb, 11.15.Tk 1 Introduction The presence of impurities in one dimensional systems continues to be a challenging problem in quantum many body physics [19,2,6,16,20,18,17]. A good number of analytical [11,21,19,18,27] and numerical ap- proaches [25,14,8,7,22] have made their mark in the long history of strongly correlated 1D systems. Kane and Fisher in their seminal works [19,18] have shown how the nature of the electron-electron interactions( i.e repulsive or attractive) affect the transport properties across barriers or constrictions in a single-channel Luttinger liquid. They elucidated that for repulsive interactions the electrons are always reflected by a weak link and for attractive interactions the electrons are transmitted even through a strong barrier. In [17] they studied the effect of electron interactions on resonant tunneling in presence of a double barrier and showed that the resonances are of non-Lorentzian line shapes with a width that vanishes as T → 0, in striking contrast to the noninteracting one dimensional electron gas. However,the exact analytical expressions of the correlation functions of such systems with arbitrary strength of mutual interactions and in presence of a scatterer of arbitrary strength are yet to be a part of the literature. Nevertheless, the attempts to reach this central goal of calculating the most general result has led to many peripheral results where the arbitrariness of one or more parameters had to be compromised. The most prevalent analytical tool to deal with these systems, which belong to the universal class of Luttinger liquids [13], is bosonization where a fermion field operator is expressed as the exponential of a bosonic field [10,31]. However the results of this method are exact only for the extreme cases of very weak impurity and very strong impurity (apart from some isolated examples such as the Bethe ansatz solutions [26,12]) and to deal with the general result one has to rely on perturbative approach in terms of the impurity strength (or inter-chain hopping in the other extreme) and renormalize the series to obtain a finite answer [19]. A recently developed alternative to this, which goes by the name ‘Non chiral bosonization technique (NCBT)’, does a better job of avoiding RG methods and tackling impurities of arbitrary strengths [5, † Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Center for Basic Sciences Block-JD, Sector-III, Salt Lake, Kolkata 700098, India *Department of Physics, Indian Institute of Technology Guwahati Guwahati, Assam 781039, India E-mail: gsetlur@iitg.ac.in
  • 2. 2 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur* 4]. But it can yield only the most singular part of the Green functions. On the other hand, Matveev et al. [21] dealt with impurities of arbitrary strengths using fermionic renormalization only and without using bosonization methods. However, their results are valid only for weak strengths of mutual interactions be- tween the fermions. The study of the density correlations of a Luttinger liquid is important, which is well reflected in the liter- ature. Iucci et al. obtained a closed-form analytical expression for the zero-temperature Fourier transform of the 2kF component of the density-density correlation function in a spinful Luttinger liquid [15]. Schulz studied the density correlations in a one dimensional electron gas interacting with long ranged Coulomb forces and calculated the 4kF component of the density which decays extremely slowly and represents a 1D Wigner crystal [28]. Parola presented an exact analytical evaluation of the asymptotic spin-spin correlations of the 1D Hubbard model with infinite on-site interaction (U → ∞) and away from half filling [23]. Their results suggested that the renormalization-group scaling to the Tomonaga-Luttinger model is exact in the U → ∞ Hubbard model. Stephan et al. calculated the dynamical density-density correlation function for the one-dimensional, half-filled Hubbard model extended with nearest-neighbor repulsion for large on-site repulsion compared to hopping amplitudes [30]. Caux et al. studied the dynamical density density corre- lations in a 1D Bose gas with a delta function interaction using a Bethe-ansatz-based numerical method [3]. Gambetta et al. have done a study of the correlation functions in a one-channel finite size Luttinger liquid quantum dot [9]. Protopopov et al. investigated the four-point correlations of a Luttinger liquid in a non-equilibrium setting [24]. In [29] Sen et al. performed a numerical study of the Luttinger liquid type behaviour of the density-density correlation functions in the lattice Calogero-Sutherland model. Aristov analyzed the modified density-density correlations when curvature in the fermionic dispersion is present [1]. In this work, it is shown that the most singular contributions (precise meaning defined later) of the slow part of the density density correlation functions of a spinful Luttinger liquid (also spinless) with short- range forward scattering mutual interactions in presence of localized static scalar impurities is shown to be expressible in terms of elementary functions of positions and times which involve only second order poles and also involve only the bare reflection and transmission coefficients of a single particle in the presence of these impurities. 2 The Model Consider a quantum system that comprises a 1D gas of electrons with forward scattering short-range mutual interactions and in the presence of a scalar potential V (x) that is localized near an origin. The full generic-Hamiltonian of the system contains three parts and can be written as follows. H = H0 + Himp + Hfs (1) where H0 is the Hamiltonian of free fermions and Himp is that of the impurity (or impurities). This has an asymptotic form in terms of its Green function. Hfs is that of short-range forward scattering mutual interactions between the fermions. Using the linear dispersion relations near the Fermi level (E = EF +kvF ) one can write, H0 = −ivF dx σ=↑,↓ (: ψ† R(x, σ)∂xψR(x, σ) : − : ψ† L(x, σ)∂xψL(x, σ) :) (2) and the impurity Hamiltonian is given to be in Hermitian form as follows (the expression below taken at face value is ill-defined and a regularization procedure is implied as discussed below). Himp =V0 σ=↑,↓ (ψ† R(0, σ)ψR(0, σ) + ψ† L(0, σ)ψL(0, σ)) + V1 σ=↑,↓ ψ† R(0, σ)ψL(0, σ) + V ∗ 1 σ=↑,↓ ψ† L(0, σ)ψR(0, σ) (3) where the subscripts R (ν = +1) and L (ν = −1) are the usual right and left movers. The impurity hamiltonian in equation (3) is ambiguous without proper regularisation. The point of view taken here is that the meaning of equation (3) is indirectly fixed by demanding that the Green function of H0 + Himp be given by equation (4). The Green function of this Hamiltonian H0 + Himp may be written as, < T ψν(x, σ, t)ψ† ν (x , σ , t ) >0 ≡ δσ,σ γ,γ =±1 Gν,ν γ,γ (x, t; x , t ) θ(γx)θ(γ x ) (4) where θ(x > 0) = 1, θ(x < 0) = 0 and θ(0) = 1 2 is Heaviside’s step function. It can be shown that Gν,ν γ,γ (x, t; x , t ) = gγ,γ (ν, ν ) νx − ν x − vF (t − t ) (5)
  • 3. Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 3 The complex numbers gγ,γ (ν, ν ) may be related to V0 and V1, alternatively, to the (bare) transmission (T) and reflection (R) amplitudes. In terms of the reflection and transmission amplitudes, we have gγ1,γ2 (ν1, ν2) = i 2π δν1,ν2 δγ1,γ2 + (Tδν1,ν2 + Rδν1,−ν2 )δγ1,ν1 δγ2,−ν2 + (T∗ δν1,ν2 + R∗ δν1,−ν2 )δγ1,−ν1 δγ2,ν2 (6) These amplitudes may also be related to the details of the impurity potentials. The relation between V0, V1 in equation (3) to the bare transmission and reflection amplitudes is given by (see Appendix E for derivation), V0 = 2i vF (T − T∗ ) 2TT∗ + T + T∗ V1 = V ∗ 1 = − 4i vF R∗ T 2TT∗ + T + T∗ = 4i vF RT∗ 2TT∗ + T + T∗ (7) The slow part of the asymptotic density-density correlation may be written down using Wick’s theorem as (after subtracting the uncorrelated average product: ˜ρs = ρs− < ρs >), < T ˜ρs(x, σ, t)˜ρs(x , σ , t ) >0 = − δσ,σ γ,γ =±1 ν,ν =±1 |gγ,γ (ν, ν )|2 θ(γx)θ(γ x ) (νx − ν x − vF (t − t ))2 = − δσ,σ (2π)2 ( sgn(x1)sgn(x2) |R|2 (vF (t1 − t2) + |x1| + |x2|)2 + sgn(x1)sgn(x2) |R|2 (vF (t1 − t2) − |x1| − |x2|)2 + 1 (vF (t1 − t2) + x1 − x2)2 + 1 (vF (t1 − t2) − x1 + x2)2 ) (8) where, ρs(x, σ, t) = (: ψ† R(x, σ, t)ψR(x, σ, t) : + : ψ† L(x, σ, t)ψL(x, σ, t) :) (9) In the presence of short-range forward scattering given by the additional piece, Hfs = 1 2 σ,σ =↑,↓ dx dx v(x − x ) ρs(x, σ, t)ρs(x , σ , t) (10) it is not possible to write down a simple formula such as equation (8) for the correlation function described there. The reason is because |gγ,γ (ν, ν )|2 involves only the bare reflection and transmission coefficients - but in conventional chiral bosonization, they are renormalized to become scale-dependent. Also there is no guarantee that the function will continue to have simple second order poles as shown in equation (8). The main claim of the non-chiral bosonization technique (NCBT) is that if one is willing to be content at the most singular part of this correlation function then it is indeed possible to write down a simple formula very similar to equation (8) even when short-range forward scattering i.e. equation (10) is present. Furthermore, this most singular contribution will only involve the bare transmission and reflection coefficients as is the case in equation (8). This most singular part of the slowly varying asymptotic density-density correlation (ie. DDCF in presence of equation (10)) is given below and the proof is given in the next section. T ρs(x1, σ1, t1)ρs(x2, σ2, t2) = 1 4 ( T ρh(x1, t1)ρh(x2, t2) + σ1σ2 T ρn(x1, t1)ρn(x2, t2) ) (11) where, T ρh(x1, t1)ρh(x2, t2) = vF 2π2vh ν=±1 − 1 (x1 − x2 + νvh(t1 − t2))2 − vF vh sgn(x1)sgn(x2) |R|2 1− (vh−vF ) vh |R|2 (|x1| + |x2| + νvh(t1 − t2))2 T ρn(x1, t1)ρn(x2, t2) = 1 2π2 ν=±1 − 1 (x1 − x2 + νvF (t1 − t2))2 − sgn(x1)sgn(x2) |R|2 (|x1| + |x2| + νvF (t1 − t2))2 (12) with vh = v2 F + 2v0vF π and σ =↑ (+1) and σ =↓ (−1). One of the main results of NCBT is the assertion that the most singular contribution to < T ˜ρs(x1, σ1, t1)˜ρs(x2, σ2, t2) > in the presence of short-range forward scattering between fermions viz. equation (10) is given by equation (11) and equation (12).
