This document discusses data warehousing, including its definition, importance, components, strategies, ETL processes, and considerations for success and pitfalls. A data warehouse is a collection of integrated, subject-oriented, non-volatile data used for analysis. It allows more effective decision making through consolidated historical data from multiple sources. Key components include summarized and current detailed data, as well as transformation programs. Common strategies are enterprise-wide and data mart approaches. ETL processes extract, transform and load the data. Clean data and proper implementation, training and maintenance are important for success.