  • 4. 4 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur* 3 Results: Density density correlation function The density density correlation functions (DDCF) in absence of mutual interactions is given by equation (8). This has to be systematically transformed to include mutual interactions. Firstly, the space time DDCF is related to the momentum frequency DDCF as follows (x1 = x2 and x1 = 0 and x2 = 0). < T ρs(x1, t1; σ1)ρs(x2, t2; σ2) >0= 1 L2 q,q ,n e−iqx1 e−iq x2 e−wn(t1−t2) < T ρs(q, n; σ1)ρs(q , −n; σ2) >0 (13) From this we can obtain the DDCF in momentum and frequency space as follows (here β is the inverse temperature which comes into the calculation because of converting summation to integration which is allowed in the zero temperature limit: n f(zn) = β 2π f(z)dz where zn = 2π(n+1) β ). < T ρs(q, n; σ1)ρs(q , −n; σ2) >0 = δσ1,σ2 β (2vF q )(2vF q)|g1,1(1, −1)|2 |wn|(2π) ((vF q)2 + w2 n)((vF q )2 + w2 n) + δσ1,σ2 β 2q2 vF w2 n + (qvF )2 δq+q ,0 L (2π) (14) In Appendix A we show how to recover equation (8) from equation (13) and equation (14). Now the generating function for an auxiliary field U in presence of mutual interactions between particles given by v(x1 − x2) can be written as Z[U] = D[ρ]eiSeff,0[ρ] e q,n,σ ρq,n,σUq,n,σ e−i −iβ 0 dt dx1 dx2 1 2 v(x1−x2)ρ(x1,t1;.)ρ(x2,t1;.) (15) where S0 is the action of free fermions and ρ(x1, t1; .) = 1 L q,n e−iqx ewnt ρq,n;. v(x1 − x2) = 1 L Q e−iQ(x1−x2) vQ ρ(x1, t1; .) = ρ(x1, t1; ↑) + ρ(x1, t1; ↓) Thus the generating function can be written as follows. Z[U] = D[ρ]eiSeff,0[ρ] e q,n,σ ρq,n,σUq,n,σ e− q,n βv0 2L ρq,n;.ρ−q,−n;. (16) If one denotes the generating function in absence of interactions as Z0, then Z0[U] = D[ρ]eiSeff,0[ρ] e q,n,σ ρq,n,σUq,n,σ ⇒eiSeff,0[ρ] = D[U ]e− q,n,σ ρq,n,σUq,n,σ Z0[U ] Inserting in equation (16), Z[U] = D[ρ] D[U ] Z0[U ] e q,n,σ ρq,n,σ(Uq,n,σ−Uq,n,σ) e− q,n βv0 2L ρq,n;.ρ−q,−n;. (17) Set, ρq,n,σ = 1 2 ρq,n;. + 1 2 σ σq,n ; Uq,n,σ = 1 2 Uq,n;. + 1 2 σ Wq,n ; Uq,n,σ = 1 2 Uq,n;. + 1 2 σ Wq,n (18) Using these relations the generating function can be written as Z[U] = D[ρ] D[U ] Z0[U ] e 1 4 q,n,σ(ρq,n;.+σ σq,n)((Uq,n;.−Uq,n;.)+σ (Wq,n−Wq,n)) e− q,n βv0 2L ρq,n;.ρ−q,−n;. (19) where in the RPA sense (for the homogeneous system, this choice corresponds to RPA, for the present steeplechase problem this choice corresponds to the most singular truncation of the RPA generating func- tion) Z0[U ] = e 1 2 q,q ,n;σ <ρq,nρq ,−n >0 Uq,n;σU q ,−n;σ (20)
  • 5. Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 5 where < ρq,nρq ,−n >0 is equation (14) with σ1 = σ2. It is to be noted that we have neglected the higher moments of ρ in Z0[U ] beyond the quadratic as they are less singular than the second moment (see section 4.1). Now, Z[U] = D[ρ] D[U ] e 1 2 q,q ,n;σ <ρq,nρq ,−n >0 1 4 (Uq,n;.+σ Wq,n)(U q ,−n;. +σ W q ,−n ) e 1 4 q,n,σ(ρq,n;.+σ σq,n)((Uq,n;.−Uq,n;.)+σ (Wq,n−Wq,n)) e− q,n βv0 2L ρq,n;.ρ−q,−n;. = D[U ] e 1 2 q,q ,n <ρq,nρq ,−n >0 1 2 (Uq,n;.U q ,−n;. +Wq,nW q ,−n ) D[ρ] e 1 2 q,n(ρq,n;.(Uq,n;.−Uq,n;.)+σq,n(Wq,n−Wq,n)) e− q,n βv0 2L ρq,n;.ρ−q,−n;. = D[U ] e 1 4 q,q ,n <ρq,nρq ,−n >0 Wq,nWq ,−n e 1 4 q,q ,n <ρq,nρq ,−n >0 Uq,n;.U q ,−n;. D[ρ] e 1 2 q,n ρq,n;.(Uq,n;.−Uq,n;.) e− q,n βv0 2L ρq,n;.ρ−q,−n;. The last result follows from the extremum condition viz. ρ−q,−n;. = L 2βv0 (Uq,n;. − Uq,n;.) (21) Thus (including only the holon part), Z[U] = D[U ] e 1 4 q,q ,n <ρq,nρq ,−n >0 Uq,n;.U q ,−n;. e 1 4 q,n L 2βv0 (U−q,−n;.−U−q,−n;.)(Uq,n;.−Uq,n;.) (22) The integration has to be done using the saddle point method. This involves finding the extremum of the log of the integrand with respect to U which leads to the answer we are looking for. This means, q < ρq,nρq ,−n >0 Uq ,−n;. − L 2βv0 (U−q,−n;. − U−q,−n;.) = 0 (23) Hence, β < ρq,nρq ,−n >0= (2vF q )(2vF q) ((vF q)2 + w2 n)((vF q )2 + w2 n) |g1,1(1, −1)|2 |wn|(2π) + 2q2 vF w2 n + (qvF )2 δq+q ,0 L (2π) (24) This means, (2vF q) ((vF q)2 + w2 n) q (2vF q ) ((vF q )2 + w2 n) Uq ,−n;.|g1,1(1, −1)|2 |wn|(2π) + 2q2 vF w2 n + (qvF )2 U−q,−n;. L (2π) − L 2v0 (U−q,−n;. − U−q,−n;.) = 0 (25) Let, 1 L q (2vF q ) ((vF q )2 + w2 n) Uq ,−n;. = un (26) or, (2vF q) ((vF q)2 + w2 n) unL|g1,1(1, −1)|2 |wn|(2π) + 2q2 vF w2 n + (qvF )2 U−q,−n;. L (2π) − L 2v0 (U−q,−n;. − U−q,−n;.) = 0 or, L 2v0 + L (2π) 2q2 vF w2 n + (qvF )2 U−q,−n;. = − (2vF q) ((vF q)2 + w2 n) unL|g1,1(1, −1)|2 |wn|(2π) + L 2v0 U−q,−n;. This means, U−q,−n;. = − (2vF q) ((vF q)2 + w2 n) unL|g1,1(1, −1)|2 |wn|(2π) L 2v0 + L (2π) 2q2vF w2 n+(qvF )2 + L 2v0 U−q,−n;. L 2v0 + L (2π) 2q2vF w2 n+(qvF )2 (27)
  • 6. 6 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur* Set v2 = v2 F + 2vF v0 π . U−q,−n;. = −(2vF q) un2v0|g1,1(1, −1)|2 |wn|(2π) (w2 n + (qv)2) + (w2 n + (qvF )2 )U−q,−n;. (w2 n + (qv)2) (28) Hence, un 1 L q (2vF q )2 ((vF q )2 + w2 n)(w2 n + (q v)2) 2v0|g1,1(1, −1)|2 |wn|(2π) + 1 L q (2vF q )Uq ,−n;. (w2 n + (q v)2) = un (29) Hence, un = 1 L q (2vF q )Uq ,−n;. 1 − 4v0vF (v+vF )v |g1,1(1, −1)|2(2π) (w2 n + (q v)2) (30) or, q < ρq,nρq ,−n >0 Uq ,−n;. − L 2βv0 (U−q,−n;. − U−q,−n;.) = 0 (31) Hence, Z[U] = e 1 4 q,n L 2βv0 (U−q,−n;.−U−q,−n;.)Uq,n;. (32) U−q,−n;. − U−q,−n;. = 1 L q (2vF q )Uq ,−n;. 1 − 4v0vF (v+vF )v |g1,1(1, −1)|2(2π) (w2 n + (q v)2) (2vF q) 2v0|g1,1(1, −1)|2 |wn|(2π) (w2 n + (qv)2) + U−q,−n;. (qv)2 − (qvF )2 w2 n + (qv)2 (33) But we had Z[U] = D[U ] e 1 4 q,q ,n <ρq,nρq ,−n >0 Uq,n;.U q ,−n;. e 1 4 q,n L 2βv0 (U−q,−n;.−U−q,−n;.)(Uq,n;.−Uq,n;.) This means Z[U] =e q,n L 8βv0 Uq,n;.U−q,−n;. (qvh)2−(qvF )2 w2 n+(qvh)2 e q,n L 8βv0 1 L q (2vF q )Uq,n;.U q ,−n;. 1− 4v0vF (vh+vF )vh |g1,1(1,−1)|2(2π) (w2 n+(q vh)2 ) (2vF q) 2v0|g1,1(1,−1)|2|wn|(2π) (w2 n+(qvh)2) (34) Here, vh = v2 F + 2vF v0 π (35) Since we have, ρq,n;. = ρq,n;↑ + ρq,n;↓ ; σq,n = ρq,n;↑ − ρq,n;↓ (36) Thus, 1 4 < ρq,n;.ρq ,−n;. > = δq+q ,0 L 4β 2vF q2 π(w2 n + (qvh)2) + 1 2β (2vF q)(2vF q )|g1,1(1, −1)|2 |wn|(2π) 1 − (vh−vF ) vh |g1,1(1, −1)|2(2π)2 (w2 n + (q vh)2) (w2 n + (qvh)2) (37) 1 4 < σq,nσq ,−n > = (2vF q )(2vF q) 2β((vF q)2 + w2 n)((vF q )2 + w2 n) |g1,1(1, −1)|2 |wn|(2π) + q2 vF L 2πβ(w2 n + (qvF )2) δq+q ,0 < σq,nρq ,−n;. > = 0 (38)
  • 7. Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 7 Finally, the full density density correlation functions in momentum frequency space can be written as, < ρq,n,σρq ,−n,σ >= 1 4 < ρq,n;.ρq ,−n;. > + 1 4 σσ < σq,nσq ,−n > (39) Doing an inverse Fourier transform of the above we get the DDCF in real space time. <T ρs(x1, t1; σ)ρs(x2, t2; σ ) >= − v2 F v4 h sgn(x1)sgn(x2)   β 2π 1 [(t1 − t2) + |x1|+|x2| vh ]2 + β 2π 1 [(t1 − t2) − |x1|+|x2| vh ]2   1 2β |g1,1(1, −1)|2(2π) 1 − 4v0vF (vh+vF )vh |g1,1(1, −1)|2(2π) − sgn(x1)sgn(x2) v2 F   β 2π 1 [(t1 − t2) + |x1|+|x2| vF ]2 + β 2π 1 [(t1 − t2) − |x1|+|x2| vF ]2   1 2β |g1,1(1, −1)|2 (2πσσ ) − vF 4πβv3 h   β 2π 1 [(t1 − t2) + |x1−x2| vh ]2 + β 2π 1 [(t1 − t2) − |x1−x2| vh ]2   − σσ 4πβv2 F   β 2π 1 [(t1 − t2) + |x1−x2| vF ]2 + β 2π 1 [(t1 − t2) − |x1−x2| vF ]2   (40) One can separate the holon and spinon parts of the DDCF and write as follows. T ρh(x1, t1)ρh(x2, t2) = vF 2π2vh ν=±1 − 1 (x1 − x2 + νvh(t1 − t2))2 − vF vh sgn(x1)sgn(x2) |R|2 1− (vh−vF ) vh |R|2 (|x1| + |x2| + νvh(t1 − t2))2 T ρn(x1, t1)ρn(x2, t2) = 1 2π2 ν=±1 − 1 (x1 − x2 + νvF (t1 − t2))2 − sgn(x1)sgn(x2) |R|2 (|x1| + |x2| + νvF (t1 − t2))2 (41) The full density density correlation functions can thus be written in a compact form as follows. T ρs(x1, σ1, t1)ρs(x2, σ2, t2) = 1 4 ( T ρh(x1, t1)ρh(x2, t2) + σ1σ2 T ρn(x1, t1)ρn(x2, t2) ) (42) 4 Discussion We have said repeatedly that equation (41) and equation (42) displays the central result of this work, viz., the most singular part of the density density correlation function of the generic Hamiltonian given in equation (1). In this section, the key aspects of this result are discussed. 4.1 Gaussian approximation In equation (20), it is seen that only the quadratic moment of ρ in the Z0[U ] is included, neglecting all the higher moments. The reason for this is the following. The connected parts of the odd moments ρ vanish identically (in the RPA limit) and that of the even moments are less singular than the second moment, etc. For example, the connected 4-density function, < Tρ(x1)ρ(x2)ρ(x3)ρ(x4) >c ∼ < Tψ(x1)ψ∗ (x2) >< Tψ(x2)ψ∗ (x3) >< Tψ(x3)ψ∗ (x4) >< Tψ(x4)ψ∗ (x1) > + permutations (43) has only first order poles and no second order poles. The NCBT does not claim to provide the asymptotic Green functions of strongly inhomogeneous interacting Fermi systems exactly but it does claim to provide the most singular part of the asymptotic Green functions of strongly inhomogeneous interacting Fermi systems exactly. However this is not the case for the homogeneous systems (|R| = 0) and half-lines (|R| = 1) where both the even and the odd moments higher than the quadratic moment of density functions vanishes. Hence for these extreme cases, the density density correlation functions are not just the most singular part but the full story. To prove this, a quantity ‘∆’ is defined as follows. ∆ ≡ < T ρs(x1, σ1, t1)ρs(x2, σ2, t2)ρs(x3, σ3, σ3, t3)ρs(x4, σ4, t4) >0 − < T ρs(x1, σ1, t1)ρs(x2, σ2, t2) >0 < T ρs(x3, σ3, t3)ρs(x4, σ4, t4) >0 − < T ρs(x1, σ1, t1)ρs(x3, σ3, t3) >0 < T ρs(x2, σ2, t2)ρs(x4, σ4, t4) >0 − < T ρs(x1, σ1, t1)ρs(x4, σ4, t4) >0 < T ρs(x2, σ2, t2)ρs(x3, σ3, t3) >0 (44)
  • 8. 8 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur* If ∆ = 0 it means Wick’s theorem is applicable at the level of pairs of fermions which makes the Gaussian theory valid. So now, the question is whether ∆ is zero or not. Expanding the above expression using conventional Wick’s theorem and using the form of the Green function shown in equation (4) we have the following results for various cases. Case I: All four points on same side (x1 > 0, x2 > 0, x3 > 0, x4 > 0) We have ρs(x, σ, t) =: ψ† R(x, σ, t)ψR(x, σ, t) + ψ† L(x, σ, t)ψL(x, σ, t) : where :: represents normal ordering. For this case we obtain, < T ρs(x1, σ, t1)ρs(x2, σ, t2)ρs(x3, σ, t3)ρs(x4, σ, t4) >c = |R|2|T|2 2π4 × 1 ((t3 − t1)vF + x1 + x3)((t3 − t2)vF + x2 + x3)((t4 − t1)vF + x1 + x4)((t4 − t2)vF + x2 + x4) + 1 ((t1 − t2)vF + x1 + x2)((t3 − t2)vF + x2 + x3)((t1 − t4)vF + x1 + x4)((t3 − t4)vF + x3 + x4) + 1 ((t2 − t1)vF + x1 + x2)((t3 − t1)vF + x1 + x3)((t2 − t4)vF + x2 + x4)((t3 − t4)vF + x3 + x4) + 1 ((t2 − t1)vF + x1 + x2)((t2 − t3)vF + x2 + x3)((t4 − t1)vF + x1 + x4)((t4 − t3)vF + x3 + x4) + 1 ((t1 − t2)vF + x1 + x2)((t1 − t3)vF + x1 + x3)((t4 − t2)vF + x2 + x4)((t4 − t3)vF + x3 + x4) + 1 ((t1 − t3)vF + x1 + x3)((t2 − t3)vF + x2 + x3)((t1 − t4)vF + x1 + x4)((t2 − t4)vF + x2 + x4) (45) Case II: Three points on same side (x1 < 0, x2 > 0, x3 > 0, x4 > 0) < T ρs(x1, σ, t1)ρs(x2, σ, t2)ρs(x3, σ, t3)ρs(x4, σ, t4) >c = |R|2|T|2 2π4 × − 1 ((t1 − t3)vF + x1 − x3)((t3 − t2)vF + x2 + x3)((t1 − t4)vF + x1 − x4)((t4 − t2)vF + x2 + x4) − 1 ((t1 − t2)vF − x1 + x2)((t3 − t2)vF + x2 + x3)((t1 − t4)vF − x1 + x4)((t3 − t4)vF + x3 + x4) − 1 ((t1 − t2)vF + x1 − x2)((t1 − t3)vF + x1 − x3)((t2 − t4)vF + x2 + x4)((t3 − t4)vF + x3 + x4) − 1 ((t1 − t2)vF + x1 − x2)((t2 − t3)vF + x2 + x3)((t1 − t4)vF + x1 − x4)((t4 − t3)vF + x3 + x4) − 1 ((t1 − t2)vF − x1 + x2)((t1 − t3)vF − x1 + x3)((t4 − t2)vF + x2 + x4)((t4 − t3)vF + x3 + x4) + 1 ((t3 − t1)vF + x1 − x3)((t2 − t3)vF + x2 + x3)((t1 − t4)vF − x1 + x4)((t2 − t4)vF + x2 + x4) (46)
  • 9. Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 9 Case III: Two points on same side (x1 < 0, x2 < 0, x3 > 0, x4 > 0) < T ρs(x1, σ, t1)ρs(x2, σ, t2)ρs(x3, σ, t3)ρs(x4, σ, t4) >c = |R|2|T|2 4π4 − 1 ((t1 − t3)vF + x1 − x3)((t3 − t2)vF − x2 + x3)((t1 − t4)vF + x1 − x4)((t2 − t4)vF + x2 − x4) − 2 ((t3 − t2)vF + x2 − x3)((t1 − t3)vF − x1 + x3)((t1 − t4)vF − x1 + x4)((t2 − t4)vF − x2 + x4) − 1 ((t2 − t3)vF + x2 − x3)((t3 − t1)vF − x1 + x3)((t1 − t4)vF + x1 − x4)((t2 − t4)vF + x2 − x4) + R∗2T2 4π4 − 1 ((t1 − t2)vF + x1 + x2)((t1 − t3)vF + x1 − x3)((t2 − t4)vF − x2 + x4)((t3 − t4)vF + x3 + x4) − 1 ((t1 − t2)vF + x1 + x2)((t2 − t3)vF − x2 + x3)((t1 − t4)vF + x1 − x4)((t4 − t3)vF + x3 + x4) − 1 ((t2 − t1)vF + x1 + x2)((t1 − t3)vF − x1 + x3)((t2 − t4)vF + x2 − x4)((t4 − t3)vF + x3 + x4) − 1 ((t2 − t1)vF + x1 + x2)((t2 − t3)vF + x2 − x3)((t1 − t4)vF − x1 + x4)((t3 − t4)vF + x3 + x4) + R2T∗2 4π4 − 1 ((t1 − t2)vF + x1 + x2)((t1 − t3)vF + x1 − x3)((t2 − t4)vF − x2 + x4)((t3 − t4)vF + x3 + x4) − 1 ((t1 − t2)vF + x1 + x2)((t2 − t3)vF − x2 + x3)((t1 − t4)vF + x1 − x4)((t4 − t3)vF + x3 + x4) − 1 ((t2 − t1)vF + x1 + x2)((t1 − t3)vF − x1 + x3)((t2 − t4)vF + x2 − x4)((t4 − t3)vF + x3 + x4) − 1 ((t2 − t1)vF + x1 + x2)((t2 − t3)vF + x2 − x3)((t1 − t4)vF − x1 + x4)((t3 − t4)vF + x3 + x4) (47) Now it is easy to see that for all the three possible cases above, the fourth moment of density will vanish when either of |R| or |T| vanishes. Hence the Gaussian theory is exact for a homogeneous system and a half line. For all intermediate cases (0 < |R| < 1), the fourth moment (and similarly the higher even moments) are less singular with first order poles as compared to the second moment which contains second order poles. Also note that all the above cases were done for all the four spins to be identical. If any one of them is different, then all the results on the RHSs of the above cases will also vanish. 4.2 Relation between fast and slow parts of DDCF In the RPA sense, the density ρ(x, σ, t) may be “harmonically analysed” as follows. ρ(x, σ, t) = ρs(x, σ, t) + e2ikF x ρf (x, σ, t) + e−2ikF x ρ∗ f (x, σ, t) (48) Here ρs and ρf are the slowly varying and the rapidly varying parts respectively. The most singular parts of the rapidly varying components of the DDCF may be obtained by the following “non-standard harmonic analysis” ρf (x, σ, t) ∼ e2πi x dy(ρs(y,t)+λ ρs(−y,t)) (49) where λ = 0 or λ = 1 depending upon which correlation function we want to reproduce. The presence of ρs(−y, t) automatically incorporates (at the level of correlation functions), the presence of localised impurities in the system. This is unlike the conventional chiral bosonization method where the impurities lead to non-local hamiltonians whereas the Fermi-Bose correspondence is left untouched. The conventional method, though correct in principle, is unwieldy and unnatural since the impurities which lead to strong qualitative changes in the ground state of the system are introduced as an afterthought whereas the short- range forward scattering which leads only to subtle (but qualitative) changes are treated exactly. NCBT does a good job of including both but it is still not exact as it can only provide the most singular parts of the correlation functions in terms of elementary functions of positions and times.
  • 10. 10 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur* Furthermore, in NCBT, the field “operator” (only a mnemonic for the correlation functions it generates) has a modified form which automatically takes into account the presence of impurities. ψν(x, σ, t) ∼ eiΞν (x,σ,t) ; Ξν(x, σ, t) ≡ θν(x, σ, t) + 2πλν x dy ρs(−y, σ, t) (50) where ν = R, L and λ = 0, 1 depending upon which 2-point correlation function we are looking for ( right- right, right-left, left-right, left-left movers and both points on same (opposite) sides of the origin ) . Also θν(x, σ, t) is the same as what is found in chiral bosonization. It may be related to currents and densities and through the continuity equation, finally only to the slow parts of the density. θν(x, σ, t) = π x dy νρs(y, σ, t) − y dy ∂vF tρs(y , σ, t) (51) As usual ρs(y, σ, t) ≡: ψ† R(y, σ, t)ψR(y, σ, t) + ψ† L(y, σ, t)ψL(y, σ, t) : Note that unlike in chiral bosonization, equation (50) is not an operator identity. It is only meant to capture the most singular parts of the two point functions by employing the following device. We assert that the most singular parts of the 2-point functions are given by retaining only the leading terms in the cumulant expansion. < ψν (x, σ, t)ψ† ν (x , σ, t ) > ∼ < eiΞν (x,σ,t) e −iΞ ν (x ,σ,t ) >∼ e− 1 2 <Ξ2 ν (x,σ,t)> e − 1 2 <Ξ2 ν (x ,σ,t )> e <Ξν (x,σ,t)Ξ ν (x ,σ,t )> (52) As long as the symbol < ... > on both sides of the equation equation (52) is read as “most singular part of the expectation value”, equation (52) is in fact the exact answer for the two-point functions of a strongly inhomogeneous Luttinger liquid. The higher order terms in the cumulant expansion are purposely dropped as they can be shown to be less singular (see subsection 4.1). The other important point worth mentioning is that in chiral bosonization, the 2-point Green functions in presence of impurities are discontinuous functions of the short-range forward scattering strength. This means in presence of impurities, the full asymptotic Green functions for weak short-range forward scattering are qualitatively (discontinuously) different from the corresponding quantities for no short-range forward scattering. This is the origin of the “cutting the chain” and “healing the chain” metaphors applicable for repulsive and attractive short-range forward scattering respectively. However NCBT only yields the most singular part of the asymptotic Green functions. This attribute exhibits a behaviour complementary to the what is seen in the full Green function. The most singular part of the 2-point Green functions are discontinuous functions of the impurity strength in presence of short- range forward scattering between fermions. This means the NCBT Green functions with weak impurities are qualitatively (ie. discontinuously) different from the corresponding quantity for no impurities. This is the main reason why the results of chiral bosonization and NCBT cannot be easily compared with one another as they are fully complementary. The only exception is for a fully homogeneous system or its antithesis viz. the half line where the two results coincide. 4.3 Obtaining the spinless results It is easy to transform equation (41) and equation (42) to show the results for the spinless fermions. For doing so, the density density correlation functions of the holons ρhρh needs to be doubled and that of the spinons ρnρn are allowed to vanish. The holon velocity in this case will be related to the Fermi velocity as vh = v2 h + v0vF /π. Hence the density density correlation function for the spinless case is the following. T ρs(x1, t1)ρs(x2, t2) = vF 4π2vh ν=±1 − 1 (x1 − x2 + νvh(t1 − t2))2 − |R|2 1 − (vh−vF ) vh |R|2 vF vh sgn(x1)sgn(x2) (|x1| + |x2| + νvh(t1 − t2))2 (53) 5 Comparison with perturbative results The density density correlation functions of a strongly inhomogeneous Luttinger liquid given by equation (41) can be verified by a comparison with those obtained using standard fermionic perturbation (the
  • 11. Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 11 comparison for the limiting cases, viz., |R| = 0 and |R| = 1 are given in Appendix B and Appendix C respectively). The general case viz. 0 < |R| < 1 is given in Appendix D. Since the spinon DDCF is the same as that of the non-interacting DDCF (it is only the total density that couples with the interaction), hence it will suffice only to compare the holon DDCF to perturbative results. For this, the holon DDCF is expanded in powers of the interaction parameter v0. Note that the holon velocity vh is related to the Fermi velocity and the interaction parameter v0 by the relation vh = vF 1 + 2v0/(πvF ). The holon DDCF is given as follows. T ρh(x1, t1)ρh(x2, t2) = vF 2π2vh ν=±1 − 1 (x1 − x2 + νvh(t1 − t2))2 − vF vh sgn(x1x2) |R|2 1− (vh−vF ) vh |R|2 (|x1| + |x2| + νvh(t1 − t2))2 (54) Expanding in powers of interaction parameter v0 and retaining up to the first order, the following is obtained. T ρh(x1, t1)ρh(x2, t2) = T ρh(x1, t1)ρh(x2, t2) 0 + v0 T ρh(x1, t1)ρh(x2, t2) 1 + O[v2 0] (55) Now T ρh(x1, t1)ρh(x2, t2) 0 = − 1 2π2 sgn(x1)sgn(x2)|R|2 (|x1| + |x2| + vF (t1 − t2))2 + sgn(x1)sgn(x2)|R|2 (|x1| + |x2| − vF (t1 − t2))2 + 1 (x1 − x2 + vF (t1 − t2))2 + 1 (x1 − x2 − vF (t1 − t2))2 (56) and T ρh(x1, t1)ρh(x2, t2) 1 = 1 4π3vF ( |R|2sgn(x1)sgn(x2)(−(|R|2 − 1) |x1| − (|R|2 − 1) |x2| + (|R|2 − 3)vF (t1 − t2)) (|x1| + |x2| + vF (t2 − t1))3 + |R|2sgn(x1)sgn(x2) (|x1| + |x2| + vF (t1 − t2))2 + |R|2sgn(x1)sgn(x2) (|x1| + |x2| + vF (t2 − t1))2 − |R|2sgn(x1)sgn(x2)((|R|2 − 1) |x1| + (|R|2 − 1) |x2| + (|R|2 − 3)vF (t1 − t2)) (|x1| + |x2| + vF (t1 − t2))3 + 2vF (t1 − t2) (t1vF − t2vF + x1 − x2)3 + 2vF (t1 − t2) (t1vF − t2vF − x1 + x2)3 + 1 (t1vF − t2vF + x1 − x2)2 + 1 (t1vF − t2vF − x1 + x2)2 ) (57) The first order term viz. equation (57) has to be compared with that obtained using standard fermionic perturbation theory. Using the perturbative approach, the density density correlation functions in presence of interactions can be written in terms of the non-interacting ones as follows. T ρh(x1, t1)ρh(x2, t2) = TS ρh(x1, t1)ρh(x2, t2) 0 TS 0 (58) Here T represents the time ordering and the action S can be written as follows. S = e−i Hfs(t)dt = 1 − i Hfs(t)dt + .... (59) Hence the zeroth order term is simply T ρh(x1, t1)ρh(x2, t2) 0 and the first order perturbation term can be written as follows. T ρh(x1, t1)ρh(x2, t2) 1 = −i T HI(t1)ρh(x1, t1)ρh(x2, t2) 0dt1 From equation (10) the interacting part of the Hamiltonian can be written as Hfs(t) = 1 2 ∞ −∞ dx ∞ −∞ dx v(x − x ) ρh(x, t)ρh(x , t) Hence the first order term in the perturbation series can be written as follows. Tρh(x1, t1)ρh(x2, t2) 1 = − i 2 dτ dy dy v(y − y ) T ρs(y, τ+)ρs(y , τ)ρh(x1, t1)ρh(x2, t2) 0 (60)
  • 12. 12 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur* Here v(y − y ) = v0δ(y − y ) is the short ranged mutual interaction term. The symbol .. 0 on the RHS indicates single particle functions. The next step is crucial. We wish to only include the most singular contributions to the exact first order term in Eq.(60). This involves simply pairing up the densities (as explained in section 4.1). Using equation (60), the most singular contribution up to the first order in interaction parameter can be obtained as follows: T ρh(x1, t1)ρh(x2, t2) 1 = −iv0 C dτ ∞ −∞ dy T ρh(y, τ)ρh(x1, t1) 0 T ρh(y, τ)ρh(x2, t2) 0 (61) This has been worked out separately for |R| = 0, |R| = 1 and 0 < |R| < 1 in Appendix B, Appendix C and Appendix D respectively. In Appendix D, the perturbation series to all orders is exhibited in momentum and frequency space and is explicitly evaluated up to second order in v0. 6 Conclusions In this work, the most singular contributions of the slow part of the density density correlation functions of a Luttinger liquid with short-range forward scattering mutual interactions in presence of static scalar impurities has been rigorously shown to be expressible in terms of elementary functions of positions and times. This formula has simple second order poles (when the 2-point functions are seen as functions of the complex variable τ = t − t ). Furthermore, it only involves the bare reflection and transmission coefficients of a single fermion in presence of the localised impurities. In chiral bosonization, the 2-point Green functions in presence of impurities are discontinuous functions of the short-range forward scattering strength. This means in presence of impurities, the full asymptotic Green functions for weak short-range forward scattering are qualitatively (discontinuously) different from the corresponding quantities for no short-range forward scattering. This is the origin of the “cutting the chain” and “healing the chain” metaphors applicable for repulsive and attractive short-range forward scat- tering respectively. However NCBT only yields the most singular part of the asymptotic Green functions. This attribute exhibits a behaviour complementary to the what is seen in the full Green function. The most singular part of the 2-point Green functions are discontinuous functions of the impurity strength in presence of short- range forward scattering between fermions. This means the NCBT Green functions with weak impurities are qualitatively (ie. discontinuously) different from the corresponding quantity for no impurities. This is the main reason why the results of chiral bosonization and NCBT cannot be easily compared with one another as they are fully complementary. The only exception is for a fully homogeneous system or its antithesis viz. the half line where the two results coincide. APPENDIX A: Fourier transform In the main text, we are required to show that equation (8) may be recovered from equation (13) and equation (14). For this we are required to make sense of integrals such as (x = x and x, x = 0), I0(x − x ) = q e−iq(x−x ) 2q2 vF w2 n + (qvF )2 (A.1) and I1(x) = q e−iqx 2vF q w2 n + (qvF )2 (A.2) We write, I0(x − x ) = q e−iq(x−x ) ( q iwn + (qvF ) + q −iwn + (qvF ) ) (A.3) Set X = x − x . Then, I0(X) = i d dX q e−iqX ( 1 iwn + (qvF ) + 1 −iwn + (qvF ) ) = i d dX I1(X) (A.4) and I1(x) = q e−iqx ( 1 iwn + (qvF ) + 1 −iwn + (qvF ) ) = − iL sgn(x) e − |wn| |x| vF vF (A.5)
  • 13. Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 13 Now, I1(X > 0) = − iL e − |wn| X vF vF ; I1(X < 0) = iL e |wn| X vF vF (A.6) and I0(X > 0) = − |wn| vF L e − |wn| X vF vF ; I0(X < 0) = − |wn| vF L e |wn| X vF vF (A.7) or I0(X) = − L |wn| v2 F e − |wn| |X| vF (A.8) Finally we are called upon to transform the Matsubara frequency to (imaginary) time. J0(x) = n e−wnτ I0(x) ; J1(x) = n e−wnτ I1(x) (A.9) or, J0(X) = − n e−wnτ L |wn| v2 F e − |wn| |X| vF ; J1(x) = − n e−wnτ iL sgn(x) e − |wn| |x| vF vF or, J0(X) = β 2π 0 −∞ dwn e−wnτ Lwn v2 F e wn |X| vF − β 2π ∞ 0 dwn e−wnτ Lwn v2 F e − wn |X| vF J1(x) = − β 2π 0 −∞ dwn e−wnτ iL sgn(x) e wn |x| vF vF − β 2π ∞ 0 dwn e−wnτ iL sgn(x) e − wn |x| vF vF or, J0(X) = β 2π 0 −∞ dwn e−wnτ Lwn v2 F e wn |X| vF − β 2π ∞ 0 dwn e−wnτ Lwn v2 F e − wn |X| vF J1(x) = − β 2π 0 −∞ dwn e−wnτ iL sgn(x) e wn |x| vF vF − β 2π ∞ 0 dwn e−wnτ iL sgn(x) e − wn |x| vF vF or, J0(X) = − βL 2π(|X| − τvF )2 − βL 2π(|X| + τvF )2 (A.10) J1(x) = βiL sgn(x) 2π(τvF − |x|) − βiL sgn(x) 2π(|x| + τvF ) (A.11) Thus equation (40) is just some combination of these functions J0, J1. APPENDIX B: Perturbative comparison for |R| = 0 case T ρa(x1, t1)ρa(x2, t2) = vF 2π2va ν=±1 − 1 (x1 − x2 + νva(t1 − t2))2 (B.1) where a = n or h, vh = v2 F + 2vF v0 π (B.2) vn = vF T ρn(x1, t1)ρn(x2, t2) = 1 2π2 ν=±1 − 1 (x1 − x2 + νvF (t1 − t2))2 (B.3) and T ρn(x1, t1)ρh(x2, t2) = 0. This means T ρn(x1, t1)ρn(x2, t2) 1 = 0. On the one hand Simply expanding the full final answer equation (B.1) to first power in v0 we get, T ρh(x1, t1)ρh(x2, t2) 1 = v0 2π3vF ( 2vF (t1 − t2) ((t1 − t2)vF + x1 − x2)3 + 2vF (t1 − t2) ((t1 − t2)vF − x1 + x2)3 + 1 ((t1 − t2)vF + x1 − x2)2 + 1 ((t1 − t2)vF − x1 + x2)2 ) (B.4)
  • 14. 14 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur* On the other hand Using standard perturbation and retaining the most singular terms we get, T ρh(x1, t1)ρh(x2, t2) 1 = (−i)v0 C dτ ∞ −∞ dy T ρh(y, τ)ρh(x1, t1) 0 T ρh(y, τ)ρh(x2, t2) 0 (B.5) But, T ρh(x1, t1)ρh(x2, t2) 0 = 1 2π2 ν=±1 − 1 (x1 − x2 + νvF (t1 − t2))2 (B.6) Hence, T ρh(x1, t1)ρh(x2, t2) 1 = (−i)v0 C dτ ∞ −∞ dy 1 4π4(−vF (τ − t1) − x1 + y)2(vF (τ − t2) − x2 + y)2 + (−i)v0 C dτ ∞ −∞ dy 1 4π4(vF (τ − t1) − x1 + y)2(−vF (τ − t2) − x2 + y)2 + (−i)v0 C dτ ∞ −∞ dy 1 4π4(−vF (τ − t1) − x1 + y)2(−vF (τ − t2) − x2 + y)2 + (−i)v0 C dτ ∞ −∞ dy 1 4π4(vF (τ − t1) − x1 + y)2(vF (τ − t2) − x2 + y)2 Hence, T ρh(x1, t1)ρh(x2, t2) 1 = (−i)v0 C dτ 1 4π4 4πi (−vF (τ − t1) − x1 − vF (τ − t2) + x2)3 (θ(−(τ − t1))θ(−(τ − t2)) − θ(τ − t1)θ(τ − t2)) + (−i)v0 C dτ 1 4π4 4πi (vF (τ − t1) − x1 + vF (τ − t2) + x2)3 (θ(τ − t1)θ(τ − t2) − θ(−(τ − t1))θ(−(τ − t2)) + (−i)v0 C dτ 1 4π4 4πi (−vF (τ − t1) − x1 + vF (τ − t2) + x2)3 (θ(−(τ − t1))θ(τ − t2) − θ(τ − t1)θ(−(τ − t2))) + (−i)v0 C dτ 1 4π4 4πi (vF (τ − t1) − x1 − vF (τ − t2) + x2)3 (θ(τ − t1)θ(−(τ − t2)) − θ(−(τ − t1))θ(τ − t2)) Specifically consider t1 > t2 (t1 is on the lower contour and t2 is on the upper contour). In this case, θ(−(τ − t1))θ(−(τ − t2)) − θ(τ − t1)θ(τ − t2) = θ(−(τ − t2)) − θ(τ − t1) θ(τ − t1)θ(τ − t2) − θ(−(τ − t1))θ(−(τ − t2)) = θ(τ − t1) − θ(−(τ − t2)) θ(−(τ − t1))θ(τ − t2) − θ(τ − t1)θ(−(τ − t2)) = θ(−(τ − t1))θ(τ − t2) θ(τ − t1)θ(−(τ − t2)) − θ(−(τ − t1))θ(τ − t2) = −θ(−(τ − t1))θ(τ − t2) or, T ρh(x1, t1)ρh(x2, t2) 1 = (−i)v0 C dτ 1 4π4 4πi (−vF (τ − t1) − x1 − vF (τ − t2) + x2)3 (θ(−(τ − t2)) − θ(τ − t1)) + (−i)v0 C dτ 1 4π4 4πi (vF (τ − t1) − x1 + vF (τ − t2) + x2)3 (θ(τ − t1) − θ(−(τ − t2))) + (−i)v0 C dτ 1 4π4 4πi (−vF (τ − t1) − x1 + vF (τ − t2) + x2)3 (θ(−(τ − t1))θ(τ − t2)) + (−i)v0 C dτ 1 4π4 4πi (vF (τ − t1) − x1 − vF (τ − t2) + x2)3 (−θ(−(τ − t1))θ(τ − t2)) or, T ρh(x1, t1)ρh(x2, t2) 1 = (−i)v0 1 4π4 ( t2 −∞ dτ − −∞ t1 dτ) 4πi (−vF (τ − t1) − x1 − vF (τ − t2) + x2)3 + (−i)v0 1 4π4 ( −∞ t1 dτ − t2 −∞ dτ) 4πi (vF (τ − t1) − x1 + vF (τ − t2) + x2)3 + (−i)v0 1 4π4 t1 t2 dτ 4πi (−vF (τ − t1) − x1 + vF (τ − t2) + x2)3 + (−i)v0 1 4π4 (− t1 t2 dτ) 4πi (vF (τ − t1) − x1 − vF (τ − t2) + x2)3
  • 15. Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 15 Or, T ρh(x1, t1)ρh(x2, t2) 1 = (−i)v0 1 4π4 ( iπ vF (t1vF − t2vF + x1 − x2)2 + iπ vF (t1vF − t2vF − x1 + x2)2 ) + (−i)v0 1 4π4 ( iπ vF (t1vF − t2vF + x1 − x2)2 + iπ vF (t1vF − t2vF − x1 + x2)2 ) + (−i)v0 1 4π4 4πi (x2 − x1 + vF (t1 − t2))3 (t1 − t2) + (−i)v0 1 4π4 4πi (x2 − x1 − vF (t1 − t2))3 (−(t1 − t2)) Or, T ρh(x1, t1)ρh(x2, t2) 1 = v0 2π3vF 2vF (t1 − t2) ((t1 − t2)vF + x1 − x2)3 + 2vF (t1 − t2) ((t1 − t2)vF − x1 + x2)3 + 1 ((t1 − t2)vF + x1 − x2)2 + 1 ((t1 − t2)vF − x1 + x2)2 (B.7) equation (B.7) matches with the earlier result equation (B.4). APPENDIX C: Perturbative comparison for |R| = 1 case T ρh(x1, t1)ρh(x2, t2) = vF 2π2vh ν=±1 − 1 (x1 − x2 + νvh(t1 − t2))2 − vF vh sgn(x1)sgn(x2) Zh (|x1| + |x2| + νvh(t1 − t2))2 (C.1) Zh = 1 1 − 4v0vF (vh+vF )vh 1 (2π) ; vh = v2 F + 2v0vF π (C.2) Expanding to first power of v0 we get, T ρh(x1, t1)ρh(x2, t2) ≈ − 1 2π2 ( sgn(x1)sgn(x2) (|x1| + |x2| + vF (t1 − t2))2 + sgn(x1)sgn(x2) (|x1| + |x2| − vF (t1 − t2))2 + 1 (x1 − x2 + vF (t1 − t2))2 + 1 (x1 − x2 − vF (t1 − t2))2 ) + v0 2π3vF sgn(x1)sgn(x2) 1 (|x1| + |x2| + vF (t1 − t2))2 + 1 (|x1| + |x2| − vF (t1 − t2))2 + 2vF (t1 − t2) (|x1| + |x2| + vF (t1 − t2))3 − 2vF (t1 − t2) (|x1| + |x2| − vF (t1 − t2))3 − 2vF (t1 − t2) (x1 − x2 − vF (t1 − t2))3 + 2vF (t1 − t2) (x1 − x2 + vF (t1 − t2))3 + 1 (x1 − x2 + vF (t1 − t2))2 + 1 (x1 − x2 − vF (t1 − t2))2 Or, δ T ρh(x1, t1)ρh(x2, t2) ≈ θ(x1x2) v0 2π3vF ( 1 (x1 + x2 + vF (t1 − t2))2 + 1 (x1 + x2 − vF (t1 − t2))2 + 1 (x1 − x2 + vF (t1 − t2))2 + 1 (x1 − x2 − vF (t1 − t2))2 ) +θ(x1x2) v0 2π3vF ( 2vF (t1 − t2) (x1 + x2 + vF (t1 − t2))3 − 2vF (t1 − t2) (x1 + x2 − vF (t1 − t2))3 − 2vF (t1 − t2) (x1 − x2 − vF (t1 − t2))3 + 2vF (t1 − t2) (x1 − x2 + vF (t1 − t2))3 ) (C.3) On the other hand, using standard perturbation and retaining the most singular terms we get, T ρh(x1, t1)ρh(x2, t2) 1 = (−i)v0 C dτ ∞ −∞ dy T ρh(y, τ)ρh(x1, t1) 0 T ρh(y, τ)ρh(x2, t2) 0 (C.4) This means,
  • 16. 16 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur* T ρh(x1, t1)ρh(x2, t2) 1 = (−i)v0 C dτ 0 −∞ dy 1 2π2 −sgn(x1) (−y + |x1| + vF (τ − t1))2 + −sgn(x1) (−y + |x1| − vF (τ − t1))2 + 1 (y − x1 + vF (τ − t1))2 + 1 (y − x1 − vF (τ − t1))2 1 2π2 −sgn(x2) (−y + |x2| + vF (τ − t2))2 + −sgn(x2) (−y + |x2| − vF (τ − t2))2 + 1 (y − x2 + vF (τ − t2))2 + 1 (y − x2 − vF (τ − t2))2 + (−i)v0 C dτ ∞ 0 dy 1 2π2 sgn(x1) (y + |x1| + vF (τ − t1))2 + sgn(x1) (y + |x1| − vF (τ − t1))2 + 1 (y − x1 + vF (τ − t1))2 + 1 (y − x1 − vF (τ − t1))2 1 2π2 sgn(x2) (y + |x2| + vF (τ − t2))2 + sgn(x2) (y + |x2| − vF (τ − t2))2 + 1 (y − x2 + vF (τ − t2))2 + 1 (y − x2 − vF (τ − t2))2 This means, T ρh(x1, t1)ρh(x2, t2) 1 = (−i)v0 θ(−x1)θ(−x2) C dτ 0 −∞ dy 1 2π2 1 (−y − x1 + vF (τ − t1))2 + 1 (−y − x1 − vF (τ − t1))2 + 1 (y − x1 + vF (τ − t1))2 + 1 (y − x1 − vF (τ − t1))2 1 2π2 1 (−y − x2 + vF (τ − t2))2 + 1 (−y − x2 − vF (τ − t2))2 + 1 (y − x2 + vF (τ − t2))2 + 1 (y − x2 − vF (τ − t2))2 + (−i)v0 θ(x1)θ(x2) C dτ ∞ 0 dy 1 2π2 1 (y + x1 + vF (τ − t1))2 + 1 (y + x1 − vF (τ − t1))2 + 1 (y − x1 + vF (τ − t1))2 + 1 (y − x1 − vF (τ − t1))2 1 2π2 1 (y + x2 + vF (τ − t2))2 + 1 (y + x2 − vF (τ − t2))2 + 1 (y − x2 + vF (τ − t2))2 + 1 (y − x2 − vF (τ − t2))2 This means, T ρh(x1, t1)ρh(x2, t2) 1 = (−i)v0 θ(x1x2) ∂x1 ∂x2 C dτ 0 −∞ dy 1 4π4 × ( 1 (y − x1 − vF (τ − t1)) + 1 (y − x1 + vF (τ − t1)) − 1 (y + x1 − vF (τ − t1)) − 1 (y + x1 + vF (τ − t1)) ) × ( 1 (y − x2 − vF (τ − t2)) + 1 (y − x2 + vF (τ − t2)) − 1 (y + x2 − vF (τ − t2)) − 1 (y + x2 + vF (τ − t2)) ) This means, T ρh(x1, t1)ρh(x2, t2) 1 = a1,ν1,a2,ν2=±1 (−i)v0 θ(x1x2) ∂x1 ∂x2 C dτ 0 −∞ dy 1 4π4 a1 (y − a1x1 − ν1vF (τ − t1)) a2 (y − a2x2 − ν2vF (τ − t2)) This also means, T ρh(x1, t1)ρh(x2, t2) 1 = a1,ν1,a2,ν2=±1 (−i)v0 θ(x1x2) ∂x1 ∂x2 C dτ ∞ 0 dy 1 4π4 a1 (y − a1x1 − ν1vF (τ − t1)) a2 (y − a2x2 − ν2vF (τ − t2)) This means, T ρh(x1, t1)ρh(x2, t2) 1 = a1,ν1,a2,ν2=±1 (−i) v0 2 θ(x1x2) C dτ ∞ −∞ dy 1 4π4 1 (y − a1x1 − ν1vF (τ − t1))2(y − a2x2 − ν2vF (τ − t2))2 This means, T ρh(x1, t1)ρh(x2, t2) 1 = a1,ν1,a2,ν2=±1 (−i) v0 2 θ(x1x2) C dτ ∞ −∞ dy 1 4π4 1 (y − a1x1 − ν1vF (τ − t1))2(y − a2x2 − ν2vF (τ − t2))2 (C.5)
  • 17. Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 17 T ρh(x1, t1)ρh(x2, t2) 1 = a1,ν1,a2,ν2=±1 (−i) v0 2 θ(x1x2) C dτ 1 4π4 4πi (−a1x1 − ν1vF (τ − t1) − (−a2x2 − ν2vF (τ − t2)))3 × (θ(−Im[−ν1(τ − t1)])θ(Im[−ν2(τ − t2)]) − θ(Im[−ν1(τ − t1)])θ(−Im[−ν2(τ − t2)])) (C.6) T ρh(x1, t1)ρh(x2, t2) 1 = a1,ν1,a2,ν2=±1 (−i) v0 2 θ(x1x2) C dτ 1 4π4 4πi (−a1x1 − ν1vF (τ − t1) − (−a2x2 − ν2vF (τ − t2)))3 (θC (−ν1(τ − t1))θC (ν2(τ − t2)) − θC (ν1(τ − t1))θC (−ν2(τ − t2))) T ρh(x1, t1)ρh(x2, t2) 1 = a1,a2,ν=±1 (−i) v0 2 θ(x1x2) C dτ 1 4π4 4πi (−a1x1 + a2x2 + νvF (t1 − t2))3 (θC (−ν(τ − t1))θC (ν(τ − t2)) − θC (ν(τ − t1))θC (−ν(τ − t2))) + a1,a2,ν=±1 (−i) v0 2 θ(x1x2) C dτ 1 4π4 4πi (−a1x1 + a2x2 + νvF (t1 + t2) − 2νvF τ)3 (θC (−ν(τ − t1))θC (−ν(τ − t2)) − θC (ν(τ − t1))θC (ν(τ − t2))) T ρh(x1, t1)ρh(x2, t2) 1 = a1,a2=±1 (−i) v0 2 θ(x1x2) C dτ 1 4π4 4πi (−a1x1 + a2x2 + vF (t1 − t2))3 (θC (−(τ − t1))θC (τ − t2) − θC (τ − t1)θC (−(τ − t2))) + C dτ 1 4π4 4πi (−a1x1 + a2x2 − vF (t1 − t2))3 (θC (τ − t1)θC (−(τ − t2)) − θC (−(τ − t1))θC (τ − t2)) + C dτ 1 4π4 4πi (−a1x1 + a2x2 − vF (t1 + t2) + 2vF τ)3 (θC (τ − t1)θC (τ − t2) − θC (−(τ − t1))θC (−(τ − t2))) + C dτ 1 4π4 4πi (−a1x1 + a2x2 + vF (t1 + t2) − 2vF τ)3 (θC (−(τ − t1))θC (−(τ − t2)) − θC (τ − t1)θC (τ − t2) If t1 > t2, T ρh(x1, t1)ρh(x2, t2) 1 = a1,a2=±1 (−i) v0 2 θ(x1x2) 1 4π4 4πi (−a1x1 + a2x2 + vF (t1 − t2))3 ( t1 t2 dτ) + a1,a2=±1 (−i) v0 2 θ(x1x2) 1 4π4 4πi (−a1x1 + a2x2 − vF (t1 − t2))3 (− t1 t2 dτ) + a1,a2=±1 (−i) v0 2 θ(x1x2) 1 4π4 (− t1 −∞ dτ − t2 −∞ dτ) 4πi (−a1x1 + a2x2 − vF (t1 + t2) + 2vF τ)3 + a1,a2=±1 (−i) v0 2 θ(x1x2) 1 4π4 ( t2 −∞ dτ + t1 −∞ dτ) 4πi (−a1x1 + a2x2 + vF (t1 + t2) − 2vF τ)3 (C.7) T ρh(x1, t1)ρh(x2, t2) 1 = a1,a2=±1 (−i) v0 2 θ(x1x2) 1 4π4 4πi (−a1x1 + a2x2 + vF (t1 − t2))3 (t1 − t2) + a1,a2=±1 (−i) v0 2 θ(x1x2) 1 4π4 4πi (−a1x1 + a2x2 − vF (t1 − t2))3 (t2 − t1) + a1,a2=±1 (−i) v0 2 θ(x1x2) 1 4π4 (− t1 −∞ dτ − t2 −∞ dτ) 4πi (−a1x1 + a2x2 − vF (t1 + t2) + 2vF τ)3 + a1,a2=±1 (−i) v0 2 θ(x1x2) 1 4π4 ( t2 −∞ dτ + t1 −∞ dτ) 4πi (−a1x1 + a2x2 + vF (t1 + t2) − 2vF τ)3 (C.8)
  • 18. 18 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur* T ρh(x1, t1)ρh(x2, t2) 1 = a1,a2=±1 (−i)v0 θ(x1x2) 1 4π4 4πi (−a1x1 + a2x2 + vF (t1 − t2))3 (t1 − t2) + a1,a2=±1 (−i)v0 θ(x1x2) 1 4π4 ( iπ vF (a1x1 − a2x2 + t1vF − t2vF )2 + iπ vF (−a1x1 + a2x2 + t1vF − t2vF )2 ) (C.9) T ρh(x1, t1)ρh(x2, t2) 1 = a1,a2=±1 v0 2π3vF θ(x1x2) 2vF (t1 − t2) (−a1x1 + a2x2 + vF (t1 − t2))3 + 1 (a1x1 − a2x2 + vF (t1 − t2))2 (C.10) Hence equation (C.3) matches with equation (C.10) APPENDIX D: Perturbative comparison for 0 < |R| < 1 case The conventional method of performing perturbation expansion is the S-matrix method viz. ρs(x1, t1) = ρs(x1, ↑, t1) + ρs(x1, ↓, t1), < T ρs(x1, t1)ρs(x2, t2) > = < T S ρs(x1, t1)ρs(x2, t2) >0 < T S >0 = < T ρs(x1, t1)ρs(x2, t2) >0 −i C dt < T Hfs(t) ρs(x1, t1)ρs(x2, t2) >0,c + (−i)2 2 C dt C dt < T Hfs(t)Hfs(t ) ρs(x1, t1)ρs(x2, t2) >0,c (D.1) where S = e−i C dt Hfs(t) where Hfs is given by equation (10). Retaining only the most singular terms, < T ρs(x1, t1)ρs(x2, t2) >=< T ρs(x1, t1)ρs(x2, t2) >0 −iv0 C dt dy < T ρs(x1, t1)ρs(y, t) >0< T ρs(y, t)ρs(x2, t2) >0 + v2 0(−i)2 C dt C dt dy dz < T ρs(x1, t1)ρs(z, t) >0 < T ρs(z, t)ρs(y, t ) >0 < T ρs(y, t )ρs(x2, t2) >0 +.... (D.2) Since we are going beyond leading order, it is more convenient to work in momentum and frequency space. < T ρs(x1, t1)ρs(x2, t2) >= 1 L2 q,q ,n e−iqx1 e−iq x2 e−wn(t1−t2) < ρq,n;.ρq ,−n;. > (D.3) Thus the most singular parts are captured by the following perturbation series, < ρq,n;.ρq ,−n;. > = < ρq,n;.ρq ,−n;. >0 − v0β L Q < ρq,n;.ρQ ,−n;. >0< ρ−Q ,n;.ρq ,−n;. >0 + v2 0β2 L2 Q ,Q < ρq,n;.ρQ ,−n;. >0< ρ−Q ,n;.ρQ ,−n;. >0< ρ−Q ,n;.ρq ,−n;. >0 +.... (D.4) NCBT says that when the above series is summed to all orders we get, < ρq,n;.ρq ,−n;. >= δq+q ,0 L β 2vF q2 π(w2 n + (qvh)2) + |wn| πβ |R|2 1 − (vh−vF ) vh |R|2 (2vF q)(2vF q ) (w2 n + (q vh)2) (w2 n + (qvh)2) (D.5) where vh = v2 F + 2v0vF π . However when vh = vF (no short-range forward scattering between fermions), < ρq,n;.ρq ,−n;. >0 = δq+q ,0 L β 2vF q2 π(w2 n + (qvF )2) + |wn| πβ |R|2 (2vF q)(2vF q ) (w2 n + (q vF )2) (w2 n + (qvF )2) (D.6)
  • 19. Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 19 Here we want to verify that this is consistent upto second order. The resummation to all orders has already been done using the generating function method in the main text. The series equation (D.4) may be evaluated as follows: The term proportional to v0 in < ρq,n;.ρq ,−n;. > − < ρq,n;.ρq ,−n;. >0 in the series equation (D.4) is: − 4Lq2 q 2 v0v2 F δ0,q+q π2β q2v2 F + w2 n q 2v2 F + w2 n + L ∞ −∞ 16qq2 1 q |R|4 v0v4 F |wn|2 π2βL(q2v2 F +w2 n)(q2 1 v2 F +w2 n)2 (q 2v2 F +w2 n) dq1 2π − 8qq 3 |R|2 v0v3 F |wn| π2β q2v2 F + w2 n q 2v2 F + w2 n 2 − 8q3 q |R|2 v0v3 F |wn| π2β q2v2 F + w2 n 2 q 2v2 F + w2 n (D.7) This simplifies to, T1 = − 4qq v0vF Lqq vF (q2 v2 F +w2 n) q 2 v2 F +w2 n δ0,q+q −|R|2 |wn| q2 q 2 (|R|2 −4)v4 F +(|R|2 −2)v2 F w2 n q2 +q 2 +|R|2 w4 n π2β q2v2 F + w2 n 2 q 2v2 F + w2 n 2 (D.8) The term proportional to v2 0 in < ρq,n;.ρq ,−n;. > − < ρq,n;.ρq ,−n;. >0 in the series equation (D.4) is: 8Lq2q4v2 0v3 F δ0,q+q π3β q2v2 F + w2 n q2v2 F + w2 n q2v2 F + w2 n + L 2π 2 ∞ −∞ ∞ −∞ 64qq Q 2Q 2|R|6v2 0v6 F |wn|3 π3βL2 q2v2 F + w2 n q 2v2 F + w2 n Q 2v2 F + w2 n 2 Q 2v2 F + w2 n 2 dQ dQ − L 2π ∞ −∞ 32qq Q 3Q |R|4v2 0v5 F |wn|2 π3βL q2v2 F + w2 n q 2v2 F + w2 n Q 2v2 F + w2 n 2 Q 2v2 F + w2 n dQ + L 2π ∞ −∞ 32q2(−q)q Q 2|R|4v2 0v5 F |wn|2 π3βL q2v2 F + w2 n q2v2 F + w2 n q 2v2 F + w2 n Q 2v2 F + w2 n 2 dQ − L 2π ∞ −∞ 32qq 3Q 2|R|4v2 0v5 F |wn|2 π3βL q2v2 F + w2 n q 2v2 F + w2 n 2 Q 2v2 F + w2 n 2 dQ − 16q2(−q)3q |R|2v2 0v4 F |wn| π3β q2v2 F + w2 n q2v2 F + w2 n q2v2 F + w2 n q 2v2 F + w2 n + 16qq 3q 2|R|2v2 0v4 F |wn| π3β q2v2 F + w2 n q 2v2 F + w2 n 2 q 2v2 F + w2 n − 16q2(−q)q 3|R|2v2 0v4 F |wn| π3β q2v2 F + w2 n q2v2 F + w2 n q 2v2 F + w2 n 2 (D.9) This simplifies to, T2 = 2qq v2 0 π3β(q2v2 F + w2 n)3(q 2v2 F + w2 n)3 4Lq2 q 2 v3 F (q2 v2 F + w2 n)(q 2 v2 F + w2 n)(qq v2 F − w2 n)δ0,q+q + |R|2 |wn| (q4 q 4 (|R|2 (2|R|2 − 11) + 24)v8 F + 2q2 q 2 (|R|2 (2|R|2 − 9) + 12)v6 F w2 n(q2 + q 2 ) + 2|R|2 (2|R|2 − 5)v2 F w6 n(q2 + q 2 ) + v4 F w4 n((|R|2 (2|R|2 − 7) + 8)(q4 + q 4 ) + 4q2 q 2 (|R|2 (2|R|2 − 7) + 2)) + |R|2 (2|R|2 − 3)w8 n) (D.10) It is easy to verify that both T1 and T2 may also be obtained by simply expanding equation (D.5) in powers of v0 and retaining upto order v2 0. APPENDIX E: Derivation of formulas for the parameters of the generalized Hamiltonian (VR, VL, V1, V ∗ 1 ) in terms of T, R H0 = − i vF dx (ψ† R(x)∂xψR(x) − ψ† L(x)∂xψL(x)) + VRψ† R(0)ψR(0) + VLψ† L(0)ψL(0) + V1 ψ† R(0)ψL(0) + V ∗ 1 ψ† L(0)ψR(0) (E.1)
  • 20. 20 Nikhil Danny Babu*, Joy Prakash Das †, Girish S. Setlur* Note that we may write V1 = |V1| eiδ . This phase may be absorbed by a redefinition of the fields ψR(x) → eiδ ψR(x) for example. This means V1 can be chosen to be real without loss of generality. < T ψν(x, t)ψ† ν (x , t ) > = Γν,ν (x, x ) νx − ν x − vF (t − t ) (E.2) and Γν,ν (x, x ) = γ,γ =±1 θ(γx)θ(γ x ) gγ,γ (ν, ν ) (E.3) i∂t < ψν(x, t)ψ† ν (x , t ) > = i vF Γν,ν (x, x ) (νx − ν x − vF (t − t ))2 (E.4) i∂t < ψν(x, t)ψ† ν (x , t ) > = < [ψν(x, t), H0]ψ† ν (x , t ) > (E.5) or i∂t < ψν (x, t)ψ† ν (x , t ) > = − i vF ν < ∂xψν (x, t)ψ† ν (x , t ) > + < [ψν (x, t), VRψ† R(0)ψR(0)]ψ† ν (x , t ) > + < [ψν (x, t), VLψ† L(0)ψL(0)]ψ† ν (x , t ) > + < [ψν (x, t), V1 ψ† R(0)ψL(0)]ψ† ν (x , t ) > + < [ψν (x, t), V ∗ 1 ψ† L(0)ψR(0)]ψ† ν (x , t ) > or i vF Γν,ν (x, x ) (νx − ν x − vF (t − t ))2 = i vF Γν,ν (x, x ) (νx − ν x − vF (t − t ))2 − i vF ν [∂xΓν,ν (x, x )] νx − ν x − vF (t − t ) + δν,1δ(x) VR < ψR(0, t)ψ† ν (x , t ) > +VLδν,−1δ(x) < ψL(0, t)ψ† ν (x , t ) > + V1δ(x)δν,1 < ψL(0, t)ψ† ν (x , t ) > +V ∗ 1 δν,−1δ(x) < ψR(0, t)ψ† ν (x , t ) > or 0 = − i vF ν γ,γ =±1 δ(x)γθ(γ x ) gγ,γ (ν, ν ) νx − ν x − vF (t − t ) + δν,1δ(x) VR Γ1,ν (0, x ) −ν x − vF (t − t ) + VLδν,−1δ(x) Γ−1,ν (0, x ) −ν x − vF (t − t ) + V1δ(x)δν,1 Γ−1,ν (0, x ) −ν x − vF (t − t ) + V ∗ 1 δν,−1δ(x) Γ1,ν (0, x ) −ν x − vF (t − t ) or 0 = − i vF ν γ,γ =±1 δ(x)γθ(γ x ) gγ,γ (ν, ν ) −ν x − vF (t − t ) + δν,1δ(x) VR γ,γ =±1 1 2 θ(γ x ) gγ,γ (1, ν ) −ν x − vF (t − t ) + VLδν,−1δ(x) γ,γ =±1 1 2 θ(γ x ) gγ,γ (−1, ν ) −ν x − vF (t − t ) + V1δ(x)δν,1 γ,γ =±1 1 2 θ(γ x ) gγ,γ (−1, ν ) −ν x − vF (t − t ) + V ∗ 1 δν,−1δ(x) γ,γ =±1 1 2 θ(γ x ) gγ,γ (1, ν ) −ν x − vF (t − t ) or 0 = γ=±1 (−i vF ν γ gγ,γ (ν, ν ) + δν,1 VR 1 2 gγ,γ (1, ν ) + VLδν,−1 1 2 gγ,γ (−1, ν ) + V1δν,1 1 2 gγ,γ (−1, ν ) + V ∗ 1 δν,−1 1 2 gγ,γ (1, ν )) The above equation gives, VR = VL = 2i vF (T − T∗ ) 2TT∗ + T + T∗ V1 = V ∗ 1 = − 4i vF R∗ T 2TT∗ + T + T∗ = 4i vF RT∗ 2TT∗ + T + T∗ (E.6) This automatically means −R∗ T = RT∗ (E.7)
  • 21. Density Density Correlation Function of Strongly Inhomogeneous Luttinger Liquids 21 References 1. Aristov, D.: Luttinger liquids with curvature: Density correlations and coulomb drag effect. Physical Review B 76(8), 085327 (2007) 2. Artemenko, S.N., Remizov, S.: Low-temperature conductivity of quasi-one-dimensional conductors: Luttinger liquid stabilized by impurities. Physical Review B 72(12), 125118 (2005) 3. Caux, J.S., Calabrese, P.: Dynamical density-density correlations in the one-dimensional bose gas. Physical Review A 74(3), 031605 (2006) 4. Das, J.P., Chowdhury, C., Setlur, G.S.: Nonchiral bosonization of strongly inhomogeneous luttinger liquids. Theoretical and Mathematical Physics 199(2), 736–760 (2019) 5. Das, J.P., Setlur, G.S.: The quantum steeplechase. International Journal of Modern Physics A p. 1850174 (2018) 6. Dinh, S.N., Bagrets, D.A., Mirlin, A.D.: Tunneling into a nonequilibrium luttinger liquid with impurity. Physical Review B 81(8), 081306 (2010) 7. Ejima, S., Fehske, H.: Luttinger parameters and momentum distribution function for the half-filled spinless fermion holstein model: A dmrg approach. EPL (Europhysics Letters) 87(2), 27001 (2009) 8. Freyn, A., Florens, S.: Numerical renormalization group at marginal spectral density: Application to tunneling in luttinger liquids. Physical Review Letters 107(1), 017201 (2011) 9. Gambetta, F., Ziani, N.T., Cavaliere, F., Sassetti, M.: Correlation functions for the detection of wigner molecules in a one-channel luttinger liquid quantum dot. EPL (Europhysics Letters) 107(4), 47010 (2014) 10. Giamarchi, T.: Quantum Physics in One dimension. Clarendon Oxford (2004) 11. Grishin, A., Yurkevich, I.V., Lerner, I.V.: Functional integral bosonization for an impurity in a luttinger liquid. Physical Review B 69(16), 165108 (2004) 12. Haldane, F.: Demonstration of the luttinger liquid character of bethe-ansatz-soluble models of 1-d quantum fluids. Physics Letters A 81(2-3), 153–155 (1981) 13. Haldane, F.: ’luttinger liquid theory’of one-dimensional quantum fluids. i. properties of the luttinger model and their extension to the general 1d interacting spinless fermi gas. Journal of Physics C: Solid State Physics 14(19), 2585 (1981) 14. Hamamoto, Y., Imura, K.I., Kato, T.: Numerical study of transport through a single impurity in a spinful tomonaga– luttinger liquid. Physical Review B 77(16), 165402 (2008) 15. Iucci, A., Fiete, G.A., Giamarchi, T.: Fourier transform of the 2 k f luttinger liquid density correlation function with different spin and charge velocities. Physical Review B 75(20), 205116 (2007) 16. Kainaris, N., Carr, S.T., Mirlin, A.D.: Transmission through a potential barrier in luttinger liquids with a topological spin gap. Physical Review B 97(11), 115107 (2018) 17. Kane, C., Fisher, M.P.: Resonant tunneling in an interacting one-dimensional electron gas. Physical Review B 46(11), 7268 (1992) 18. Kane, C., Fisher, M.P.: Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. Physical Review B 46(23), 15233 (1992) 19. Kane, C., Fisher, M.P.: Transport in a one-channel luttinger liquid. Physical Review Letters 68(8), 1220 (1992) 20. Lo, C.Y., Fukusumi, Y., Oshikawa, M., Kao, Y.J., Chen, P., et al.: Crossover of correlation functions near a quantum impurity in a tomonaga-luttinger liquid. Physical Review B 99(12), 121103 (2019) 21. Matveev, K., Yue, D., Glazman, L.: Tunneling in one-dimensional non-luttinger electron liquid. Physical Review Letters 71(20), 3351 (1993) 22. Moon, K., Yi, H., Kane, C., Girvin, S., Fisher, M.P.: Resonant tunneling between quantum hall edge states. Physical Review Letters 71(26), 4381 (1993) 23. Parola, A., Sorella, S.: Asymptotic spin-spin correlations of the u one-dimensional hubbard model. Physical Review Letters 64(15), 1831 (1990) 24. Protopopov, I., Gutman, D., Mirlin, A.: Many-particle correlations in a non-equilibrium luttinger liquid. Journal of Statistical Mechanics: Theory and Experiment 2011(11), P11001 (2011) 25. Qin, S., Fabrizio, M., Yu, L.: Impurity in a luttinger liquid: A numerical study of the finite-size energy spectrum and of the orthogonality catastrophe exponent. Physical Review B 54(14), R9643 (1996) 26. Rylands, C., Andrei, N.: Quantum impurity in a luttinger liquid: Exact solution of the kane-fisher model. Physical Review B 94(11), 115142 (2016) 27. Samokhin, K.: Lifetime of excitations in a clean luttinger liquid. Journal of Physics: Condensed Matter 10(31), L533 (1998) 28. Schulz, H.: Wigner crystal in one dimension. Physical Review Letters 71(12), 1864 (1993) 29. Sen, D., Bhaduri, R.: Density-density correlations in a luttinger liquid: Lattice approximation in the calogero-sutherland model. Canadian Journal of Physics 77(5), 327–341 (1999) 30. Stephan, W., Penc, K.: Dynamical density-density correlations in one-dimensional mott insulators. Physical Review B 54(24), R17269 (1996) 31. Von Delft, J., Schoeller, H.: Bosonization for beginners refermionization for experts. Annalen der Physik 7(4), 225–305 (1998)